This file was downloaded from the American Curriculum website

worksheet state Solid الملف

<u>Almanahj Website</u> \rightarrow <u>American curriculum</u> \rightarrow <u>9th Grade</u> \rightarrow <u>Chemistry</u> \rightarrow <u>Term 1</u> \rightarrow <u>The file</u>

More files for 9th Grade, Subject Chemistry, Term 1						
Chemistry Worksheet	1					
Worksheet about Hydrogen	2					
Mole to Grams and Grams to Moles Conversions Worksheet	3					
Worksheet about Chemistry	4					
Chemistry Worksheet	5					
Worksheet about fundamentals of organic reactions	6					
Worksheet about Chemistry Pharmaceutics	7					

THE SOLID STATE WORK SHEET

RD CHEMISTRY YOU TUBE AND TELEGRAM CHANNEL

1. A solid with high electrical and thermal conductivity from the following is

	(a)Si	(b)Li	(c)NaCl	(d) Ice						
	The pure crystalline substance on being heated gradually first forms a turbid at constant temperature and still a higher temperature turbidity completely disappears. The behaviour is a characteristic of substance forming									
	(a)Allotropic cryst	als	(b) Liquid	crystals						
	(c) Isomeric crysta	ıls	(d) Isomo	rphous crys	tals					
3. T	he ability of a subst	ances to assume two o	r more crystalline	structure is	s called					
	(a)Isomerism	(b) Polymorphism	(c)Isomor	rphism	(d) Amorphism					
4. F	or orthorhombic sys	stem axial ratios are a	≠b≠c and the axia	l angles are						
	(a) α = β = γ \neq 90°		(b) $\alpha = \beta = \gamma = 90^{0}$							
	(c) $\alpha = \gamma = 90^{\circ}$, $\beta \neq 90^{\circ}$	00°	(d) α≠β≠γ=90°							
 5. A metal has a fcc lattice. The edge length of the unit cell is 404 pm. The density of the metal is 2.72 g cm⁻³. The molar mass of the metal is: (N_A, Avogadro 's constant = 6.02 ×10²³mol ⁻¹) (a) 30 g mol ⁻¹ (b) 27 g mol ⁻¹ (c) 20 g mol ⁻¹ (d) 40 g mol ⁻¹ 6. The number of octahedral void(s) per atom present in a cubic close – packed structure is: 										
	(a)1	(b)3 (c)2	(d)4							
	Copper crystallizes in tom in pm?	n a face – centred cubi	c lattice with a ur	nit cell leng	th of 361 pm. What is the radius of copper					
	(a)157	(b)181	(c)108	(d)12	28					
8. P	ercentage of free spa	ace in a body centered	cubic unit cell is	:						
	(a)30%	(b)32%	(c)34%	(d)28%						
	nen the ratio of radii (a) $\frac{1}{2}$ a: $\frac{\sqrt{3}}{4}$ a: $\frac{1}{2\sqrt{2}}$ a	edge length of the cub of the spheres in these (b) $\frac{1}{2}$ a: $\sqrt{3}$ a: $\frac{1}{\sqrt{2}}$ (d) 1a: $\sqrt{3}$ a: $\sqrt{2}$ a	systems will be		dy centred cubic and face centered cubic, ly					
10.	The fraction of	total volume occupied	by the atoms pre	sent in a sir	nple cube is :					
	_	b) $\frac{\pi}{4\sqrt{2}}$ (c) $\frac{\pi}{4}$			77300 Supile (%2)					
11.		d cubic lattice, a unit		ally by how	many unit cells?					
	(a)2	(b)4 (c)6		(d)8						

	(a)XY ₃	$(b)X_3Y$	(c)XY		$(d)XY_2$		
1.	3. of th					stalline cubic structurmula of the compour	are has the A atoms at the	e corner
	(a)AB	$(b)A_6B$	(c)AB ₆	(d)	A_8B_4		
1	4. (N _A		s doped with 10 ⁻⁴ 0 ²³ mol ⁻¹)	4 mol % of SrCl ₂ ,	the concer	ntration of cation vaca	ancies will be	
	(a) 6.02 ×10) ¹⁶ mol ⁻¹		(b) 6.02 >	10 ¹⁷ mol ⁻¹		
	(c) 6.02 ×10	0 ¹⁴ mol ⁻¹		(d) 6.02 >	10 ¹⁵ mol ⁻¹		
1:	5.	The appe	earance of colour	in solid alkali me	tal halides	is generally due to		
	(a)Schottky	defect	(b)1	Frenkel def	ect		
	(c)Interstitia	al positions	(d)1	F- centres			
10	6.	Schottky	defect in crystal	is observed when				
	(a	an ion le	aves its normal sit	e and occupies a	n interstitia	l site.		
	(b)unequal number of cations and anions are missing from the lattice							
	(c)density of the crystal is increased.							
	(6	equal nu	mber of cations ar	nd anions are mis	sing from t	he lattice.		
1	7.					cancy, the defect is l	known as	
				49		5 2		
		(a)Schott	tky defect		(b)Frenk	el defect		
		(c)Stochi	iometric defect		(d)F- cer	ntres		
18.		Which of the following is not a characteristic of a crystalline solid?						
	35%		d characteristic he	at of fusion				
	b) Isotropic nature							
	c) A regular periodically repeated pattern of arrangement of constituent particles in the entire crystal							
	d) A	true solid						
19.	Iodii	Iodine molecules are held in the crystal lattice by						
	a) London forces		b) d	b) dipole – dipole interactions				
	c) Covalent bonds d			d) c) coulombic forces			
20.	Whi	ch one of	the following is a	covalent crystal?				
	a) R	ock	b) Ice	c) Q	uartz	d) Dry ice		