


Forces about Worksheet الملف

 $\underline{Almanahj\ Website} \rightarrow \underline{American\ curriculum} \rightarrow \underline{2nd\ Grade} \rightarrow \underline{Science} \rightarrow \underline{Term\ 1} \rightarrow \underline{The\ file}$

More files for 2nd Grade,	Subject Science, Term 1
Worksheet about Friction	1
Worksheet about Energy	2
Worksheet about Methods to Separate a Mixture	3
Worksheet about Building Set Manual	4
Worksheet about EARTH AND Air	5
Worksheet about PLANTS and Basic Needs for Seeds to Germinate	6
Worksheet about Functions of The Electrical Components	7

The correct force meter

- It is important to use the correct force meter when you measure the force of an object. For example:
 - If you use a 2.5 N force meter to measure objects with a larger force than 2.5 N, then the spring will break, or the plastic ring will go past the end of the scale.
 - If you use a 50 N force meter to measure objects with a smaller force than 50 N, you will not get an accurate reading, because the plastic ring will not move very far.
 - a. Which is the most suitable force meter to measure the force of the objects in the table below? One example is done for you.

Object	Mass (g / kg)	Colour of force meter
large book	498 g	green
pencil case	35 g	
child's chair	900 g	
brick	1 kg	
music case	210 g	
lunchbox	450 g	
school bag (full)	850 g	
shopping bag (full)	3 kg	

b.	Which object has the biggest force?
c.	Which object has the smallest force?
d.	Why would a tan force meter be unsuitable for measuring the shopping bag?
e.	What is the relation between mass and weight? Tick the correct sentence. The more mass, the more weight.
	The more mass, the less weight.

Start objects moving

2.	Jack and his class had fun blowing bubbles. They investigated movement of the bubbles using push and pull forces.	how to change the size and
	a. Which force could they use to make the bubbles move a	along in the air?
	b. How could they change the direction of the bubbles move	ving through the air?
	c. What could they do to change the speed of the bubbles	?
3.	3. Draw an arrow in this picture to show the direction of the force	
	needed to make the bubble	
	move. Write the word push or	
	pull to show the type of force used.	
4.	4. Write true or false for each sentence.	
	a. Forces can make bubbles change directions.	_
	b. A pulling force makes bubbles move	
	c. The bigger the force, the more the bubbles will move	
	d. A push force makes the bubbles move forwards.	
	e. A pull force makes the bubbles move back towards Jack	k
	f. A smaller force makes smaller bubbles	
5.	5. What is the relation between force and motion? Tick the correct	ct sentence.
	The more force, the faster the motion.	
	The more force, the slower the motion.	

6. Draw arrows to represent the force needed to move:

Object	Motion	Arrow
Ping-pong ball	From right to left	
Basket-ball	From left to right	

CONCLUSION

- → Mass and weight are equal / different, but they increase / don't increase at the same time. It is because the weight takes / doesn't take into account both the mass and the gravity.
- → A force can keep / change the direction and speed of a moving object, but it is needed to apply a small / big force to reach longer distances. It is because forces make / don't make things move.