This file was downloaded from the American Curriculum website

Chemistry Organic Of Fundamentals about Worksheet الملف

<u>Almanahj Website</u> \rightarrow <u>American curriculum</u> \rightarrow <u>10th Grade</u> \rightarrow <u>Chemistry</u> \rightarrow <u>Term 1</u> \rightarrow <u>The file</u>

More files for 10th Grade, Subject Chemistry, Term 1			
Worksheet about Chemistry Review	1		
Worksheet about Chemistry Tools	2		
Global Carbon Cycle Worksheet	3		
<u>Chemistry Test</u>	4		

8 Ionic Equilibrium

The pH of 10 ⁻⁵ M l	KOH solution will	be	
a) 9	b) 5	c) 19	d) none of these
H ₂ PO ₄ the conju	gate base of		
a) PO ₄ 3-	b) P2O5	c) H ₃ PO ₄	d) HPO ₄ ²⁻
Which of the follo	owing can act as Lov	wry – Bronsted acid	as well as base?
a) HCl	b) SO ₄ 2-	c) HPO ₄ 2-	d) Br
The pH of an aque	eous solution is Zer	o. The solution is	
a) slightly acidic	b) strongly acid	lic c) neutral	d) basic
	concentration of a	buffer solution cons	sisting of a weak acid and its salts
is given by			
a) $[H^+] = \frac{K_a[acid]}{[salt]}$	b) $[H^+]=K_a[sa$	alt] $c) [H^+] = K_a$	[acid] d) $[H^+] = \frac{K_s[salt]}{[acid]}$
Which of the fo	llowing relation is	s correct for degre	e of hydrolysis of ammonium
acetate?	_		
a) $h = \sqrt{\frac{K_h}{C}}$	b) $h = \sqrt{\frac{K_a}{K_b}}$	c) $h = \sqrt{\frac{K_w}{K_a.K_b}}$	d) $h = \sqrt{\frac{K_a.K_b}{K_w}}$
Dissociation con-	stant of NH4OH is	1.8×10 ⁻⁵ the hydro	olysis constant of NH ₄ Cl would
a) 1.8×10 ⁻¹⁹	b) 5.55×10 ⁻¹⁰	c) 5.55×10 ⁻⁵	d) 1.80×10 ⁻⁵
The solubility of K_{p} will be (NE	BaSO ₄ in water is 2.4 ET -2018). (Given	12×10 ⁻³ gL ⁻¹ at 298K. molar mass of BaSC	The value of its solubility produc 0 ₄ =233g mol ⁻¹)
a) 1.08×10 ⁻¹⁴ mol	² L ⁻²	b)1.08×10 ⁻¹² mol	$^{2}L^{2}$
c) 1.08×10 ⁻¹⁰ mol	$^{2}L^{^{-2}}$	d) 1.08×10-8 mo	l^2L^2
pH of a saturated	solution of Ca(OH), is 9. The Solubilit	y product (K _{sp})of Ca(OH) ₂
a) 0.5×10 ⁻¹⁵		b) 0.25×10 ⁻¹⁰	
c) 0.125×10 ⁻¹⁵		d) 0.5×10 ⁻¹⁰	
Conjugate base for	or Bronsted acids H	O and HF are	
a) OH and H2FH	, respectively	b) H ₃ O and F-,	respectively
c) OH and F, re	espectively	d) H ₃ O ⁺ and H ₂ I	F ⁺ , respectively
Which will make	basic buffer?		
a) 50 mL of 0.1M	NaOH+25mL of 0	.1M CH ₃ COOH	
b) 100 mL of 0.1M	M CH ₃ COOH+100	mL of 0.1M NH ₄ OI	Н

c) 100 mL of 0.1M HCl+200 mL of 0.1M NH $_4\mathrm{OH}$

d) 100 mL of 0.1M HCl+100 mL of 0.1M NaOH

. The solubility of AgCl be	(s) with solubilit	y product 1.6×10 ⁻¹⁰	in 0.1M NaCl solution would			
a) $1.26 \times 10^{-5} M$	b) 1.6×10°M	c) 1.6×10 ⁻¹¹ M	d) Zero			
. If the solubility product of lead iodide is 3.2×10^{-8} , its solubility will be						
a) 2×10 ⁻³ M	b) 4×10 ⁻⁴ M	c) 1.6×10 ⁻⁵ M	d) 1.8×10 ⁻⁵ M			
. MY and NY ₃ , are insoluble salts and have the same K_{ap} values of 6.2×10^{-13} at room temperature. Which statement would be true with regard to MY and NY ₃ ?						
a) The salts MY and	a) The salts MY and NY, are more soluble in 0.5M KY than in pure water					
b) The addition of the on their solubility's		suspension of MY	and NY ₃ will have no effect			
c) The molar solubilit	ties of MY and N	Y, in water are ident	ical			
d) The molar solubilit	ty of MY in water	is less than that of	NY ₃			
. What is the pH of the resulting solution when equal volumes of 0.1M NaOH and 0.01M HCl are mixed?						
a) 2.0	b) 3	c) 7.0	d) 12.65			
. The dissociation constant of a weak acid is 1×10 ⁻³ . In order to prepare a buffer solution						
with a pH = 4, the [Acid] ratio should be						
a) 4:3	b) 3:4	c) 10:1	d) 1:10			
Concentration of the Ag^+ ions in a saturated solution of $Ag_2C_2O_4$ is $2.24\times10^{-4} mol\ L^{-1}$ solubility product of $Ag_2C_2O_4$ is (NEET – 2017)						
a) 2.42×10 ⁻⁸ mol ³ L ⁻³	3	b) 2.66×10 ⁻¹²	mol ³ L- ³			
c) 4.5×10 ⁻¹¹ mol ³ L ⁻³	3	d) 5.619 × 10 ⁻¹	² mol ³ L- ³			
Following solutions were prepared by mixing different volumes of NaOH of HCl different concentrations. (NEET – 2018) i. $60 \text{ mL} \frac{M}{10} \text{HCl} + 40 \text{mL} \frac{M}{10} \text{ NaOH}$ ii. $55 \text{ mL} \frac{M}{10} \text{HCl} + 45 \text{ mL} \frac{M}{10} \text{ NaOH}$						
iii. 75 mL $\frac{M}{5}$ HCl +	$25\text{mL} \frac{\text{M}}{5} \text{NaOl}$	H iv. 100 mL $\frac{N}{1}$	$\frac{M}{0}$ HCl + 100 mL $\frac{M}{10}$ NaOH			
pH of which one of them will be equal to 1?						
a) iv	b) i	c) ii	d) iii			

Which of the follo	owing fluro compou	inds is most likely t	to behave as a Lewis base?	
			(NEET - 2016)	
a) BF ₃	b) PF ₃	c) CF ₄	d) SiF ₄	
Which of these is	not likely to act as	Lewis base?		
a) BF ₃	b) PF ₃	c) CO	d) F-	
The aqueous solu respectively	utions of sodium fo	rmate, anilinium c	chloride and potassium cyanide are	
a) acidic, acidic, basic		b) basic, acidic, basic		
c) basic, neutral, basic		d) none of these		
	of pyridine (C ₅ H ₅ N solution (K _b for C		dinium ion (C ₅ H ₅ NH) in a 0.10M	
a) 0.006%	b) 0.013%	c) 0.77%	d) 1.6%	
	f three acid solution entration in the mix		are mixed in a vessel. What will be	
a) 3.7×10 ⁻²	b) 10 ⁻⁶	c) 0.111	d) none of these	