مذكرة شرح تحليل التمثيلات البيانية للدوال والعلاقات

تم تحميل هذا الملف من موقع المناهج السعودية

موقع المناهج ← المناهج السعودية ← مرحلة ثانوية ← رياضيات ← الفصل الأول ← ملفات متنوعة ← الملف

تاريخ إضافة الملف على موقع المناهج: 10-99-2025 21:04:13

ملفات اكتب للمعلم اكتب للطالب ا اختبارات الكترونية ا اختبارات ا حلول ا عروض بوربوينت ا أوراق عمل منهج انجليزي ا ملخصات وتقارير ا مذكرات وبنوك ا الامتحان النهائي ا للمدرس

المزيد من مادة رياضيات:

إعداد: الأستاذ عبد العزيز السهيمي

التواصل الاجتماعي بحسب مرحلة ثانوية

صفحة المناهج السعودية على فيسببوك

المزيد من الملفات بحسب مرحلة ثانوية والمادة رياضيات في الفصل الأول	
أسئلة اختبارات مهاراتي _ وصف مهارات	1
خطة توزيع المنهج للمرحلة الثانوية	2
خرائط مفاهيم شاملة	3
كشف رصد مادة	4
المهارات الأساسية المفقودة 3	5

شرح تفصيلي لدرس الاتصال و النهايات

تم تحميل هذا الملف من موقع المناهج السعودية

موقع المناهج ← المناهج السعودية ← الصف الثالث الثانوي ← رياضيات ← الفصل الأول ← ملفات متنوعة ← الملف

تاريخ إضافة الملف على موقع المناهج: 04-99-222:34 2025

ملفات اكتب للمعلم اكتب للطالب ا اختبارات الكترونية ا اختبارات ا حلول ا عروض بوربوينت ا أوراق عمل منهج انجليزي ا ملخصات وتقارير ا مذكرات وبنوك ا الامتحان النهائي ا للمدرس

المزيد من مادة رياضيات:

التواصل الاجتماعي بحسب الصف الثالث الثانوي

صفحة المناهج السعودية على فيسببوك

الرياضيات

اللغة الانجليزية

اللغة العربية

التربية الاسلامية

المواد على تلغرام

المزيد من الملفات بحسب الصف الثالث الثانوي والمادة رياضيات في الفصل الأول	
أوراق عمل شاملة مرفقة بالحل نظام المسارات مع الأهداف	1
عرض بوربوينت للدرس الأول الدوال	2
دفتر بديل الرياضيات للفصل الأول	3
خطة توزيع منهج الفصل الأول 1447ه	4
تحميل مقرر الرياضيات كتاب الطالب نسخة 1447ه	5

رياضيات 3-1 الفصل الأول: تحليل الدوال لدرس الثالث: الأتصال والنهايات

مدة إعطاء الدرس بإذن الله هي ثلاثة حصص

أ/عبدالعزيزالسهيمي

 $\lim_{x \to c} f(x) = f(c)$ عاد اله تساوي قيمة الدالة $\lim_{x \to c} f(x) = f(c)$

أولاً ◄ (التحقق من الاتصال عند نقطة)

مـثال 1

حدد ما إذا كانت الدالة $1-2x^2-3x-1$ متصلة عند x=2 عند x=2 متصال اختبار الاتصال.

ا) هل f(2) موجودة?

عل
$$\lim_{x\to 2} f(x)$$
 موجودة؟ ندرس النهاية واقترابها من جهتي يمين ويسار العدد صفر (2)

							400	
\boldsymbol{x}	1.9	1.99	1.999	2.0	2.001	2.01	2.1	ļ
f(x)	0.52	0.95	0.995	V,	1.005	1.05	1.52	ŀ

f(c) هرفة (لها قيمة محددة) با

$$f(x) = 2x^2 - 3x - 1$$

$$f(2) = 2(2)^2 - 3(2) - 1$$

x=2 ، أي أن الدالة معرفة عندf(2)=1

يُبين الجدول أنه عندما تقترب قيم x من 2 من اليسار ومن اليمين، فإن قيمة f(x) تقترب من 1، أي أن $\lim_{x \to 2} f(x) = 1$

$$\lim_{x\to 2} f(x) = f(2)$$
 هل (3

بما أن 1 = 1 ، $\lim_{x \to 2} f(x) = 1$ ، نستنتج أن f(2) = f(2) ، نستنتج أن f(2) = 1 ، $\lim_{x \to 2} f(x) = 1$ ، ويوضّح منحنى الدالة f(x) في الشكل 1.3.1 اتصال الدالة عند f(x) عند f(x)

حدد ما إذا كانت كل من الدالتين الآتيتين متصلتين عند x=0 . برِّر إجابتك باستعمال اختبار الاتصال:

تحقق من فهمك

الحل

$$f(x) = x^3$$
 (1A)

الشرط الأول

هل
$$f(c)$$
 معرفة (لها قيمة محددة) ؟

$$f(0) = (0)^3 = 0$$

نعوض في الدالة عند القيمة المعطاة

اِذاً $f\left(0
ight)$ معرفة

ندرس النهاية واقترابها من جهتي يمين ويسار العدد صفر

الشرط الثائي

$$\lim_{x\to 0} f(x) = 0$$

X	-0.1	-0.01	-0.001	0	2	0.001	0.01	0.1
f(x)	-0.001	-0.000001	-0.000000001			0.000000001	0.000001	0.001

عند اختيار قيم أكبر من الصفر مباشرة وأقل من الصفر مباشرة ، نلاحظ أن ناتج تعويضها من الجهتين تقترب من العدد صفر ، وهذا يؤكد تساوي النهايتين

وبالتالي فالدالة متصلة عند 0=

$$\lim_{x\to 0} f(x) = f(0)$$

الشرط الثالث

أ/عبدالعزيزالسهيمي

حدد ما إذا كانت كل من الدالتين الآتيتين متصلتين عند x=0 . برِّر إجابتك باستعمال اختبار الاتصال:

تحقق من فهمك

 $f(x) = \begin{cases} \frac{1}{x} & , & x < 0 \\ x & , & x \ge 0 \end{cases}$ (1B)

الشرط الأول

هل f(c) معرفة (لها قيمة محددة) ؟

نعوض في الدالة عند القيمة المعطاة
$$f\left(0
ight)=0$$
 معرفة

ندرس النهاية واقترابها من جهتي يمين ويسار العدد صفر

الشرط الثاني

أ/عبدالعزيزالسهيمي

х	-0.1	-0.01	-0.001	0	0.001	0.01	0.1
f(x)	-10	-100	-1000		0.001	0.01	0.1

عند اختيار قيم أكبر من الصفر مباشرة وأقل من الصفر مباشرة ، نلاحظ أن ناتج تعويضها من الجهتين تقترب من قيمتين مختلفتين، وهذا يؤكد عدم تساوي النهايتين

> وبالتالى لا نحتاج نكمل الشرط الثالث لان الشرط الثاني غير متحقق إذا فالدالة غير متصلة عند العدد صفر

عدم اتصال قفزي

(حالات عدم اتصال الدالة)

نهاية الدالة إلى مالا نهاية

إذا كانت الدالة غير معرفة

 $\lim_{x \to c} f(x) = \infty$

لا نهائي

النهاية اليمنى لا تساوي النهاية اليسرى

 $\lim_{x \to c^+} f(x) \neq \lim_{x \to c^-} f(x)$

قفزي

قيمة الدالة لا تساوي نهاية الدالة

 $f(c) \neq \lim f(x)$

قابل للإزالة (نقطي) رقم الصفحة:

الأتصال والنهايات

موضوع الدرس:

ثانياً ◄ (تحديد نوع عدم الاتصال عند نقطة)

مـثال 2

حدد ما إذا كانت كل من الدالتين الآتيتين متصلة عند قيم x المعطاة. برر إجابتك باستعمال اختبار الاتصال، واذا كانت الدالة غير متصلة، فحدّد نوع عدم الاتصال: لانهائي ، قفزي ، قابل للإزالة.

$$x = -3 \text{ عند } f(x) = \begin{cases} 3x - 2 & , & x > -3 \\ 2 - x & , & x \le -3 \end{cases}$$
 (a)

$$f(-3)=2-(-3)=5$$
 نعوض في الدالة عند القيمة المعطاة

الشرط الثاني

الشرط الأول

					-11 4	,	
\boldsymbol{x}	-3.1	-3.01	-3.001	-3.0	-2.999	-2.99	-2.9
f(x)	5.1	5.01	5.001		-10.997	-10.97	-10.7

2 - X

3*x -*2

نلاحظ أن ناتج تعويضها من الجهتين تقترب من قيمتين مختلفتين، وهذا يؤكد عدم تساوي النهايتين

فالدالة غير متصلة ونوع عدم الاتصال قفزى

أ/عبدالعزيزالسعيمي

أوجد مجال الدالة f ومداها باستعمال التمثيل البياني المجاور .

تحقق من فهمك

.
$$x = 0$$
 عند $f(x) = \frac{1}{x^2}$ (2A

f(c) هرفة (لها قيمة محددة) f(c)

نعوض في الدالة عند القيمة المعطاة

$$f(0) = \frac{1}{0^2}$$

إذاً الدالة غير معرفة

وبالتالي فالدالة غير متصلة عند العدد صفر

(نوع عدم الاتصال: لا نهائي)

$$f(x) = \begin{cases} 5x + 4, & x > 2 \\ 2 - x, & x \le 2 \end{cases}$$
 (2B)

f(c) معرفة (لها قيمة محددة) ؟

نعوض في الدالة عند القيمة المعطاة f(2)=2-2=0 إذاً f(2) معرفة

الشرط الثاثي

الشرط الأول

عند x > 2 (النهاية اليمني)

5x + 4 = 5(2) + 4 = 14

(النهاية اليسرى) $x \le 2$

2-x=2-(2)=0

وبالتالى فالدالة غير متصلة عند العدد 2

(نوع عدم الاتصال : قفزي)

نهاية شرح الحصة (1)

أ/عبدالعزيزالسعيمي

الأتصال والنهايات

موضوع الدرس:

ثالثاً > (إزالة عدم الأتصال)

مـثال 3

x = 4 أعد تعريف الدالة $f(x) = \frac{x^2 - 16}{x - 4}$ ؛ لتصبح متصلة عند

$$f(x) = \frac{x^2 - 16}{x - 4} = \frac{(x + 4)(x - 4)}{(x - 4)}$$
$$= x + 4$$

$$= x + 4$$

$$f(4) = 4 + 4 = 8$$

$$f(x)=egin{cases} x^2-16 \ x-4 \end{cases}$$
 , $x
eq 4$ أعد تعريف الدالة لتصبح $x=4$, $x=4$

الأتصال والنهايات

موضوع الدرس:

05:00

$$\frac{x^2 - 1}{x - 1} = \frac{(x + 1)(x - 1)}{x - 1}$$

$$= x + 1$$

$$202f(1) = 1 + 1 = 2$$

$$f(x) = egin{cases} x^2 - 1 \\ x - 1 \end{cases}$$
 , $x \neq 1$ أعد تعريف الدالة لتصبح , $x = 1$

رابعاً > (تقريب الاصفار عند تغيير الإشارة)

-4. [-4,4] في الفترة $f(x)=x^3-4x+2$ الأصفار الحقيقية للدالة $f(x)=x^3-4x+2$ في الفترة الأعداد الصحيحة المتتالية التي تنحصر بينها الأصفار الحقيقية للدالة

x	-4	-3	-2	-1	0	1	2	3	4
f(x)	-46	-13	2	5	2	-1	2	17	50

2025

يقع بين 3- و 2- م يقع بين 0 و 1 م يقع بين 1 و 2

2026

05:00

تحقق من فهمك

$$[-6, 4] f(x) = x^3 + 2x^2 - 8x + 3$$
 (4A)

يقع بين 5- و 4- ، يقع بين 0 و 1 ، يقع بين 1 و 2

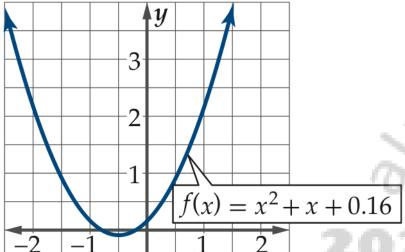
05:00

$$[-3, 4] f(x) = \frac{x^2 - 6}{x + 4}$$
 (4B)

تحقق من فهمك

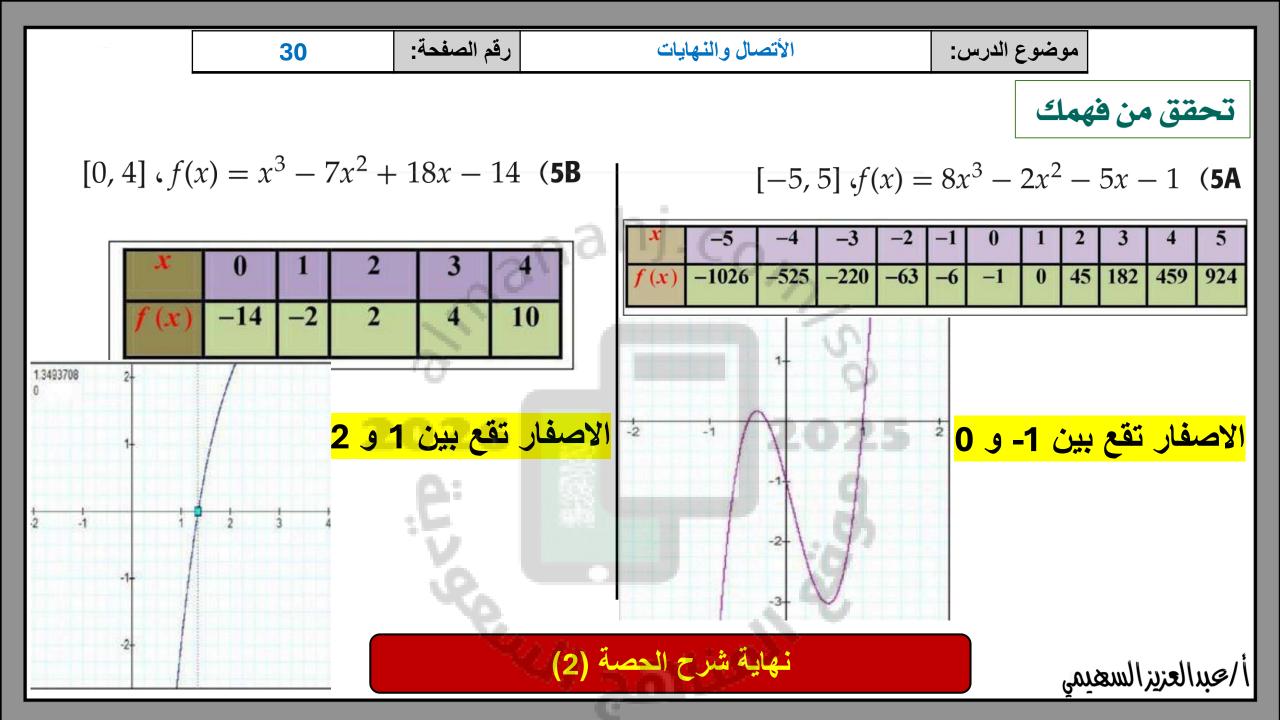
X	- 3	- 2	-10	$a \log a$	CO ¹	2	3	4
F(x)	3	- 1	-1.67	- 1.5	12	- 0.33	0.43	1.25

يقع بين 2 و3

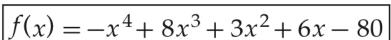

يقع بين 3- و 2-

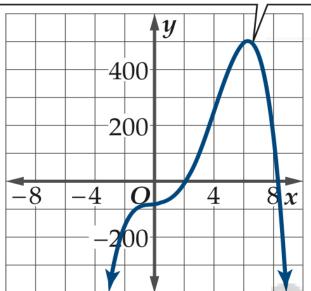
أ/عبدالعزيزالسعيمي

خامساً > (تقريب الاصفار دون تغيير الإشارة)


مـثال 5

 $f(x) = x^2 + x + 0.16$ حدّد الأعداد الصحيحة المتتالية التي تنحصر بينها الأصفار الحقيقية للدالة [-3, 3].


1	47.75							
	\boldsymbol{x}	-3	-2	/ <u>_1</u>	0	1	2	3
d	f(x)	6.16	2.16	0.16	0.16	2.16	6.16	12.16


الاصفار تقع بين 1- و 0

الأتصال والنهايات

موضوع الدرس:

سادساً ◄ (المنحنيات التي تقترب من ما لانهاية)

$$f(x) = -x^4 + 8x^3 + 3x^2 + 6x - 80$$
 استعمل التمثيل البياني للدالة 80 معزز إجابتك عدديًّا.

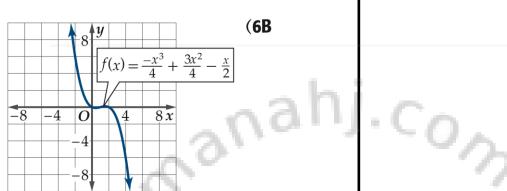
یمین
$$x
ightarrow$$

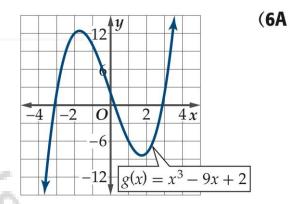
$$f(x) \to -\infty$$

$$\lim_{x \to \infty} f(x) = -\infty$$

$$f(x) \to -\infty$$

$$\lim_{x \to -\infty} f(x) = -\infty$$


31


رقم الصفحة:

الأتصال والنهايات

موضوع الدرس:

تحقق من فهمك

$\lim_{x \to \infty} f(x) = -\infty$

يمين

$$\lim_{x \to \infty} g(x) = \infty$$

$$\lim_{x \to -\infty} f(x) = \infty$$

يسار

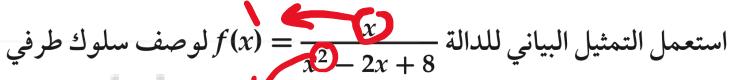
$$\lim_{x \to -\infty} g(x) = -\infty$$

 $f(x) = \frac{1}{x^2 - 2x + 8}$

8x

0.8

-0.4


-0.8

الأتصال والنهايات

موضوع الدرس:

مـثال 7 ساب

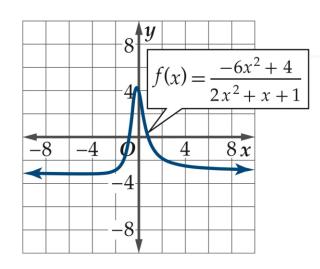
تمثيلها البياني. ثم عزز إجابتك عدديًّا.

إذا كان المقام اكبر سيكون الحل يساوي 0

$$\lim_{x \to \infty} f(x) = \mathbf{0}$$

$$\lim_{x \to -\infty} f(x) = \mathbf{0}$$

◄ (منحنیات دوال تقترب من قیمة محددة)

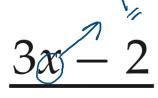

- إذا كان قوى المقام اكبر من قوى البسط سيكون الحل يساوي 0
- إذا كان قوى المقام يساوي قوى البسط سيكون الحل ان اقسم معامل البسط على معامل المقام

• إذا كان قوى المقام اصغر من قوى البسط سيكون الحل يساوي موجب او سالب مالانهاية

رقم الصفحة:

الأتصال والنهايات

موضوع الدرس:


$$\frac{-6x^{2}+4}{2x^{2}+x+1}$$

$$\frac{-6}{2} = -3$$

تحقق من فهمك

(**7A**

 $f(x) = \frac{3x - 2}{x + 1}$

$$\omega + 1$$

$$\frac{3}{1} = 3$$

$$\lim_{x \to \infty} f(x) = 3$$

$$\lim_{x \to -\infty} f(x) = \mathbf{3}$$

$\lim_{x \to -\infty} f(x) = -3$

 $\lim_{x \to \infty} f(x) = -3$

أ/عبدالعزيزالسهيمي

32

مثال 8 من واقع الحياة المنا ◄ (تطبيقات سلوك طرفي التمثيل البياني)

فيزياء: تُعطى قيمة طاقة الوضع الناتجة عن الجاذبية الأرضية لجسم بالقاعدة

ميث G ثابت نيوتن للجذب الكوني، و m كتلة الجسم، $U(r)=-rac{GmM_e}{r}$

و M_e كتلة الأرض، و au المسافة بين الجسم ومركز الأرض كما في الشكل المجاور. ماذا يحدث لطاقة الوضع

الناتجة عن الجاذبية الأرضية لجسم عندما يتحرك مبتعدًا عن الأرض مسافة كبيرة جدًا ؟ ____

$$\lim_{r \to \infty} u(r) = -\frac{GmMe}{\infty} = \frac{1}{2} = 0$$

ومن ثم إذا تحرك جسم مبتعدًا عن الأرض بصورة

كبيرة، فإن طاقة الوضع الناتجة عن الجاذبية الأرضية لهذا الجسم تقترب من الصفر.

32

تحقق من فهمك

 $q(v) = \frac{\rho v^2}{2}$ الضغط الديناميكي هو قياس الضغط الناتج عن حركة جزيئات الغاز ويعطى بالقاعدة و $q(v) = \frac{\rho v^2}{2}$ السرعة التي يتحرك بها الجزيء. ماذا يحدث للضغط الديناميكي حيث ρ (ويقرأ روه) كثافة الغاز، و v السرعة التي يتحرك بها الجزيئات الغاز عندما تستمر سرعة الجزيئات في التزايد؟

$$\lim_{r \to \infty} q(v) = -\frac{p(\infty)}{2} = \frac{\infty}{2} = \infty$$

$$\frac{3 \times e}{\infty} = 0$$

$$\frac{1}{0} = \infty$$

$$\frac{\infty}{\infty} = \infty$$

أ/عبدالعزيزالسهيمي