مذكرة الامتياز لاختبار منتصف الفصل الأول غير مجابة

تم تحميل هذا الملف من موقع المناهج القطرية

موقع المناهج → المناهج القطرية → المستوى الحادي عشر العلمي → كيمياء → الفصل الأول → ملفات متنوعة → الملف

تاريخ إضافة الملف على موقع المناهج: 15-10-2025 14:34:40

ملفات اكتب للمعلم اكتب للطالب ا اختبارات الكترونية ا اختبارات ا حلول ا عروض بوربوينت ا أوراق عمل منهج انجليزي ا ملخصات وتقارير ا مذكرات وبنوك ا الامتحان النهائي ا للمدرس

المزيد من مادة كيمياء:

إعداد: Magdy Mohamed

التواصل الاجتماعي بحسب المستوى الحادي عشر العلمي

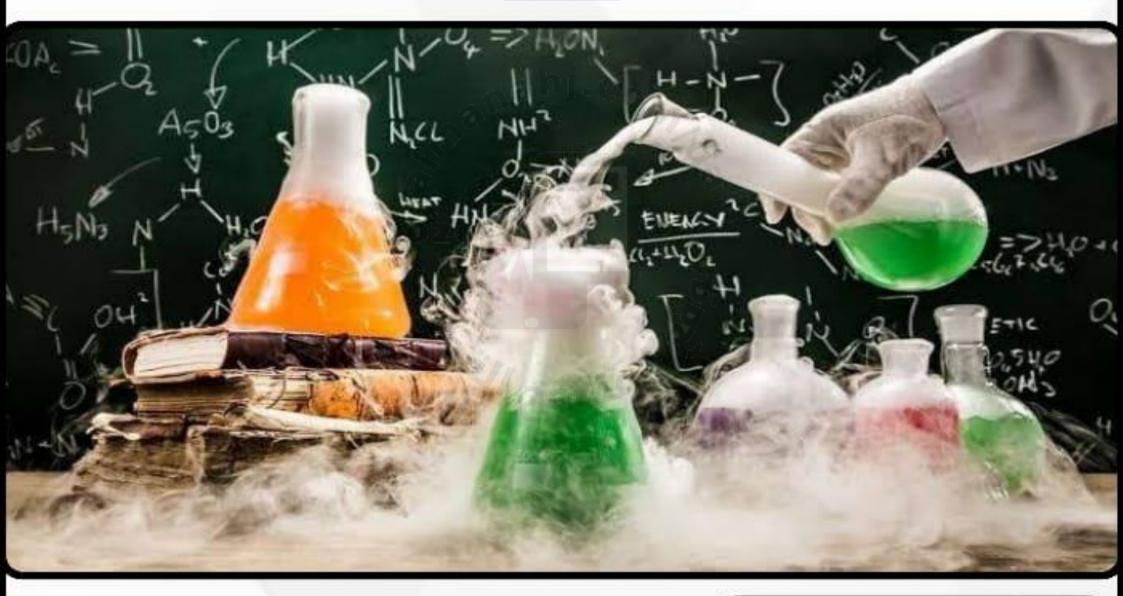
صفحة المناهج القطرية على فيسببوك

الرياضيات

اللغة الانجليزية

اللغة العربية

التربية الاسلامية


المواد على تلغرام

المزيد من الملفات بحسب المستوى الحادي عشر العلمي والمادة كيمياء في الفصل الأول	
ملخص شامل الوحدة الأولى التركيب الذري والروابط الكيميائية	1
تدريبات إثرائية اختبار منتصف الفصل غير مجابة من مدرسة الفرقان	2
أوراق عمل مراجعة اختبار منتصف الفصل الأول	3
نموذج إجابة أوراق عمل إثرائية منتصف الفصل مع خرائط ذهنية	4
أوراق عمل إثرائية منتصف الفصل غير مجابة مع خرائط ذهنية	5

الاصنياز

(في الكيمياء)

DR/ MOHAMED MAGDY

+20 1016647046 +974 71842023

الوحدة الأولى: الدرس الأول

															وں	س الا	الدرة	لاول <i>ي</i> :	حده ۱	انو
	الجدول الدوري العديث للعناصر																			
1 IA	2		ي	د الذر:	— العد	6 carb	7	لعنصر صر س	رمز اا مم العن	ام		وعات 13	المجمو ل 14	أرقام 15	16	17	18 VIIIA ² He			
Hydrogen voos	IIA Be	1		تلة الذ		—12.0			,			IIIA B	IVA C	VA N	VIA 8	VIIA F	Helum 4,002802			
Lithium 6,84	Bery Burn 8,0121831 12 Mg	3 IIIB	4 IVB	5 VB	6 VIB	7 VIIB	8	9 VIIIB	10	11 IB	12 IIB	Boron 10,81	Carbon 12,011	Nitrogen 14,007	Oxygen 15,009	Fluorine 18,998403163	Neon 202797 18 Ar			
Sodium 22,98976928	Magnesium 24305 Ca	Sc	²² Ti	²³ V	²⁴ Cr	Mn 25	Fe	Co	Ni Ni	²⁹ Cu	³⁰ Zn	Aluminium 26,8815385	Silicon 28,085	Phosphorus 30,973761998 33 AS	Sulfur 32,06 34 Se	SS Br	Argon 36,648			
Potassium 38,0983	Calcium 40,078	Scandium 44,959908	Titanium 47.867	Vanadium 50.9415	Chromium 51,9981 42 Mo	Manganese 54.938044 43 TC	Ru	Cobalt 58.933194	Nickel 58.6934 46 Pd	Copper 63.546 47 Ag	Zinc 65.38 48 Cd	Gallum 60.723	Germanium 72,630 50	Arsenic 74,921595 51 Sb	Selenium 78,971	Bromine 78,904	Krypton 83,798 54 Xe			
85.4878 55 CS	Strontium 87.62 56 Ba	Yttrium 8&90584 57 - 71 *Lanthanoids	Zirconium 91224 72 Hf	Niobium 92,90637	Molybdenum 96,95 74	75 Re	Ruthenium 101/07	Rhodium 102,90550	Palladium 106.42 78 Pt	5ilver 107,8682 79	Cadmium 112,414 80 Hg	Indium 114,818 81	**Pb	Antimony 121,780 83	127,80 84 Po	lodine 126.90447 85 At	86 Rn			
Caesium 132,90545196 87 Fr Francium	88 Ra	89 - 103 ** Actinoids	Hafnium 178,49 104 Rf Rutherfordium	Tantalum 180,94788 105 Db	Tungsten 183,84 106 Sg Seaborgium	Rhenium 188.207	Osmium 190,23 108 HS	Iridium 192,217 109 Mt Meitnerium	Platinum 195,084	Gold 196,966569 111 Rg Roentgenium (282)	Mercury 2003/92	Thallum 204,38 113 Nh Nihonium	Lead 2022 114	Bismuth 208,98040 115 MC Moscovium	Polonium (209) 116 LV	Astatine (210) 117 TS Tennessine	Radon (222) 118 Og Oganesson			
نات	بو تر و	دد النب	1 (267) 1 ()	(298)	(299)	(270)	کتر و ن	ر الأر ************************************	7E (5		20	(286)	الكتاء			س مت د هوي	ختر م پ یحد	لأول: أ مدد الذي الذري		
\	و	مان	ا د) الف	١	ار	ِن فيغ		ِد الإا ركب			التي ي	واة و		بة حو الجزء		لقة ال	بالمنط	قصود	ما الم الذرة	

6- ما عدد الأفلاك الموجودة في مستوى الطاقة الرئيس الثالث

6 (-

ا 12 (ع

9 (

2p² (1s² (⊶ $2p^{1}$ () 2s¹ (ट 9- أي الآتي غير صحيح عن حالة الإثارة للذرة أ) تكون الذرة غير مستقرة ب)تكون الإلكترونات في المستويات الاعتيادية ج) ينتقل الإلكترون الى مستوى أعلى في الطاقة د) تحدث بسبب امتصاص الذرة للضوء أو من خلال التصادم مع ذرات أخرى 10- ما عدد الإلكترونات التي يمكن أن تشغل مستوى الطاقة الرئيس عندما يكون 32 (4 8 (-2 (18 (= 11- أي من الآتي يعبر عن عدد الإلكترونات في المستوى الرئيسي (n) 2n² (2n (z n () 12- أي من الآتي يعبر عن عدد الأفلاك في المستوى الرئيسي (n) 2n (ट 2n² (n (13- ما هو عدد الكم الذي يحدد شكل كل فلك و أعداد مستويات الطاقة الفر عية في كل مستوى طاقة رئيسي ب) عدد الكم المغناطيسي أ) عدد الكم المغزلي د) عدد الكم الثانوي ج) عدد الكم الرئيسي 14- أي من الآتي صحيح عن عدد الكم الرئيسي (n) الكالم الرئيسي الآلماني صحيح عن عدد الكم الرئيسي أ) يدل على عدد مستويات الطاقة الفرعية ب) يدل على اتجاه دوران الإلكترون حول نفسه د) زيادة قيمته تدل على زيادة طاقة الإلكترون وبعده عن النواة ج) يشير الى عدد الأفلاك لكل مستوى طاقة فر عي 15- أي من الآتي صحيح لوصف المستوى الفرعي d ب) الظهور الأول له في المدار الرئيسي الثالث أ) يمكن أن يمتلئ بعدد خمس الكترونات د) طاقته أقل من المدار الفرعي (s) ج) يحتوى على عدد عشر أفلاك ذرية 16- أي من الآتي يمثل الترتيب الصحيح لمستويات الطاقة s < d < p < f $s (<math>\rightarrow$ s < f < p < d (7 s**Dr/ Mohamed Magdy (+974 71842023)**

(s,m,1,n)=(2/1+,1-,1,2) ما الإلكترون الذي لديه أعداد الكم الأربعة الآتية 7

17- مستوي الطاقة الفرعي الأول (S) يحتوي علي

- أ) فلك واحد له شكل كمثري
- ج) ثلاث أفلاك لكل واحد منهم شكل كمثري
- ب) فلك واحد له شكل كروي
- د) ثلاث أفلاك لكل واحد منهم شكل كروي

الآتي صحيح عن عدد الكم الثانوي (ℓ)

- أ) يدل على اتجاه دوران الإلكترون حول نفسه ب) يشير الى عدد الأفلاك لكل مستوى طاقة فرعي
- د) يعبر عن المسافة النسبية لمستوى الطاقة من نواة الذرة
- ج) يدل على عدد مستويات الطاقة الفرعية

(n) الآتي صحيح عن العلاقة بين كل من عدد الإلكترونات وعدد الأفلاك ورقم المستوى الرئيسي (n)

- $2n = 2n^2$ و عدد الإلكترونات $2n^2 = 2n^2$
- $2n^2 = 2$ و عدد الإلكترونات $n^2 = 2$ و عدد الأفلاك
- $n^2=1$ و عدد الإلكترونات $n^2=2$
- $n^2=2$ عدد الإلكترونات $n^2=2$ و عدد الأفلاك $n^2=2$

20- أي مما يلي صحيح عن عدد الكم المغناطيسي (m)

- أ) يدل على مستوى الطاقة الرئيس والمسافة النسبية لهذا المستوى من نواة الذرة
- ب) يدل على عدد الأفلاك في كل مستوى طاقة فرعي والاتجاه الفراغي لهذه الأفلاك حول النواة
 - ج) يدل على اتجاه دوران (غزل) الإلكترون حول نفسه
 - د) يدل على شكل كل فلك وأعداد مستويات الطاقة الفرعية في كل مستوى طاقة رئيس

- أ) تملأ الإلكترونات الأفلاك بشكل عشوائي
- ب) تملأ الإلكترونات الأفلاك ذات الطاقة الأعلى أولا ثم الأدنى في الطاقة
- ج) تملأ الإلكترونات الأفلاك ذات الطاقة الأدنى أو لا ثم الأعلى في الطاقة
- د) تملأ الإلكترونات المستويات الفرعية الأبعد عن النواة أولا ثم الأقرب للنواة

22- أي من التالي صحيح للمقارنة بين المستوى الفرعي (p) و المستوى الفرعي (s)

ر الفرعي (s)		المدار القرعي (p)	
	يأخذ الشكل الكروي	أَقِلَ فِي الطاقة من المدار الفرعي (d)	a
ن	يحتوي على الكترونيو	أعلى في الطاقة من المدار الفرعي (d)	b
رك	يحتوي على ثلاث أفلا	يأخذ الشكل الكمثري	c
لمدار الفرعي (p)	أعلى في الطاقة من ا	يحتوي على ثلاث أفلاك	d

23- أي من التالي صحيح لوصف خواص المستوى الفرعي (p)

عدد الأفلاك	عدد الإلكترونات	
5	6	a
3	10	b
3	6	С
3	2	d

24- ما النموذج الذري الذي يشبّه الذرة بالنظام الشمسي حيث تدور الإلكترونات حول النواة نتيجة التجاذب الإلكتروستاتيكي

- د) نموذج بور
- ج) نموذج دالتون
- ب) نموذج طومسون
- أ) نموذج رذر فورد

25- ما اسم العالم الذي اشار الى الطبيعة المزدوجة للإلكترون

- د) دالتون
- **ج) دی برولی**
- ب) رذر فورد
- أ) طومسون

26- أي من المصطلحات الأتية يشير الى المنطقة من الفراغ الثلاثية الأبعاد و يحتمل وجود الإلكترون بها

- د) الطيف الكهرومغناطيسي
- ج) الأفلاك
- ب) النواة

أ) الذرة

27- ما اسم النظرية التي تنص على احتمال وجود الإلكترون في منطقة معينة من الفراغ المحيط بالنواة

- د) دی برولی
- ب) رذر فورد ج) نظرية الكم
- أ) طومسون

28- ما أهمية أعداد الكم الأربعة

- أ) تحديد اعداد مستويات الطاقة الفرعية فقط
 - ب) تحديد اعداد مستويات الطاقة الرئيسية فقط
 - ج) وصف ترتيب الإلكترونات في مستويات الطاقة حول النواة
 - د) تحديد عدد الأفلاك الذرية و اتجاه دوران الإلكترونات بها فقط

n الممية عدد الكم الرئيسي 29

- أ) وصف ترتيب الإلكترونات في الأفلاك الذرية
 - ب) تحديد عدد الأفلاك الذرية و اتجاه دوران الإلكترونات بها
 - ج) تحديد عدد مستويات الطاقة الرئيسية و المسافة النسبية لها من النواة
- د) تحديد عدد مستويات الطاقة الفرعية في كل مستوى طاقة رئيس وشكل كل فلك

30- ما أهمية عدد الكم الثانوي

- أ) وصف ترتيب الإلكترونات في الأفلاك الذرية
- ب) تحديد عدد مستويات الطاقة الفرعية وشكل كل فلك
- ج) تحديد عدد الأفلاك الذرية و اتجاه دوران الإلكترونات بها
- د) تحديد عدد مستويات الطاقة الرئيسية و المسافة النسبية لها من النواة

Dr/ Mohamed Magdy (+974 71842023)

31- ما أهمية عدد الكم المغناطيسي m أ) تحديد عدد مستويات الطاقة الفرعية فقط ب) وصف ترتيب الإلكترونات في الأفلاك الذرية

ج) تحديد عدد مستويات الطاقة الرئيسية و المسافة النسبية لها من النواة

د) تحديد عدد الأفلاك الذرية في كل مستوي فرعي، والاتجاه الفراغي لهذه الأفلاك

$_{ m S}$ ما أهمية عدد الكم المغزلي $_{ m S}$

أ) وصف اتجاه دوران الإلكترونات حول نفسها

ب) تحديد اعداد مستويات الطاقة الفرعية فقط

ج) تحديد عدد الأفلاك الذرية و اتجاه دوران الإلكترونات بها

د) تحديد عدد مستويات الطاقة الرئيسية و المسافة النسبية لها من النواة

33- ما قيمة عدد الكم الثانوي للمستوى الفرعي d

ب) 1 3 (4 أ) صفر

34- ما قيمة عدد الكم الثانوي للمستوى الفرعي p

2025 (ب أ) صفر

35- ما المستوى الفرعي الذي يمتلك عدد كم ثانوي قيمته صفر

s (p (-

36- ما عدد الإلكترونات في مستوى الطاقة الرئيس الرابع

32 (2 (8 (-**18** (ट्

37- ما عدد الأفلاك الذرية في مستوى الطاقة الرئيس الثالث

9 (2 6 (5 ب) 3 1 (

38- ما القيم المتاحة لعدد الكم المغناطيسي m للمستوى الفرعي 3d

1+ . 0 . 1- (1+, 0, 1-, 2- (-

2+, 1+, 0, 1-, 2- () 1+, 0, 1-, 2-, 3- (5

39- كم عدد إلكترونات التكافؤ لعنصر عدده الذري 8

4 (-6 (5 8 (4

Dr/ Mohamed Magdy (+974 71842023)

2- ما المقصود بكل من:

- 1- نظرية الكم
- 2- عدد الكم المغناطيسي
 - 3-عدد الكم الثانوي
 - 4- عدد الكم الرئيسي
 - 5- عدد الكم المغزلي

3- فسر ما يلي:

- بعشرة الكترونات بينما يتشبع الفلك p بعشرة الكترونات -1
 - 2- التنافر بين الكتروني الفلك الواحد قليل نسبياً
- 3- الكتروني الفلك الواحد يدوران في حركة مغزلية في اتجاهين متعاكسين
- 4- لا يوجد إلكترونان لهما نفس أعداد الكم الأربعة على الكيميالي و الأحياء
 - 5- المستوى الرئيسي الثاني يتشبع بثمانية إلكترونات

Dr. Mohamed Magdy

6- لا يوجد مستوى فرعي (2d)

4- ما العلاقة بين عدد الكم الرئيسي (n) و كلا من :

- 1- عدد المستويات الفرعية في كل مستوى رئيسي
 - 2- عدد الأفلاك
- 3- عدد الإلكترونات التي يتشبع بها المستوى الرئيسي
 - 5- أذكر اثنين من فروض نظرية بور للذرة

موضح بالجدول الآتي:	, كما هو	أعداد الكم	ن بین	6- قارز
---------------------	----------	------------	-------	---------

عدد الكم المغزلي	عدد الكم المغناطيسي	عدد الكم الثانوي	عدد الكم الرئيسي	وجه المقارنة
				الرمز
				الأهمية
				معادلة الحساب

7- أجب عن الاسئلة الاتية:

- 1- ما مستوى الطاقة الفرعي الوحيد الموجود في مستوى الطاقة الرئيس الأول
 - 2- ما أهمية القوى الكهربية الساكنة / الإلكتروستاتيكية في الذرة
- 3- قارن بين الأنواع الثلاثة للجسيمات المكونة للذرة ، من حيث موقعها في الذّرة وكتلتها وشحنتها
- 4- ما عدد إلكترونات ذرة الصوديوم المتعادلة الشحنة الكهربائية، علما أن نواتها تحتوي على 11 بروتونا

1842023

- 5- حدد العدد الإجمالي للإلكترونات الذي يمكن أن يتسع لها كل نوع من المستويات الفرعية الآتية:
 - S -
 - 1 -
 - D -
 - F -
 - 6- بالإشارة إلى المستوى الاعتيادي وحالة الإثارة للإلكترون:
 - ما الفرق بينهما
 - أيهما لديه الطاقة الأعلى
 - أيهما الأبعد عن النواة

7- فيما يختلف الإلكترونان الموجودان في المستوى الفرعي 3Py

8- لماذا تحدد الإلكترونات جميع الخواص الكيميائية للعناصر

9- حدد نوع القوى بين النواة و الإلكترونات في الذرة

عرب الكيمياء و الأحياء في الكيمياء و الأحياء

Dr. Mohamed Magdy **71842023**

الجدول الدوري الحديث للعناصر

												وعات	المجمو	أرقام			
1 IA			ي	د الذر:	— العد	6		عنصر	رمز اا				L				18 VIIIA
' H	2						oon	صر –	ربير. مم العن	اه		13	14	15	16	17	He
Hydrogen 1008	IIA Ba	1	رية	تلة الذ	— الك	12.0)11					IIIA B	IVA	VA	VIA	VIIA • F	Helium 4,002602
Lithium 6,94	Be Beryllium 9,0121831	3	4	5	6	7	8	9	10	11	12	Boron 10,81	Carbon 12,011	Nitrogen 14007	Oxygen 15499	Fluorine 18,998403163	Neon 201797
Na	Mg Magnesium 24,305	IIIB	IVB	VB	VIB	VIIB		VIIIB		IB	IIB	Al	Silicon	Phosphorus	Sulfur	Chlorine	Argon
22,98976928 19	20 Ca	Sc	Ti	²³ V	²⁴ Cr	Mn	Fe Fe	²⁷ Co	Ni Ni	²⁹ Cu	³⁰ Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
Potassium 39,0983	Calcium 40,078	Scandium 44,955908	Titanium 47,867	Vanadium 50.9415	Chromium 51.9961	Manganese 54.938044	Iron 55.845	Coba l t 58,933194	Nickel 58.6934	Copper 63,546	Zinc 65.38	Gallium 69.723	Germanium 72,630	Arsenic 74,921595	Selenium 78.971	Bromine 79,904	Krypton 83,798
37Rb	⁵Sr	39 Y	⁴⁰ Zr	Nb	⁴² Mo	⁴³ Tc	⁴Ru	*Rh	*Pd	⁴⁷ Ag	*Cd	⁴⁹ In	⁵Sn	Sb	Te Te	53	⁵⁴ Xe
Rubidium 85.4878	Strontium 87/62	Yttrium 88,90584	Zirconium 9\224	Niobium 92.90637	Molybdenum 95,95	Technetium (98)	Ruthenium 10107	Rhodium 102,90550	Palladium 106.42	Silver 107.8682	Cadmium 112,414	Indium 114.818	Tin 118.710	Antimony 121,780	Tellurium 12760	Jodine 126.90447	Xenon 131293
°Cs	Ba	57 - 71 * Lanthanoids	"Hf	⁷³ Та	⁷⁴ W	Re	Os	"Ir	⁷⁸ Pt	⁷⁹ Au	Hg	*1 TI	Pb	⁸³ Bi	^⁵ Po	⁸⁵ At	[∞] Rn
Caesium 132,90545196	Barium 137.327		Hafnium 178,49	Tantalum 180,94788	Tungsten 183,84	Rhenium 186.207	Osmium 190.23	Iridium 192,217	Platinum 195.084	Gold 196,966569	Mercury 200,592	Tha ll um 20438	Lead 2072	Bismuth 208,98040	Polonium (209)	Astatine (210)	Radon (222)
87 Fr	[™] Ra	89 - 103 ** Actinoids	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og
Francium (223)	Radium (226)	1-200-000000	Rutherfordium (267)	Dubnium (268)	Seaborgium (269)	Bohrium (270)	Hassium (269)	Meitnerium (278)	Darmstadtium (281)	Roentgenium (282)	Copernicium (285)	Nihonium (286)	Flerovium (289)	Moscovium (289)	Livermorium (293)	Tennessine (294)	Oganesson (294)

السوال الأول: أختر من متعدد

1- أي العناصر الآتية يمتلك 2p⁵ بوصفه أعلى فلك طاقة يحتوى على إلكترونات

2- أي التوزيعات الإلكترونية الآتية صحيحة لذرة عدد إلكتروناتها 11

$$1s^2, 2s^2, 2p^6, 3s^1$$

$$1s^2$$
 , $2s^2$, $2p^4$, $3s^2$ (

$$1s^2$$
 , $2s^2$, $2p^5$, $3s^2$ (2

$$1s^2, 2s^2, 2p^7, 3s^1$$
 (5

$$1 \mathrm{s}^2 , 2 \mathrm{s}^2 , 2 \mathrm{p}^6 , 3 \mathrm{s}^2 , 3 \mathrm{p}^3 :$$
 1 الذرات تمثل التركيب الإلكتروني الآتي 3

4- كم عدد إلكترونات التكافؤ لعنصر عدده الذري 13

5- أي التوزيعات الإلكترونية الآتية تمثل عنصر يقع في المجموعة الاولى

$$1s^2, 2s^2, 2p^6$$
 (\hookrightarrow

$$1s^2$$
 , $2s^2$, $2p^4$ (

$$1s^2$$
 ,2 s^2 , 2 p^5 (2

$$1s^2, 2s^2, 2p^6, 3s^1$$
 (5

6- أي من الآتي يعبر عن التركيب الإلكتروني الصحيح لذرة الكروم Cr المتعادلة [Ar], $4s^2$, $3d^3$ (2 [Ar], $4s^2$, $3d^4$ (= [Ar], $4s^0$, $3d^6$ (= [Ar], $4s^1$, $3d^5$ (=7- أي من الآتي يعبر عن التركيب الإلكتروني الصحيح لذرة النحاس Cu المتعادلة [Ar], $4s^{1}$, $3d^{10}$ (ε [Ar], $4s^{0}$, $3d^{10}$ (\hookrightarrow [Ar], $4s^{2}$, $3d^{9}$ (\uparrow [Ar], $4s^2$, $3d^{10}$ ($\stackrel{\checkmark}{}$ $-\mathbf{K}$ عدد إلكترونات التكافؤ في ذرة البوتاسيوم $-\mathbf{K}$ 7 (4 5 (ب) 3 1 (1 $1s^2, 2s^2, 2p^6, 3s^2$: $2s^2, 2p^6, 3s^2$ الى أي المجموعات ينتمى العنصر الذي لديه التوزيع الإلكترونى د) الغازات النبيلة ب) القلويات الأرضية ج) الهالوجينات أ) القلويات 10- أي المستويات الفرعية الآتية تملأ بالإلكترونات أولاً ع) 4s 4f (3p (2 3d (<u></u> 11- أي مما يلي يعبر عن العبارة الآتية: (لا يوجد إلكترونات في الذرة نفسها لها نفس أعداد الكم الأربعة) أ) الطبيعة المزدوجة ب) مبدأ الاستبعاد ج مبدأ البناء التصاعدي د) السحابة الإلكترونية 12- أي من الأتي يعبر عن التوزيع الإلكتروني الصحيح لعنصر الكربون C6 طبقاً لقاعدة هوند Α D В 13- ما شحنة الأيون المتكون لذرة الألومنيوم Al 4+ () 2+(-1+ (=

14- أي الآتي غير صحيح عن قاعدة هوند

- أ) تتوزع الإلكترونات فرادى على الأفلاك ثم على شكل أزواج
 - ب) تكون الإلكترونات في الحد الأدنى من التنافر فيما بينها
- ج) يحدد عدد الإلكترونات الفرادي عدد الروابط المحتملة التي تكونها الذرة
- د) يحدد عدد الإلكترونات المزدوجة عدد الروابط المحتملة التي تكونها الذرة


```
9F: 1s^2, 2s^2, 2p^5 أي الآتي يمثل عدد إلكترونات تكافؤ الفلور 2s^2, 2p^5
                  9 (2
                                                                        7 ( ;
                                                                                                       5 (1
                                              ج) 1
                                                       9F: 1s^2, 2s^2, 2p^5 أي الآتي يمثل تكافؤ الفلور 2b^5
               9 (2
                                             1 (ट्
                                                                         7 (ب
                                                                                                         5 (1
                           27- أي الآتي يمثل عدد إلكترونات تكافؤ لعنصر من الدورة الثالثة في المجموعة السادسة
                                                                       5 ( 
               7 (
                                             6 (5
                                                                                                         1 (
                                 28- أي العناصر التالية تميل ذراته الى فقد إلكترونين للوصول الى حالة الاستقرار
          17Cl (>
                                                                        9F (₩
                                                                                                    11Na (1
                                       12Mg (ट
29- يتشابه الترتيب الإلكتروني لكل من الفلوريد السالب F مع الصوديوم الموجب Na+ مع الترتيب الإلكتروني لذرة
             Kr (
                                            Ar (
                                                                        Ne ( ;
                                                                                                       He (
                    1s^2, 2s^2, 2p^6, 3s^2, 3p^3 : التكافؤ حسب التوزيع الإلكتروني التالي : 2s^2, 2p^6, 3s^2, 3p^3
                6 (2
                                              5 (
                                                                                                         3 (1
                                                                          4 ( -
                           1s^2, 2s^2, 2p^6, 3s^2, 3p \times 1s^2 اذا كان عنصر الهالوجين الذي ترتيبه الإلكتروني :
                                                     فإن × (عدد الإلكترونات) في الفلك الفرعي 3p تساوى
                                                                          4 ( -
                                                                                                         3 (
               32- أي من الآتي التوزيع الإلكتروني حسب مبدأ أوفباو للبناء التصاعدي للهالوجينات في الدورة الثالثة
                       1s^2, 2s^2, 2p^6, 3s^2 (\rightarrow
                                                             1s^2, 2s^2, 2p^6, 3s^2, 3p^5
                                                                                         1s^2, 2s^2, 2p^5 (\overline{c}
                       1s^2, 2s^2, 2p^6, 3s^2, 3p^6
        33- ما الاسم الصحيح لمجموعة العنصر الذي توزيعه الإلكتروني: ( 3p6 ,4s2 ,3p6 ,4s2 ,3d1 ,2s2 ,2p6 ,3s2 ,3p6 ,4s2 ,3d1 )
                                           ج) هالوجين
                                                                         ب) انتقالي
             د) غاز نبيل
                                                                                                     أ) مثالي
                             34- عدد الإلكترونات غير المزدوجة المتواجدة في ذرة عنصر الكروم Cr 24 تساوى
                   6 (4
                                                                             2 (ب
                                                 5 (
                                                                O^{2-} ما التوزيع الإلكتروني لأيون الأكسجين O^{2-}
                                                              1s^2, 2s^2, 2p^6  (\rightarrow 1s^2, 2s^2, 2p^4  (\rightarrow
    1s^2, 2s^2, 2p^2
                              1s^2, 2s^2, 2p^6, 3s^2 (7
```

${ m P}^{3-}$ ما التوزيع الإلكتروني لأيون الفوسفور ${ m P}^{3-}$ $1s^2, 2s^2, 2p^6$ $1s^2, 2s^2, 2p^6, 3s^2, 3p^3$ (\hookrightarrow $1s^2, 2s^2, 2p^2$ $1s^2, 2s^2, 2p^6, 3s^2, 3p^6$ (7) S^{2-} 14 أي من الآتي يمثل التوزيع الإلكتروني الصحيح لأيون الكبريت 14 - S^{2-} [Ne] $3s^2$, $3p^6$ (\rightarrow [Ne] $3s^2$, $3p^4$ (\uparrow [Ne] $2s^2$, $3p^6$ (\overline{c} $3s^{1}$ أي من العناصر أدناه ينتهي توزيعه الإلكتروني ب $3s^{1}$ F (ट Mg (-Na (39- أي من التوزيعات الإلكترونية التالية يعد ممكنا $1s^2, 2s^2, 2p^6, 3s^4, 3p^1$ $1s^2, 2s^2, 2p^6, 3s^2, 3p^4$ (\hookrightarrow $1s^2, 2s^2, 2p^6, 3s^3, 3p^3$ $1s^2, 2s^2, 2p^6, 3s^2, 3p^7$ (5 40- أي أزواج العناصر التالية لها نفس عدد إلكترونات التكافؤ ونفس الخصائص الكيميائية ب) المغنسيوم والكالسيوم أ) الصوديوم والمغنسيوم د) الألومنيوم والأكسجين ج) الصوديوم والكلور 41- أي من التوزيعات الإلكترونية التالية يمثل توزيعاً إلكترونياً لعنصر من عناصر الهالوجينات $1s^2, 2s^2, 2p^6, 3s^2, 3p^5$ (1 $1s^2, 2s^2, 2p^6, 3s^2, 3p^4$ (\rightarrow $1s^2, 2s^2, 2p^6, 3s^2$ $1s^2, 2s^2, 2p^6, 3s^2, 3p^3$ (5 42- أي من التوزيعات الإلكترونية التالية يمثل توزيعاً إلكترونياً لعنصر من العناصر الانتقالية $1s^2, 2s^2, 2p^6, 3s^2, 3p^2$ (\Rightarrow $1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 4s^2, 3d^2$ (\Rightarrow $1s^2, 2s^2, 2p^6, 3s^2$ $1s^2, 2s^2, 2p^6, 3s^1$ (5) 3s² ,3p⁵: تكافؤ العناصر التي ينتهي توزيعها الإلكتروني: 3p⁵ د) 1-+1 (-+7(1)**-2** (ट 44- أي أزواج الأيونات للعناصر الآتية لهما نفس التوزيع الإلكتروني:

[Ne] $3p^6$, $3s^2$ (2

A1 (

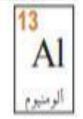
ب) المغنسيوم والكالسيوم

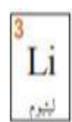
د) المغنسيوم والكبريت

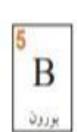
أ) الصوديوم والكلور

ج) الفلور والمغنسيوم

- اذكر المصطلح العلمى:
- 1- عدد البروتونات في ذرة هذا العنصر والذي يحدد خواصه الكيميائية
 - 2- العدد الذي يحدد اتّجاه دوران (غزل) الإلكترون حول نفسه
- 3- لا يوجد إلكترونان في الذرة نفسها، يكون لهما نفس قيم أعداد الكم الأربعة
- 4- عدد الإلكترونات التي يفقدها العنصر أو يكتسبها أو يشارك بها خلال التفاعل الكيميائي
 - 5- المستويات الفرعية ذات الطاقة الأقل تملأ بالإلكترونات أولاً
- 6- لا يحدث از دواج بين الكترونين في مستوى فرعي معين إلا بعد أن تملأ أفلاكه فرادى أولاً
 - فسر العبارات الآتية:
 - 1- المستوى الفرعي (S4) يملأ قبل المستوى الفرعي (d3)
 - 2- الغازات النبيلة لا تكون روابط بسهولة (خاملة كيميائيا)
 - 3- الفلزات القلوية الأرضية ثنائية التكافؤ
 - 4- الفلزات القلوية والهالوجينات كلاهما أحادي التكافؤ
- Dr. Mohamed Magd\
 - 5- يختلف التوزيع الإلكتروني للكروم عن بقية سلسلة العناصر الانتقالية
 - 6- يختلف التوزيع الإلكتروني للنحاس عن بقية سلسلة العناصر الانتقالية
 - 7- عنصر الكلور أحادي التكافؤ
 - 8- عنصر الماغنسيوم و الأكسجين كلاهما ثنائي التكافؤ
 - 9- أفلاك المستوى الفرعي تملأ فرادي أولا
 - 10- أيون الصوديوم و أيون الفلور لهما صفة الأيزوالكترونية Dr/ Mohamed Magdy (+974 71842023)

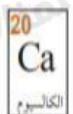

- ما المقصود بكل من:
 - 1- قاعدة أو فباو
 - 2- قاعدة هوند
 - 3- التكافؤ
- 4- مبدأ باولى للاستبعاد
 - 5- إلكترونات التكافؤ
- 6- تمثيل لويس النقطي
- انظر الى التوزيعات الإلكترونية (b، a) المبينة في المخطط أدناه:
 - 1- اكتب رموز هذين العنصرين

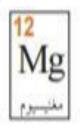

- p_x p_y p_z 3s 1 3p 1 1 1 1 3s 11 3p 11 11 1 2s 1 2p 1 1 1 2s 1 2p 1 1 1 1 $p_x p_y p_z$ (a)
- 2- اكتب التوزيع الإلكتروني لكل منهما بطريقة أوفباو
- 3- حدد عدد إلكترونات تكافؤ كل عنصر استنتج تكافؤ كل منهما
 - 4- اكتب تمثيل لويس النقطي لكل منهما


1s 1

يحتوي الجدول أدناه على تمثيلات متعددة للتوزيع الإلكتروني لعناصر مختلفة املأ الفراغ بالمعلومات الناقصة:
--

تمثيل لويس النقطي	التّكافؤ	إلكترونات التّكافؤ	مخطط الأفلاك	التّوزيع الإلكترونيّ	العدد الذّرّي	العنصر
		S	3s 3p 1 1 1 2s 1 2p 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
			3s 3p 2p 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1s ² 2s ² 2p ⁴		
			3s 3p 2p 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1s ² 2s ² 2p ⁶ 3s ² 3p ⁵		
			3s 3p 2p 1			Mg
			3s 1 3p 2s 1l 2p 1l 1l 1l 1l 1s 1l			
		dau.	3s 3p 2p 2p 1s			Si
	0		3s 3p 2p 1	6)	18	





1-أي العناصر السابقة ينتهي توزيعها الإلكتروني ب 4s²

2-ما عدد إلكترونات تكافؤ عنصر الأكسجين وتكافؤه

3-اكتب تمثيل لويس النقطي لعنصر النيتروجين

•	الآتي	الجدول	• اكمل ا
•		•	

العنصر	التوزيع الالكتروني	نوع العصر	عد الكترونات التكافؤ	التمثيل النقطي	تكافؤ العنصر
19K					
20Ca					
17 Cl					
18 A r					
Sc ₂₁				1	
₂₆ Fe					
Cr ₂₄					
29Cu				1	
30Zn		co.	nahj.		

• ما التوزيع الإلكتروني للذرات التالية بطريقة أوفباو

العنصر	التوزيع الالكتروني	
₂₀ Ca		7
₂₂ Ti	6// 201ie	
24 Cr	Carrie	
29 Cu		

ما التوزيع الإلكتروني للعناصر التالية بدلالة الغاز النبيل

العنصر	التوزيع الالكتروني	
₁₄ Si		
₂₆ Fe		

ما التوزيع الإلكتروني للأيونات التالية (استعن بالجدول الدوري)

الأيون	التوزيع الالكتروني
Al ³⁺	
O 2.	

- عنصر افتراضي X لديه التوزيع الإلكتروني الآتي: 1s²,2s²,2p⁶,3s²,3p¹ , أجب عن ما يلي:
 - 1- ما العدد الذري لهذا العنصر
 - 2- ما عدد الكترونات التكافؤ لهذا العنصر
 - 3- ما تكافؤ هذا العنصر
 - 4- هل يميل هذا العنصر لفقد أم كسب الإلكترونات
 - 5- ما نوع الأيون الممكن تكونه لهذا العنصر

_ب الكيمياء و الأحياء

Dr. Mohamed Magdy **71842023**

الوحدة الأولى: الدرس الثالث

الجدول الدوري الحديث للعناصر

												عات	المجمو	أرقام			
1			ي	د الذرة	— العد	6		عنص	رمز اا			-		1			18
IA						(7	,	,								VIIIA
H	2					conh	oon	صرر	مم العن	ام		13	14	15	16	17	He
Hydrogen	IIA					Care	,011					IIIA	IVA	VA	VIA	VIIA	Helium
3	4	1	رية	تلة الذ	— الك	12.0	011					5	6	7	8	9	4,002602
Li	Be		-									В	C	N	0	F	Ne
Lithium 6,94	Bery¶ium 9/0121831	3	4	5	6	7	8	9	10	11	12	Boron 10,81	Carbon 12.011	Nitrogen 14007	Oxygen 154999	Fluorine 18,998403163	Neon 202797
Na	Mg	IIIB	IVB	VB	VIB	VIIB		VIIIB	10	ΪB	IIB	¹³ AI	"Si	15 P	[®] S	CI	*Ar
Sodium 22,98976928	Magnesium 24,305							_			111111111111111111111111111111111111111	Aluminium 26.9815385	Silicon 28,085	Phosphorus 30,973761998	Sulfur 32,06	Chlorine 35/45	Argon 39,948
¹⁹ K	²⁰ Ca	Sc	Ti	²³ V	²⁴ Cr	Mn 25	Fe	Co	Ni Ni	Cu	³⁰ Zn	³¹ Ga	³2Ge	As	³⁴ Se	Br	³⁶ Kr
Potassium 39/0983	Ca l cium 40,078	Scandium 44,955908	Titanium 47,867	Vanadium 50.9415	Chromium 51.9961	Manganese 54.938044	Iron 55.845	Coba l t 58.933194	Nickel 58.6934	Copper 63,546	Zinc 65.38	Gallium 69.723	Germanium 72,630	Arsenic 74,921595	Selenium 78.971	Bromine 78,904	Krypton 83,798
Rb	³⁸ Sr	39 Y	[∞] Zr	¹Nb	Мо	⁴³ Tc	*Ru	⁵Rh	^⁴ Pd	⁴⁷ Ag	*Cd	⁴⁹ In	⁵Sn	Sb	Te 52	53	⁵⁴Xe
Rubidium 85.4878	Strontium 87,62	Yttrium 88,90584	Zirconium 91224	Niobium 92.90637	Molybdenum 95,95	Technetium (98)	Ruthenium 101/07	Rhodium 102,90550	Palladium 106.42	Silver 107,8682	Cadmium 112,414	Indium 114,818	Tin 118.710	Antimony 121/760	Tellurium 127,60	Jodine 126.90447	Xenon 131/293
°Cs	Ba	57 - 71 * Lanthanoids	"Hf	⁷³ Та	⁷⁴ W	⁷⁵ Re	Os	"Ir	⁷⁸ Pt	⁷⁹ Au	Hg	TI	Pb	83 Bi	^⁵ Po	⁸⁵ At	[®] Rn
Caesium 132,90545196	Barium 137,327		Hafnium 178,49	Tantalum 180,94788	Tungsten 183-84	Rhenium 186.207	Osmium 190.23	Iridium 192,217	Platinum 195.084	Gold 196,966569	Mercury 200,592	Tha ll um 20438	Lead 2072	Bismuth 208,98040	Polonium (209)	Astatine (210)	Radon (222)
87	88		104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	89 - 103 ** Actinoids	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Mc	Lv	Ts	Og

السؤال الأول: أختر من متعدد

- 1- أي من أزواج الذرات الآتية أكثر قابلية لتكوين رابطة أيونية
- أ) النيتروجين والفلور ب) الكربون والفلور ج) الصوديوم والفلور د) الأكسجين والفلور

2- أي مما يلى صحيح عن الرابطة الأيونية 🕝

- أ) تنتقل الإلكترونات من ذرات اللافلز إلى ذرات الفلز ب) تنتقل الإلكترونات من ذرات الفلز إلى ذرات اللافلز
- ج) تتشارك ذرتان في زوج أو أكثر من الإلكترونات د) تنتج عن قوى تجاذب بين الأيونات الموجبة والإلكترونات السالبة

3- أي من الآتي يصف الرابطة التساهمية الثلاثية

الأمثلة	عدد الروابط باي بها	عدد الروابط سيجما بها	3
N ₂	1	2	A
O ₂	1	2	В
N ₂	2	1	C
O ₂	2	1	D

- 4- ما نوع الرابطة بين ذرتين, بحيث تتكون الرابطة من زوجين من الإلكترونات بالمشاركة بين الذرتين
- أ) رابطة أيونية ب) رابطة تساهمية ثنائية ج) رابطة تساهمية ثلاثية د) رابطة تناسقية
 - 5- أي زوج من العناصر التالية يكون مركب أيوني عندما يتحدان معاً
- أ) الصوديوم و الالومنيوم ب) الكالسيوم والكربون ج) المغنسيوم والكلور والبروم

	ة الصحيحة	م الأكسجين ما الصيغة الكيمائي	6- عند اتحاد الصوديوم م
Na2O2 (2	Na2O (E	NaO2 (↔	NaO ([†]
	الدوري (الفلزات القلوية والهالوجيناد	شأ بين عناصر طرفي الجدول	
د) رابطة تناسقية	ج) رابطة تساهمية ثلاثية	ب) رابطة تساهمية ثنائية	أ) رابطة أيونية
			ء .
		لمة تساهمية عندما يتحدان معا	
Mg ,O (2	Mg ,Cl (ट	Na ,Cl (ب	C ,H (
		i c . c . t that	
		لتالية يكون مركب أيوني عندم	
	ب) ذرة كالسيوم وذرة أكسجين		أ) ذرتان من المغنسيوم
	د) ذرة كربون واربع ذرات كلور		ج) ذرتان من الصوديوم
	ani,	ع الرابطة في جزئ النيتروجير	i là light a 10
	ے N2 ب) رابطة تساهمية ثنائية	ع الرابطة لئي جرئ التيتروجير	
/// // // // // // // // // // // // //	ب) رابطه نساهمیه نبانیه د) رابطه تساهمیه أحادیه		أ) رابطة أيونيةج) رابطة تساهمية ثلاثية
	د) رابطه نساهمیه اکادیه	2025	ج) رابطه نساهمیه نارنیه
	نا الميديدة	الماغنسيوم ما الصيغة الكيمائية	11. عند اتحاد الكامر مع
Mg2Cl (=	MgCl (z	ب) Mg2Cl2 (ب	MgCl2 (
1118201	THE ST (C	11182012 (1,15012 (
\W \	ثلاث الكترونات	رتین, بحیث کل ذرة تشارك ب	12- ما نوع الرابطة بين ذ
	ب) رابطة تساهمية ثنائية		أ) رابطة أيونية
	د) رابطة تناسقية	a magay	ج) رابطة تساهمية ثلاثية
	9 /1842	زيء الأكسجين (O2)	13- ما نوع الرابطة في ج
	ب) رابطة تساهمية ثنائية		أ) رابطة أيونية
	د) رابطة تناسقية		ج) رابطة تساهمية ثلاثية
		تشأ بين ذرات اللافلزات	14- ما نوع الرابطة التي ا
	ب) رابطة تساهمية		أ) رابطة أيونية
	د) رابطة هيدروجينية		ج) رابطة فلزية

15- ما نوع الرابطة المتكونة عند اتحاد ذرة فلز مع ذرة لافلز أ) رابطة أيونية ب) رابطة فلزية ج) رابطة تساهمية ثلاثية د) رابطة تناسقية 16- مم تتكون الرابطة الثنائية أ) رابطة سيجما و رابطتين باي ب) رابطتین سیجما و رابطة باي ج) رابطة سيجما و رابطة باي د) رابطتين باي 17) عند اتحاد الكربون مع الهيدروجين ما الصيغة الكيمائية الصحيحة CH4 (∵ C2H (CH2 (cH (ट 18- ما نوع الرابطة في جزيء الأمونيا NH3 أ) رابطة أيونية ب) رابطة تساهمية ثنائية ج) رابطة تساهمية ثلاثية د) رابطة تساهمية أحادية 19- ما نوع الرابطة في جزيء الماء H2O ب) رابطة تساهمية ثنائية أ) رابطة أيونية ج) رابطة تساهمية ثلاثية د) رابطة تساهمية أحادية 20- ما نوع الرابطة في أكسيد الصوديوم Na2O أ) رابطة أيونية ب) رابطة تساهمية ثنائية د) رابطة فلزية ج) رابطة تساهمية ثلاثية 21- ما نوع الرابطة في كلوريد الكالسيوم CaC12 ب) رابطة تساهمية ثنائية أ) رابطة أيونية ج) رابطة تساهمية أحادية د) رابطة فلزية 22- أي من الآتي يمثل صيغتين كيميائيتين صحيحتين لمركبات أيونية MgCl2, Li2N (LiCl, Mg3N2 (-MgCl ,Li3N (LiCl2,Mg3N (23- ما الذرة المانحة في جزيء الأمونيوم O (-C (2 H (ट

Dr/ Mohamed Magdy (+974 71842023)

24- ماذا يحدث عند تكوين الرابطة التناسقية بين النيتروجين والهيدروجين في أيون الأمونيوم ++NH4

- أ) يمنح الهيدروجين زوج من الإلكترونات ليشارك به مع النيتروجين
- ب) يمنح النيتروجين زوج من الإلكترونات ليشارك به مع الهيدروجين
 - ج) ينتقل زوج من الإلكترونات من النيتروجين إلى الهيدروجين
 - د) ينتقل زوج من الإلكترونات من الهيدروجين إلى النيتروجين

25- أي من الآتي يعتبر صحيحاً عن أيون الأمونيوم +NH⁴

- أ) يتكون عند اتحاد جزيء الأمونيا مع أيون الهيدروجين وبه رابطة تناسقية واحدة
- ب) يتكون عند اتحاد جزيء الأمونيا مع جزيء الهيدروجين وبه رابطة تناسقية واحدة
- ج) يتكون عند الاتحاد المباشر بين غازي الهيدروجين والنيتروجين وبه رابطتين تناسقيتين
- د) يتكون عند الاتحاد المباشر بين غازي الهيدروجين والنيتروجين وبه رابطة تناسقية واحدة

26- أي من الآتي يستطيع تكوين رابطة تناسقية

NH3 (2 CO (5 H2O+ (4 NH⁴+ (1

27- أي من الآتي به رابطة تناسقية

NH3 (² CO2 (€ H2O (← NH⁴+ (¹

28- أي من الآتي يحتوي على رابطة تناسقية

CO (₹ H2O (← CO2 ()

$N \equiv N$ الآتي صحيح عن جزيء النيتروجين $= N \equiv N$

- أ)يحتوي على 3 روابط سيجما ﴿ ﴿ ﴿ ﴿ لَا اللَّهُ اللَّهُ اللَّهُ لَا لَا اللَّهُ اللّ
- ج) يحتوي على رابطة سيجما ورابطتي باي د) يحتوي على رابطة باي ورابطتي سيجمأ

30- أي العبارات الآتية صحيحة في وصف الرابطة التناسقية

- أ) زوج من الإلكترونات المشتركة بين ذرتين بفلك فارغ
 - ج) تساهم ذرة بالكترون واحد والأخرى بفلك فارغ د) تتضمن الكترونات من نوعين مختلفين من الأفلاك

31- أي من الروابط التالية توجد في جزئ الأمونيوم +NH⁴

- أ) 3 روابط تساهمية + رابطة تناسقية بالمناهمية + رابطة تناسقية
- ج) رابطة تساهمية واحدة + رابطة تناسقية واحدة داكرة عند الروابط التساهمية + 2 من الروابط التناسقية

N2 (²

32- ما نوع الرابطة في جزئ كلوريد الهيدروجين HCl

د) رابطة تناسقية

ج) رابطة تساهمية أحادية

ب) رابطة تساهمية ثنائية

أ) رابطة أيونية

33- أي زوج من العناصر الآتية يعد الأكثر احتمالاً لتكوين مركب أيوني عندما يتحدان معاً

د) الفوسفور والفلور

ج) الليثيوم والبروم

ب) النيتروجين والكلور

أ) الأكسجين والكربون

34- ما نوع الروابط في مركب الإيثانول C2H5OH

د) رابطة تناسقية

ج) رابطة تساهمية أحادية

ب) رابطة تساهمية ثنائية

أ) رابطة أيونية

35- أي من العبارات الآتية تعد أفضل وصف للرابطة التساهمية الأحادية

ب) زوج من الإلكترونات المشتركة بين ذرتين

أ) جسر من المادة يربط ذرتين معا

د) عندما تتقارب الذرات بشكل كاف، فإن الجاذبية تجمعها معا

ج) قوة جذب للشحنة الموجبة بين نوى الذّرات

• ما المقصود بكل من:

1- الرابطة التساهمية:

2- الرابطة التناسقية:

3- الرابطة الأيونية:

4- قاعدة الثمانية:

ِ ف**ي الكيم**ياء و الأحياء

Dr. Mohamed Magdy

• فسر ما يلي:

1- يستطيع النيتروجين تكوين ثلاث روابط تساهمية

71842023

2- الرابطة بين ذرة الماغنسيوم وذرة الأكسجين رابطة أيونية

3- يستطيع الأمونيا تكوين رابطة تناسقية

4- الصيغة الكيميائية للماء هي H2O

5- تميل العناصر للوصول الى التوزيع الإلكتروني لأقرب غاز خامل

•اكتب المصطلح العلمي المناسب:

1- قاعدة تنص على (تميل معظم الذرات الى تكوين روابط كيميائية لتصل الى ثماني الكترونات في المستوى الأخير

- 2- رابطة تتكون نتيجة قوى تجاذب الكتروستاتيكي بين شحنة موجبة وأخرى سالبة
 - 3- رابطة تتكون نتيجة مشاركة زوج أو أكثر من الإلكترونات بين ذرتين
- 4- رابطة تتكون نتيجة مشاركة ذرة بزوج من الإلكترونات غير الرابط والذرة الأخرى بفلك فارغ
- أي من أشكال التراكيب الجزيئية المبينة أدناه لا يوجد على هيئة مركب متعادل ومستقر ولماذا

- ادرس الذرات الآتية ثم اجب عن الأسئلة التالية (H, Na, Cl, K, N, Ar)
 - 1- ما نوع الرابطة عند ارتباط الصوديوم Naمع الكلور C1

الكيمياء والأحياء

- 2- فسر اجابتك عن السؤال (١)
- 3- أي الذرات السابقة تنتمي لمجموعة الغازات النبيلة
 - 4- لماذا لا تكون الغازات النبيلة الروابط بشكل طبيعي

71842023

5- كم عدد الكترونات التكافؤ في ذرة البوتاسيوم K

	451		11 1 -1	
•	الاتي	لجدول	احمل ۱۱	

:C≡0:	H \\ \\ H	وجه المقارنة
		الذرة المائحة
		الذرة المستقبلة
		عدد الروابط التناسقية
		عدد الروابط التساهمية

• اكمل الجدول الآتي :

MgO	Manah	j.com
		0
CO ₂	2026	202

• ارسم تمثيل لويس للجزيئات التالية ثم حدد نوع الرابطة لكل منهم

الجزيء	رمز لويس للذرات	رمز لويس للجزيء	نوع الرابطة
НСІ			
O ₂			
N ₂			3

		• ارسم تمثيل لويس النقطي لكل من:
MgO	Al ³⁺	
CaF ₂	CI-	

• ارسم تمثيل لويس النقطي للتراكيب الآتية وحدد الذرة المانحة و الذرة المستقبلة في كل من:

	تمثیل لویس	الذرة المانحة	الذرة المستقبلة
يون الأمونيوم +NH ₄		433001	-riemen
·com	nanahj.		
يون الهيدرونيوم +H ₃ O	2026		8
7 .8	.e: Mb		
جزيء أول أكسيد لكربون CO	مح النه		

• توقع نوع الرابطة الناتجة من اتحاد كل زوج من العناصر الآتية:

71842023

: Mg , Cl -1

:C, H -2

:C,O -3

: Na , O -4

: Mg , O -5

Na	F	-6
INA	, I'	-0

7- ذرتين من المغنسيوم:

8- ذرتين من الفلور:

9- ذرتين من الهيدروجين مع ذرة أكسجين:

• قارن بين الرابطة التساهمية والتناسقية من حيث مصدر الالكترونات:

تناسقية	الرابطة ال	الرابطة التساهمية	وجه المقارنة							
			مصدر الكترونات الرابطة							

• قارن بين الرابطة التساهمية الأحادية و الثنائية والثلاثية:

الرابطة التساهمية الثلاثيا	الرابطة التساهمية الثنائية	الرابطة التساهمية الأحادية	وجه المقارنة
		-	عدد الكترونات الرابطة
		2026	كل ذرة تشارك
		·6: M	بالكترون
		6	عدد روابط سيجما وياي

Dr. Mohamed Magdy

• أكتب تمثيل لويس النقطي لتوضيح كيفية تكوين المركبات الآتية:

CH ₄	N ₂	02	HCl	Cl ₂	المركب تمثيل لويس
NaCl	C ₂ H ₆	CaCl ₂	NH ₃	H ₂ O	لويس المركب

الوحدة الثانية: الدرس الأول

1													2				
H		4	الأدنى										الأعلى				He
2.20																	
1a	2a											3a	4a	5a	6a	7a	8a
3	4							ı i	24			5	6	7	8	9	10
Li	Be								Cr			В	C	N	О	F	Ne
0.98	1.57				اء اء	ti "" ti	" ti					2.04	2.55	3.04	3.44	3.98	
11	12			ميه	كهرباة	مالبيه ال	— الس		1.66			13	14	15	16	17	18
Na	Mg	O.L.	216	e la	O.L.	71.	Ole	Ole	Ole	art.	Ole	Al	Si	P	S	Cl	Ar
0.93	1.31	3b	4b	5b	6b	7b	8b	8b	8b	1b	2b	1.61	1.90	2.19	2.58	3.16	
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
0.82	1.00	1.36	1.54	1.63	1.66	1.55	1.83	1.88	1.91	1.90	1.65	1.81	2.01	2.18	2.55	2.96	3.00
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
0.82	0.95	1.22	1.33	1.6	2.16	1.9	2.2	2.28	2.20	1.93	1.69	1.78	1.96	2.05	2.1	2.66	2.60

السؤال الأول: أختر من متعدد

1- إذا علمت أن الفرق في السالبية الكهربائية بين ذرتين = 21 فما نوع الرابطة المتكونة بينهما

ب) رابطة تساهمية قطبية

أ) رابطة أيونية

د) رابطة فلزية

ج) رابطة تساهمية غير قطبية

الكيمياء والأحياء

2- أي العناصر الآتية الأعلى في السالبية الكهربائية

ج) المغنيسيوم Mg

ب) الصوديوم Na

أ) الفلور F

3- أي العناصر الآتية لها أعلى قيمة سالبية كهربائية

Li () O (c

Be (**∵**

N (1

4- أي الآتي صحيح عن تدرج قيم السالبية الكهربائية في الجدول الدوري

ب) تزداد عبر الدورة من اليسار الى اليمين

أ) تقل عبر الدورة من اليسار الى اليمين

د) تقل عبر المجموعة من الأسفل الى الأعلى

ج) تزداد عبر المجموعة من الأعلى الى الأسفل

5- أي قيم الفرق في السالبية الكهربائية صحيح عن الرابطة التساهمية القطبية

> 17 (

د) الأكسجين 🔾

17= (ح

17:04 (-

04:0(

6- ما نوع الرابطة في جزيء NaCl اذا علمت أن السالبية الكهربائية لـ (Na=093, Cl=316) اذا علمت أن السالبية الكهربائية لـ ب) رابطة تساهمية قطبية أ) رابطة أيونية ج) رابطة تساهمية غير قطبية د) رابطة تناسقية 7- أي العناصر الآتية لها أعلى قيمة سالبية كهربائية Br (2 Cl (ट F (:-I () (C=255, H=220) 8- ما نوع الرابطة بين C-H اذا علمت أن السالبية الكهربائية لـ أ) رابطة أيونية ب) رابطة تساهمية قطبية ج) رابطة تساهمية غير قطبية د) رابطة تناسقية 9- ما نوع الرابطة بين C-O اذا علمت أن السالبية الكهربائية لـ (C=255, O=344)أ) رابطة أيونية ب) رابطة تساهمية قطبية ج) رابطة تساهمية غير قطبية د) رابطة تناسقية 10- أي العبارات الآتية صحيحة ب) أعلى العناصر سالبية كهربائية F وأقلها Cs أ) أعلى العناصر سالبية كهربائية الفلزات القلوية د) أعلى العناصر سالبية كهربائية Cs وأقلها F ج) أعلى العناصر سالبية كهربائية O وأقلها Cs 11- أي العناصر الآتية تمتلك أعلى قيم للسالبية الكهربائية Na, K, Li (z Be, Mg, Al ($N, O, F \hookrightarrow Ne, H \circlearrowleft$ أ) تميل السالبية الكهر بائية إلى التزايد عبر الدورة الواحدة من اليمين إلى اليسار ب) تميل السالبية الكهربائية إلى التناقص عبر الدورة الواحدة من اليسار إلى اليمين ج) تميل السالبية الكهربائية إلى التزايد عبر المجموعة الواحدة من الأعلى إلى لأسفل د) تميل السالبية الكهربائية إلى التناقص عبر المجموعة الواحدة من الأعلى إلى الأسفل (N=304) N2 ما نوع الرابطة في جزيء النتروجين أ) رابطة أيونية ب) رابطة تساهمية قطبية ج) رابطة تساهمية غير قطبية د) رابطة تناسقية

ب) رابطة تساهمية قطبية أ) رابطة أيونية ج) رابطة تساهمية غير قطبية د) رابطة فلزية 17- كلما زاد الفرق في السالبية الكهربائية بين الذرات المرتبطة فإن قطبية الجزيء أ) لا تتأثر ج) تقل ب) تزداد 18- أي من الآتي صحيح عن السالبية الكهربية في الجدول الدوري أ) تزيد من اليسار الى اليمين بسبب زيادة عدد مستويات الطاقة ب) تقل من اليسار الى اليمين بسبب نقص عدد مستويات الطاقة ج) تقل من أعلى لأسفل بسبب زيادة عدد مستويات الطاقة د) تزيد من أعلى لأسفل بسبب نقص عدد مستويات الطاقة • فسر ما يأتى: 1- تقل السالبية الكهربائية في المجموعة من أعلى لأسفل 2- تزداد السالبية الكهربائية خلال الدوري من اليسار لليمين 3- الرابطة في جزيء كلوريد الهيدروجين (HCl) تساهمية قطبية 4- الرابطة في كلوريد الصوديوم (NaCl) أيونية 5- الرابطة في جزيء الميثان (CH4) تساهمية غير قطبية

Dr/ Mohamed Magdy (+974 71842023)

N (5

14- العنصر الأقل سالبية كهربائية في الجدول الدوري هو

15- أي العناصر الآتية الأعلى في السالبية الكهربائية

Na (

 $ext{C1}$ الكلور $ext{CS}$ الكلور $ext{C1}$ الكلور $ext{C3}$

16- ما نوع الرابطة في جزئ ثاني أكسيد الكربون CO2) (C=255, O=344

Cl (

6- جزيء ثاني أكسيد الكربون غير قطبي مع أن الروابط تساهمية قطبية

د) المغنيسيوم Mg

He (2

- 8- جزيء CC14 غير قطبي بينما جزيء CC14 قطبي
- 9- الفلور أعلى العناصر بالسالبية الكهربائية بينما السيزيوم أقل العناصر بالسالبية الكهربائية
 - 10- جزيء الماء (H2O) يكون أكثر قطبية من كبريتيد الهيدروجين (H2S)
- 11- لماذا يوصل محلول ملح الطعام التيار الكهربائي، بينما لا يوصل محلول سكر المائدة هذا التّيار
 - 12- تزداد السالبية الكهربائية في مجموعة الهالوجينات من أسفل لأعلى
 - 13- الغازات النبيلة لا تمتلك سالبية كهربائية
- المربع والمربع والمر
 - 15- قابلية ذوبان السكر في الماء ، و قابلية ذوبان الشمع في الزيت
 - 2025

• ما المقصود بالسالبية الكهربائية

اكمل الجدول الآتي:

Dr. Mohamed Magdy

الفرق في السالبية الكهربانية	وجه المقارنة
	الرابطة التساهمية الغير قطبية
	الرابطة التساهمية القطبية
	الرابطة الأيونية

• استخدم قيم السالبية الكهربائية في الجدول الآتي ثم أجب عن الأسئلة التي تليه:

Н	C	0	F	Cl	Na	S	العنصر
2.2	2.55	3.44	3.98	3.16	0.93	2.58	السالبية

أ) ما نوع الرابطة بين كل من التالي مع التفسير

- HC1 -1
- CH4 -2
- H2O -3
- NaCl -4
 - C12 -5
- NaF -6
- ب) رتب المركبات السابقة تصاعدياً تبعاً للقطبية

• قارن بين الرابطة الأيونية والرابطة التساهمية من حيث:

الرابطة التساهمية	الرابطة الأيونية	وجه المقارنة /
	7101000	العناصر المكونة لها
	/1842023	التوصيل الكهربي
		فرق السالبية الكهربية

- صنف المركبات التالية كمركبات تساهمية قطبية أو تساهمية غير قطبية أو أيونية وحدد ذائبيتها في الماء:
 - LiF -1
 - CO2 -2

• حدد إذا كان المركب قطبي أو لا مع ذكر السبب وهل يذوب في الماء أو لا:

الذوباتية	السبب (إذا كان غير قطبي)	القطبية	المركب
			N ₂
			CO2
			NaCl
L			NH ₃
	l la i		BF ₃
		2	PH ₃

• الجدول التالي يعرض قيم السالبية الكهربية لبعض العناصر:

أ) حدد نوع الروابط بين كل من:

	Н	Li	В	C	0	F
السالبية الكهربية	2.1	1.0	2.0	2.5	3.5	4.0

C-H -1

C-O -2

C-F -3

Li-O -4

Dr. Mohamed Magdy

ب) أي الروابط السابقة الأعلى قطبية مع التفسير المجاول المجاول

• بيّن كيف تتدرج السالبية الكهربائية عبر الدورة الواحدة في الجدول الدوري ، مع التفسير

• بيّن كيف تتدرج السالبية الكهربائية عبر المجموعة الواحدة في الجدول الدوري ، مع التفسير

• ما هى الشروط الواجب توافرها حتى يكون الجزيء قطبي

Dr/ Mohamed