أوراق عمل الوحدة الأولى مع الإجابات

تم تحميل هذا الملف من موقع المناهج القطرية

موقع المناهج ← المناهج القطرية ← المستوى العاشر ← فيزياء ← الفصل الأول ← ملفات متنوعة ← الملف

تاريخ إضافة الملف على موقع المناهج: 2025-10-205 14:48:56

ملفات اكتب للمعلم اكتب للطالب ا اختبارات الكترونية ا اختبارات ا حلول ا عروض بوربوينت ا أوراق عمل منهج انجليزي ا ملخصات وتقارير ا مذكرات وبنوك ا الامتحان النهائي ا للمدرس

المزيد من مادة فيزياء:

إعداد: سلوى عبد الحميد

التواصل الاجتماعي بحسب المستوى العاشر

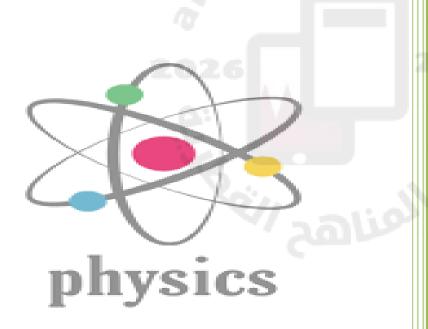
صفحة المناهج القطرية على فيسببوك

الرياضيات

اللغة الانجليزية

اللغة العربية

التربية الاسلامية


المواد على تلغرام

المزيد من الملفات بحسب المستوى العاشر والمادة فيزياء في الفصل الأول	
دفتر الطالب أوراق عمل إثرائية غير مجابة من مدرسة ابن تيمية	1
أوراق عمل إثرائية لاختبار منتصف الفصل غير مجابة من مدرسة الفرقان	2
أوراق عمل إثرائية لاختبار منتصف الفصل غير مجابة	3
نموذج إجابة تدريبات إثرائية وواجبات منهاج منتصف الفصل الأول من مدرسة مسيعيد	4
تدريبات إثرائية وواجبات منهاج منتصف الفصل الأول من مدرسة مسيعيد	5

الصف العاشر

الوحدة الأولى

الكميات الفيزيائية وهامش الخطأ في القياسات العملية

الدرس الأول

النظام الدولي للوحدات (١٦)

🥿 ما المقصود بالنظام الدولي للوحدات ؟

هو نظام قياس عام يتألف من سبع وحدات أساسية تشتق منها باقى الوحدات الأخرى.

وحدات النظام الدولي الأساسية:-

رمزالكمّية	الكمّية الفيزيائية الأساسية	رمزالوحدة	الوحدة الأساسية
m	الكتلة mass	kg	الكيلوجرام kilogram
1	الطول length	m	المتر meter
t	الزمن time	s	الثانية second
I 2.1	شدّة التيار الكهربائي electric current intensity	2 ^A 025	الأمبير ampere
Т	درجة الحرارة temperature	К	الكلفن kelvin
I _v	شدّة الإضاءة luminouse intensity	cd	الشمعة candela
n	كمّية المادة amount of substance	mol	المول mole

الوحدات الأساسية والكمّيات الفيزيائية الأساسية في النظام الدولي للوحدات.

وحدات النظام الدولي المشتقة:-

يتم الحصول عليها باستخدام الوحدات الأساسية السبع مثل وحدة نيوتن التي تعادل ${\rm Kg}\,.\,{\rm m}\,/\,{\rm s}^2$ ووحدة الجول المستخدمة للطاقة والتي تعادل ${\rm Kg}.m^2\,/\,{\rm s}^2$.

🥿 ما المقصود بالكميات الفيزيائية المشتقة ؟

هي الكميات التي تعتمد على كميات فيزيائية أساسية مثل السرعة والتسارع والقوة.

مثال

اشتقّ وحدة قياس السرعة، إذا علمت أن السرعة هي ناتج قسمة المسافة على الزمن.

$$v = \frac{d}{t}$$
 المُعطيات: السرعة $t = \frac{l + l}{l + l}$ الزمن

وحدة قياس المسافة هي المتر (m)، وحدة قياس الزمن هي الثانية (s) بتطبيق العلاقة:

unit of
$$(v) = \frac{unit \ of \ (d)}{unit \ of \ (t)} = \frac{m}{s} = \boxed{m/s}$$

🔳 مثال 2

التسارُع كمّية مُشتقّة، وهي تغيُّر السرعة مقسومًا على زمن هذا التغيُّر. اشتقّ وحدة قياس التسارُع.

$$a = \frac{\Delta v}{t}$$
 المُعطيات: التسارُع = النفير في السرعة النمن التسارُع

وحدة قياس السرعة هي متر/ ثانية (m/s)، وحدة قياس الزمن هي الثانية (s) بتطبيق العلاقة:

unit of (a) =
$$\frac{\text{unit of (v)}}{\text{unit of (t)}} = \frac{\text{m/s}}{\text{s}} = \left[\text{m/s}^2\right]$$

🗐 مثال 3

يَنُص قانون نيوتن الثاني على أنَّ القوة هي حاصل ضرب الكتلة في التسارُع. ما وحدة القوة التي تجعل هذا القانون صحيحًا؟

المطلوب: وحدة القوة

المُعطيات: القوة = التسارع × الكتلة

لتحديد الوحدة نقوم بضرب وحدة التسارُع وهي المتر / الثانية تربيع m/s² في وحدة الكتلة في النظام الحل: الدولي وهي الكيلو جرام kg.

unit of (F) = unit of (m) × unit of (a) = $\left(kg \right) \left(\frac{m}{s^2} \right) = \frac{kg \cdot m}{s^2} = kg \cdot m/s^2$

التعامل مع الوحدات المشتقة:-

مثال 1 :-

تتحرّك سيّارة بسرعة 80 km/h. ما سرعتها بوحدة m/s؟

المطلوب: تحويل 80 km/h إلى m/s

v = 80 km/h

العلاقات: 1 km = 1000 m , 1 h = 3600 s

$$\frac{80 \text{ Km}}{1\text{h}} = \frac{80 \times 10^3}{3600} \frac{\text{m}}{\text{s}} = 22.2 \text{m/s}$$

مثال 2 :-

 $\frac{1}{22 \text{ cm}}$

$$V_{\rm i,cl} = \frac{4\pi r^3}{3}$$

يبلغ قُطر كرة القدم القانونية الرسمية 22 cm. جِدْ حجم الكُرة بوحدة المتر المُكعَب m³، علمًا أنّ علاقة حجم الكُرة مُوضِّحة في الشكل المُجاور.

المطلوب: الحجم بوحدة m3

المعطيات: 11cm = 1

 $V = \frac{4\pi r^3}{1 \, \text{m}}$ 1 m = 100 cm

 $V = \frac{4\pi r^3}{3} = \frac{4\pi 11^3}{3} = 5575 \text{ cm}^3$

$$\frac{5575}{1000000}$$
 m³ = 0.005575m³

الصيغة العلمية:-

هي طريقة للتعبير عن رقم كجزء عشري مضروب في قوة من 10.

الجُزء العُشري 10>N≥1	N	الصيغة العلميّة	باستخدام العلاقة :
الأُس n عدد صحيح (موجب أو سالب)	n	العدد $N \times 10^n$	

رقم أصغر من 1 (0.0015) الأس الأس
$$0.0015 = 1.5 \times 10^{-3}$$
 الجُزء العُشري

رقم أكبر من 1 (1500) المَّم أصغر من (a) الأَمْم المغرم (b) الأَمْم المُغرم
$$(a)$$
 الأَمْم (a) الأَمْم (a) الأَمْم (a) (a) الأَمْم (a) المُّم (a) المُرْء العُمْم (ع

a. اكتب العدد m 000 000 270 في الصيغة العلميّة.

تحرك الفاصلة 8 رتب إلى اليسار فيكون 8 هو الأس وبصبح الرقم 10^8 m وبصبح

للتحويل من ممتدة لعلمية

حركة الفاصلة يسار (لو الرقم أكبر من واحد) الأس موجب حركة الفاصلة يمين (لوالرقم أصغر من واحد) الأس سالب

ى. اكتب العدد $10^{13} \times 3.75$ في الصيغة الممتدة.

تُحرّك الفاصلة 13 رتبة إلى اليمين لكتابة العدد بالصيغة الممتدة: (000 000 000 37 500 37

للتحويل من علمية لممتدة

الأس موجب الحركة يمين الأس سالب الحركة يسار

البادئات :-

تستخدم لسهولة التعبير عن الأرقام الكبيرة أو الأرقام الصغيرة بإضافتها إلى الكمية المراد التعبير عنها.

قائمة البادئات لأعداد أصغر من 1.

البادئة في النظام الدولي (SI)	أعداد أصغرمن 1
رو ن (d) دیسي (d)	1 × 10 ⁻¹ = 0.1
سنتي (c)	$1 \times 10^{-2} = 0.01$
ملّی (m)	$1 \times 10^{-3} = 0.001$
ميكرو (μ)	$1 \times 10^{-6} = 0.000001$
نانو (n)	$1 \times 10^{-9} = 0.0000000001$
بيكو (p)	1 × 10 ⁻¹²
فيمتو (f)	1 × 10 ⁻¹⁵

من 1.	أكبر	لأعداد	البادئات	قائمة
	-			

	البادئة في النظام الدولي (SI)	أعداد أكبر من 1
	جيجا (G)	$1 \times 10^9 = 1\ 000\ 000\ 000$
-	ميجا (M)	$1 \times 10^6 = 1\ 000\ 000$
-	کیلو (k)	$1 \times 10^3 = 1000$
-	هیکتو (h)	$1 \times 10^2 = 100$
ahi a	دیکا (đa)	$1 \times 10^1 = 10$
カーノ・レ	0.	

عبر عن وحدات القياس التالية بما يقابلها :-

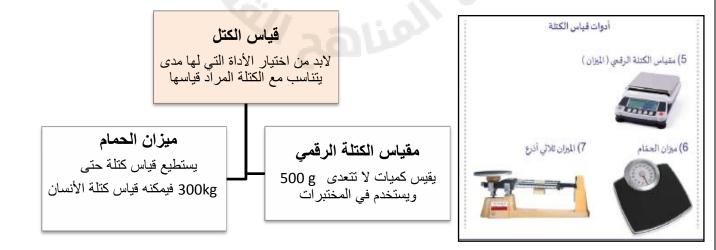
مثال:-

72MV= V

التخلص من البادئة تحذف ونضرب في قيمتها $72 imes 10^6$

35 Hz=nHz

لإضافة البادئة تضاف ونقسم على قيمتها أو (الضرب في عكس إشارة الأس) 35×10^9


للتخلص من البادئة تحذف ونضرب في قيمتها 5x10³

لإضافة البادئة تضاف ونقسم على قيمتها أو (الضرب في عكس إشارة الأس) 76×10^6

تحذف البادئة الأولى وتضاف الثانية فتطبق القاعدتين $\times 10^3 \times 10^3 \times 10^3 \times 10^3$ = 5.6×10^{10}

الفترة الزمنية هي كمية من الزمن ويستخدم لقياسها:-

ساعة الإيقاف الرقمية

تعرض الساعات والدقائق والثواني وفق الصيغة الآتية:HH:MM:SS

~1

0ساعة

25 دقيقة

ساعة الايقاف اليدوية

تستخدم مؤشرات دوارة بمقياس منفصل للساعات والدقائق والثواني

وحدة قياس الزمن الأساسية هي الثانية

- تحتوي الدقيقة على 60 ثانية
- تحتوي الساعة على 3600 ثانية
- يحتوي اليوم على 86400 ثانية

مثال: -

تستغرق سيّارة في سباق 3 ساعات، و 10 دقائق، و 37.1 ثانية، لتقطع مسافة 500 km. ما الفترة الزمنية للسباق بوحدة الثانية؟

> الزمن بوحدة الثانية. المطلوب:

.1 h = 3600 s, 1 min = 60 sالعلاقات:

الحل :-

3x3600 = 10800

10x60 = 600

10800 + 600 + 37.1 = 11437.1 S