ملخص شامل وملم لدروس الوحدة الثالثة (الطاقة) مع حل الأسئلة

تم تحميل هذا الملف من موقع المناهج العمانية

موقع فايلاتي ⇒ المناهج العمانية ⇒ الصف السابع ⇒ علوم ⇒ الفصل الأول ⇒ ملفات متنوعة ⇒ الملف

تاريخ إضافة الملف على موقع المناهج: 11-11-2025 11:36:39

ملفات اكتب للمعلم اكتب للطالب ا اختبارات الكترونية ا اختبارات ا حلول ا عروض بوربوينت ا أوراق عمل منهج انجليزي ا ملخصات وتقارير ا مذكرات وبنوك ا الامتحان النهائي ا للمدرس

المزيد من مادة علوم:

إعداد: يمنى الحجرية

التواصل الاجتماعي بحسب الصف السابع

صفحة المناهج العمانية على فيسببوك

المزيد من الملفات بحسب الصف السابع والمادة علوم في الفصل الأول	
ملخص وشرح دروس الوحدة السادسة الأرض وما حولها	1
ملخص وحل أسئلة درس الطاقة الحرارية من الوحدة الثالثة (الطاقة)	
مراجعة على وحدة الطاقة	
اختبار قصير ثاني في الوحدة الثالثة الطاقة بمحافظة الوسطى	
ملخص درس الأشكال المتغيرة للطاقة من سلسلة إصرار	5

اعداد: أ. يمنى الحجرية

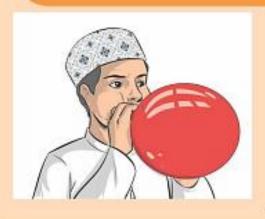
أستطيع أن أشرح لماذا نحتاج الى الطاقة.

أستطيع أن أسمي مختلف انواع إمدادات الطاقه.

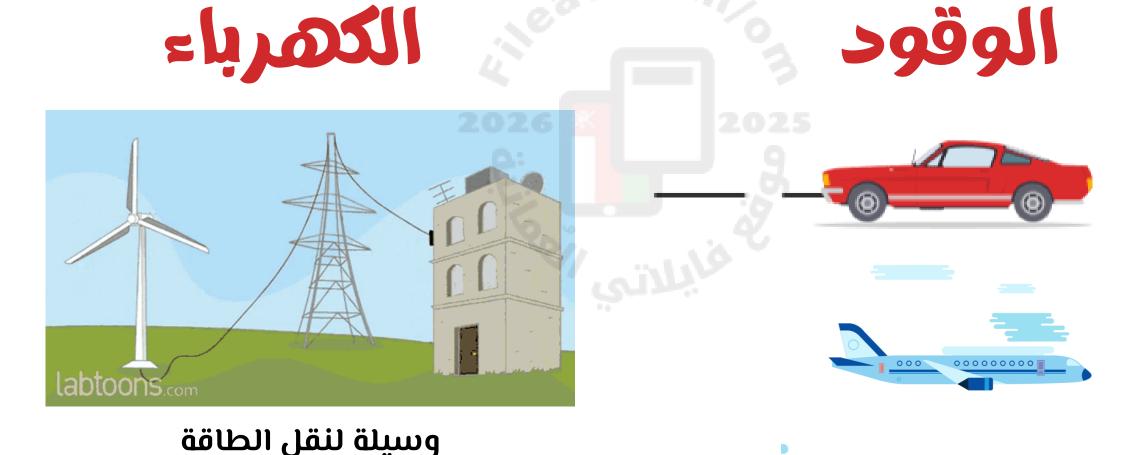
أستطيع أن أعطي مثال على المخازن الكيميائية للطاقة.

الطاقة

هي المقدرة على بذل شغل


في ماذا نحتاج الطاقة؟

من أين نحصل على الطاقة؟


نشاط ٣-١ (أ) الأنشطة التي تتطلّب طاقةً

- حاول ممارسة بعض الأنشطة التي تتطلّب طاقةً:
 - استخدم بكرةً لرفع حمل ثقيل.
 - اضغط أو اسحب زنبركًا.
 - انفخ بالونَّا.

بينها تمارس هذه الأنشطة، فكّر كيف تستخدم الطاقة المخزّنة في جسمك.

إمدادات الطاقة

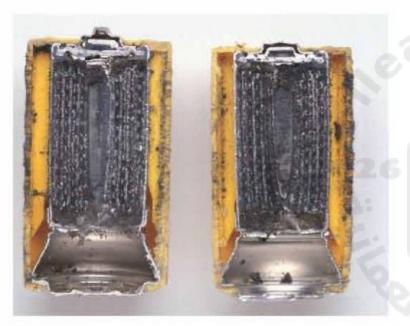
نشاط ۲-۱(ب) عالم الطاقة

كلما تطورت البلدان استخدم الناس المزيد من الطاقة.

في هذا النشاط، ستكون مهمّتك هي أن تفكّر في إمدادات الطاقة في العالم من حولك، وضمن مجموعة، ناقش الأسئلة التالية وأنشئ قائمةً بأفكارك، وكن مستعدًّا لمشاركتها مع باقي زملائك بالصف.

- أين توجد محطّات تعبئة الوقود في الحيّ الذي تعيش فيه؟ وكيف يصل
 البنزين إلى محطّات تعبئة الوقود؟
- هل تستخدم أي وقود في منزلك، مثال، الغاز أو الكيروسين؟ وكيف يصل هذا الوقود إلى منزلك؟
- هل تعلم أين توجد محطة توليد الكهرباء؟ هل رأيت كابلات الكهرباء التي تنقل الكهرباء إلى الحيّ الذي تعيش فيه؟
 - هل سبق لك أن رأيت أيّ آبار نفط أو مناجم فحم؟

المخازن الكيميائية للطاقة



الطعام مخزن للطاقة الكيميائية تتحرر الطاقة عند حرقه داخل خلايا الجسم

الوقود مخزن للطاقة الكيميائية تتحرر الطاقة عند حرقه داخل السيارة الخشب مخزن للطاقة الكيميائية تتحرر الطاقة عند حرقه

المخازن الكيميائية للطاقة

تحتوى البطارية على موادّ كيميائية.

البطاريّات مخزن للطاقة يسهل استخدامه.

لكي نحصل على الطاقة من المخازن الكيميائية يجب أن يحدث <mark>تفاعل كيميائي</mark>

الأسئلة

ت + ا

(۱) غالبًا ما نحرق الوقود من أجل الطهي، اذكر أسماء أنواع مختلفة من الوقود الذي يستخدم للطهي.

يتضمن وقود الطهي الخشب والفحم والغاز والبرافين وغيره. لاحظ أنه لا يمكن اعتبار الكهرباء وقود حيث لا تشتمل على احتراق.

الأستلة

(٣) عندما تتخلص من بطارية مستعملة، قد تتسرب الموادّ الكيميائيّة منها وتضرّ البيئة، اشرح لماذا يعدّ استخدام البطاريّات القابلة لإعادة الشحن أقلّ خطرًا على البيئة.

2026 2025

تُستخدم البطاريات القابلة لإعادة الشحن عدة مرات قبل التخلص منها، وهو ما يقلل من كمية المواد الكيميائية الخطرة الّتي يتم التخلص منها في البيئة. (يساعد إعادة تدوير البطاريات العادية أيضًا في تقليل كمية النفايات.)

كي نحصل على الطاقة من الوقود يجب حرقه، ويمكنك استخدام الطاقة من الوقود المحترق لتسخين بعض الماء.

١- ضع كأسًا من الماء البارد على حامل ثلاثي الأرجل وضع ميزان حرارة في الماء، وراقب قراءة درجة الحرارة.

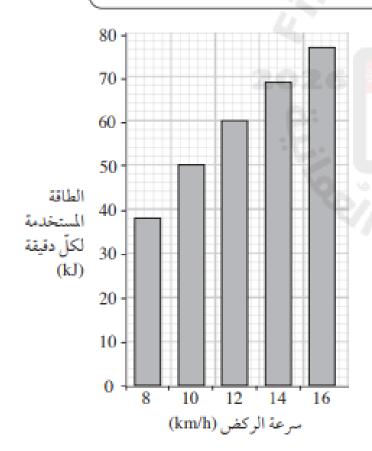
٧- ضع شمعةً تحت الكأس.

٣- أشعل الشمعة وابدأ ساعة الإيقاف.

٤- سـجّل درجة حـرارة الماء كلّ دقيقة، و دوّن نتائجك في جدول.

٥- اعرض نتائجك في تمثيل بياني.

٦- استعن بنتائجك لتساعدك على أن تقرّر: هل زوّدت الشمعة الماء بالطاقة بمعدّل ثابت؟ اشرح أفكارك.



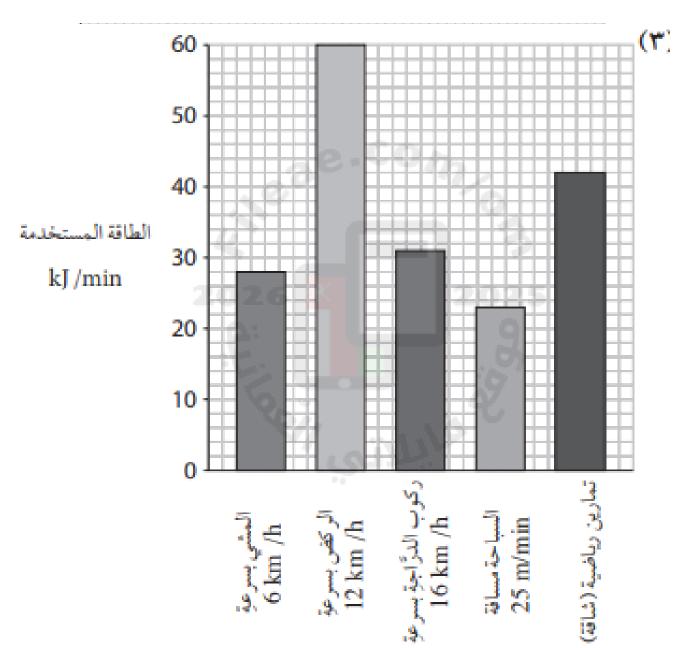
تمرين ٢-١ طاقة الجسم

سيساعدك هذا التمرين على فهم بعض الطرق التي نستخدم فيها الطاقة المخزّنة في أجسامنا، كما يمنحك أيضًا فرصة التدريب على تفسير البيانات.

يعمل جسمك على تخزين الطاقة التي تحتاجها للأنشطة اليومية، فإذا كنت غير نشيط بشكل كاف، فربها تزداد في الوزن؛ لذا تساعدك التهارين الرياضية على التدريب على استخدام الطاقة الزائدة.

يوضّح التمثيل البياني بالأعمدة كميّة الطاقة التي تستخدمها عند الركض بسرعات مختلفة على سبيل المثال، إذا ركضت بسرعة 8 km في الساعة، فأنت تستخدم حوالي 38 kJ من الطاقة كلّ دقيقة.

 أكمل الجدول التالي لتوضيح البيانات في التمثيل البيانيّ بالأعمدة. تم ملء الخانة الأولى من الجدول لمساعدتك.


الطاقة المستخدمة لكلّ دقيقة (kJ)	سرعة الركض (km/h)	
38	8	
50	10	
50 26	2025 9 ¹²	
69	14	
تي 77	16	

٢) يجري أكرم بسرعة 4 km/h للدة 10 دقائق، ويجري أدهم بسرعة 4 km/h للمدة نفسها، أيّه إيستهلك طاقةً أكثر؟ وضّح إجابتك.

يستخدم أدهم المزيد من الطاقة أكثر من أكرم

عوضّح الجدول التالي كميّة الطاقة المستهلكة كلّ دقيقة مع الأنشطة المختلفة.

الطاقة المستخدمة لكلّ دقيقة (kJ)	النشاط 20	
28	المشي بسرعة 6 km/h	
60	الركض بسرعة 12 km/h	
31	ركوب الدرّاجة بسرعة 16 km/h	
23	السباحة مسافة m 25 في الدقيقة	
42	التمارين الرياضيّة العنيفة	

يقول أدهم إنّ ركوب الدرّاجة مثالٌ جيّدٌ لاستخدام الطاقة حيث إنّها أسرع من الركض، بينها يقول أكرم إنّ الركض أفضل.	({
أكرم إنّ الركض أفضل.	
أيّهما رأيه صحيحٌ؟ وضّح إجابتك.	
عيد محق. يستهلك الركض ما يقرب من ضعف الطاقة في الدقيقة الواحدة أكثر من	<u>س</u>
وب الدراجة الهوائية.	

تمرين ٣-٢ المخازن الكيميائية للطاقة

سيساعدك هذا التمرين على التفكير في مخازن كيميائيّة مختلفة للطاقة وكيفيّة استخدامها.

نستخدم الكثير من المخازن الكيميائيّة المختلفة للطاقة، يجب أن يحدث التفاعل الكيميائيّ ليحرّر الطاقة المخزّنة.

فيها يلي بعض الأمثلة حول الأشياء التي نفعلها أو نستخدمها وتعتمد على مخازن الطاقة الكيميائيّة.

تغذية الماشية وقود الطائرات تقديم الغذاء للأشخاص الساعة الكهربائية السيّارات الطهو التسخين

- انقل هذه الأمثلة في الفراغات في عمود المثال الأوّل على الاستخدام في الجدول لتوضيح أحد الاستخدامات لكل مخزن.
 - اكتب أمثلةً أكثر من عندك في آخر عمود من الجدول.
 أكمل أوّل صفّ من الجدول كمثال تستعين به.

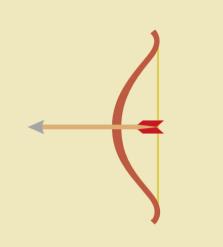
المثال الثاني على الاستخدام	المثال الأوّل على الاستخدام	المخزن الكيميائيّ للطاقة
المصابيح	وقود الطائرات	كيروسين
العثيب الجاف إلشعال النار	تغذية الماشية	عشب
التدفئة	الطهو	فحمٌ
المذياع ،	الساعة الرقمية	بطاريّات
الآلات والدراجات	وقود السيارات	بنزين
التدفئة	الطهو	خشب
قش الأرز لإستخدام كوقود	غذاء الإنسان	أرز

مخازن أخرى للطاقة

نشاط ٣-٣ (أ) ألعاب تعمل بالطاقة

تحتاج كلّ لعبة إلى مخزّن طاقة كي تعمل. افحص ألعابًا مختلفةً، وتأكّد أنّك تعرف كيف تعمل كلّ منها.

هل يمكنك أن تجد مخزّن الطاقة المستخدم في كلّ لعبة؟


- أيّ الألعاب تستخدم بطاريّات؟
- أيّ الألعاب تستخدم نابضًا مضغوطًا أو منبسطًا؟
 - أيّ الألعاب تستخدم شيئًا مرفوعًا إلى أعلى؟

تخزين الطاقة في النابض

في حالة شد يقوم النابض بتخزين الطاقة

> • في حالة انبساط النابض يقوم <mark>بتحرير</mark> الطاقة

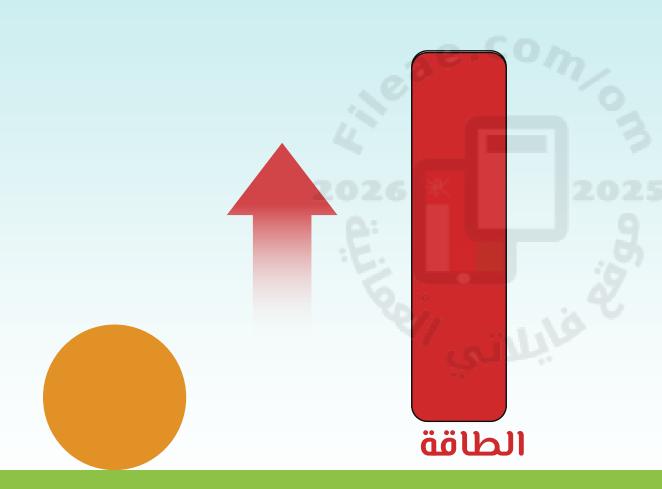
(١) الرباط المطّاطي يمكن أن يخزّن الطاقة.

أ- اشرح كيف يمكن أن نجعل الرباط المطّاطي يخزّن الطاقة. ب-كيف يمكن تحرير هذه الطاقة؟

(٢) صف لعبة تستخدم الرباط المطّاطي مخزّنًا لطاقتها.


الإجابة:

(١) أ- شد الرباط المطّاطي ليخزِّن الطاقة.


ب-عن طريق إطلاق الرباط المطاطي لتتحرر الطاقة.

(٢) مثال، سيَّارة أو طائرة لعبة مزودة برباط مطّاطي بداخلها؛ أو آلة قذف.

تخزين الطاقة في جسم يتم رفعه

 عند افلات الجسم فإنه يحرر الطاقة.

الأستلة

(٣) تحتاج لعبة مثل سيارة إلى مصدر للطاقة كي تتحرّك. كيف يمكنك أن تزود السيارة اللعبة بطاقة الجاذبية الأرضيّة حتى تتحرّك عندما تتركها؟

(٤) تخيّل أنّك تثب لأعلى ولأسفل على المنطّة (ترامبولين). أ- اذكر مخزّن الطاقة المستخدم عندما تضغط لأسفل على الطبقة المشدودة لمنضدة القفز.

الإجابة:

- (٣) عن طريق وضع السيَّارة أعلى المنحدر.
 - (٤) أ-الطاقة المرنة.

ب-طاقة الجاذبية الأرضية.

نشاط ٣-٣ (ب) مصمّم الألعاب

ارسم تصميمين للعبتين مناسبتين لطفل صغير.

- · يجب أن تستخدم إحداهما كمخزن للطاقة المرنة.
- بينها تستخدم الأخرى كمخزن لطاقة الجاذبية الأرضية.

أضف ملاحظات إلى رسوماتك لتوضح كيف تعمل كلّ لعبة، وكيف تخزّن الطاقة.

عندما يتحرّك سائق الدرّاجة تكون له طاقة حركة.

الأسئلة

(۱) أ- في صورة سائقي الدرّاجات، أيهما له طاقة حركة؟ ب- كيف تجعل لنفسك طاقة حركة دون أن تقود درّاجة؟ اقترح طريقتين مختلفتين لذلك.

الإجابة:

- (١) أ. يمتلك الطالب الذي يقود دراجة طاقة حركة أكبر من الطالب الساكن.
- ب. أي نشاطين مناسبين مثال: البدء في الركض والقفز، الهبوط من مكان مرتفع.

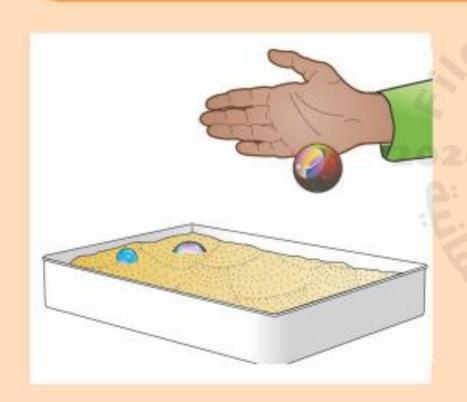
من الذي له طاقة حركة أكبر؟

أحمد

كلما كانت السرعة أكبر كانت طاقة الحركة أكبر

خالد

من الذي له طاقة حركة أكبر؟


كلما زادت كتلة الجسم زادت طاقة الحركة اللازمة لتحريكه

نشاط ٣-٤ (أ) مقارنات الطاقة الحركيّة

توضّح الصورة إحدى طرق استقصاء طاقة الحركة. أسقطت كرة زجاجية على صينيّة بها رمل رطب، وصنعت الكرة الزجاجية علامةً في الرمل، كلّم كانت طاقة الحركة للكرة أكبر، كانت العلامة التي تصنعها أكبر. لديك مهمّتان.

- ١- أثبت أنّ طاقة الحركة للجسم تزداد إذا تحرّك أسرع.
- ٢- أثبت أنّ الجسم الذي كتلته أكبر لـ ه طاقة حركة أكبر من الجسم الذي كتلته أصغر، إذا تحرّكا بنفس السرعة.

الأسئلة

(٢) تتحرك سيّارة إلى جانب جرّار ثقيل على طريق رئيسيّ. أيّهما له طاقة حركة أكبر؟ وضّح إجابتك.

الإجابة:

(Y) يحتوي الجرار الثقيل على طاقة حرارية أعلى لأنه يمتلك كتلة أكبر (يتحركان بنفس السرعة).

ماذا يحدث لطاقة الحركة عندما تبطئ الحركة؟

طاقة الحركة

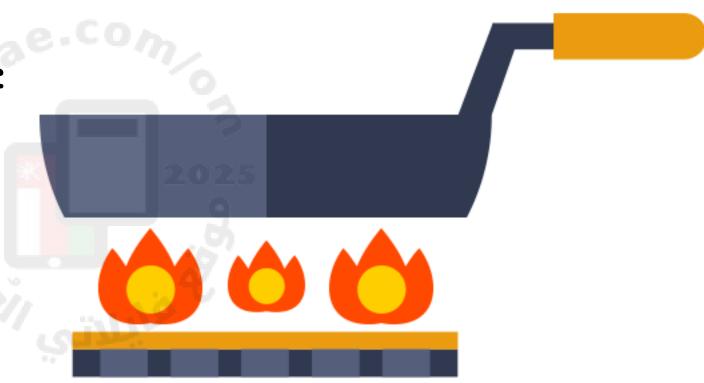
تتولد قوة احتكاك

(تنتج طاقة حرارية)

قوة الاحتكاك تقاومة الحركة وتنتج حرارة

الأسئلة

(٣) أ- عندما تبطئ السيّارة سرعتها تصبح المكابح ساخنة استخدم ما تعرفه عن الطاقة لتشرح السبب.
 ب- اشرح لماذا تصبح مكابح السيّارة أكثر سخونة بقدر كبير عن مكابح الدرّاجة.


الإجابة:

- (٣) أ. تحوّل قوة الاحتكاك طاقة الحركة في السيَّارة إلى طاقة حرارية في المكابح، فقد ازداد مخزون الطاقة الحراري للمكابح.
- ب. تمتلك السيَّارة كتلة أكبر من الدراجة وتتحرك أسرع منها، ولذلك فهي تحتوي على طاقة حركة أكبر لنقل الطاقة الحرارية في المكابح عندما تتباطأ سرعتها.

الطاقة الحرارية

عند تسخین أي جسم نقول أنه يخزن طاقة حرارية

كلما كان الجسم أكثر سخونة كانت الطاقة الحرارية التي يخزنها أكبر

الأسئلة

(١) إذا سخّنت حجرًا كبيرًا وحجرًا صغيرًا في النار، فأيّهما سيخزّن طاقةً حراريّة أكبر؟ وضّح إجابتك.

الإجابة:

(1) يُخزِّن الجسم الكبير المزيد من الطاقة أكثر من الجسم الصغير في نفس الظروف من درجة الحرارة. التفسير: يمكننا التفكير في الجسم الكبير على أنه جسم مكون من عدة أجسام صغيرة. ولذلك فيُخزِّن نفس الطاقة الّتي تخزنها الأجسام الصغيرة.

هذا مثال للسؤال الذي يعتقد الطلاب أن الإجابة عليه قد تكون «واضحة». ومع ذلك، فإن محاولة تقديم تفسير له يعتبر أصعب.

انبعاث الطاقة الحرارية

مخزن الطاقة الجيد هو الذي يخزن الطاقة لأطول زمن ممكن.

مخازن الطاقة الحرارية تفقد طاقتها في البيئة المحيطة لأنها تبعث بتلك الطاقة حتى يبرد.

في هذا النشاط ستستقصي ما يحدث عندما تخلط مخزنين للطاقة الحراريّة.

- ۱- صب 100 mL من الماء البارد في كأس زجاجية كبيرة، ثمّ حدد المستوى خارج الكأس، وأضف 100 mL أخرى من الماء البارد، وحدد المستوى مرّةً أخرى، ثمّ أفرغ الكأس.
- ۲- لديك إبريق من الماء الساخن وإبريق من الماء البارد، قس درجة
 حرارة الماء الساخن والماء البارد، وسجّل إجابتك.
- ٣- والآن اخلط كميتين متساويتين من الماء الساخن والماء البارد كما يلي،
 صب الماء البارد في الكأس حتى العلامة الأولى، ثمّ صب الماء الساخن حتى العلامة الثانية.
 - تنبّأ: ماذا ستكون درجة حرارة الماء المخلوط؟
- ٤- حرّك الماء المخلوط ثمّ قس درجة الحرارة، هل كان تنبّؤك صحيحًا؟
- هل يمكنك أن تتنبّ بدرجة الحرارة النهائية إذا خلطت 50 mL من الماء البارد مع 100 mL من الماء الساخن؟

درجة حرارة الماء البارد + درجة حرارة الماء الحار

درجة حرارة الماء بعد خلط (الماء البارد والماء الحار)

الاستلة

- (٢) ماذا يحدث لدرجة حرارة الجسم الساخن عند انبعاث الطاقة الحراريّة منه؟
- (٣) تنبعث طاقة من جسم ساخن وتنتشر بعيدًا بحيث تحافظ على دفء الأرض، في هذا الجسم الساخن؟

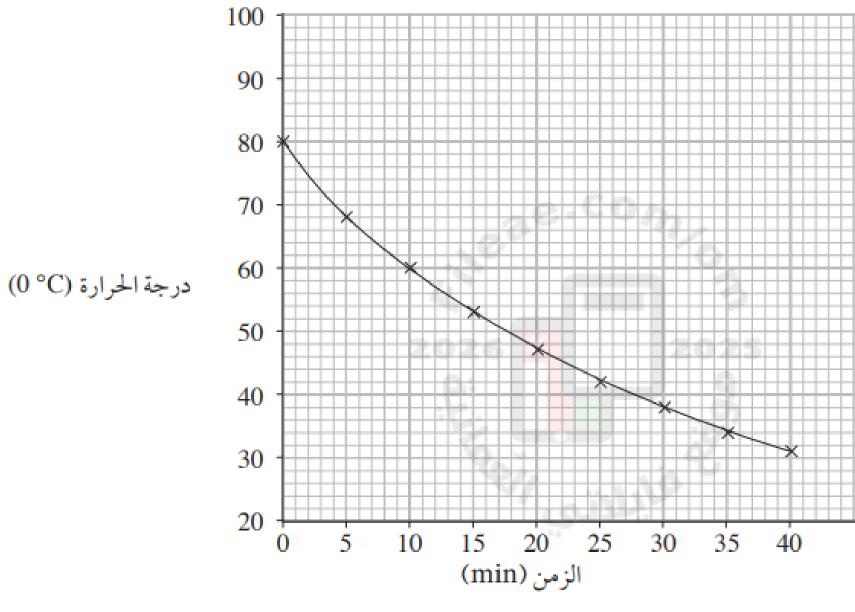
الإجابة:

- (Y) تنخفض درجة الحرارة عندما تنطلق الطاقة خارجًا.
 - (٣) الشمس (على بُعد 150 km مليون).

تمرین ۲-۵ تسخین کتلة

سيمنحك هذا التمرين فرصة التدريب على تفسير الرسوم البيانيّة الخاصّة ببيانات التجارب.

أجرت أميرة استقصاءً على تبريد كتلة معدنية.


- وضعت الكتلة في حمّام مائي ساخن لمدة 10 دقائق.
- أخرجت الكتلة من الماء باستخدام ملقط وجفّفتها بمنشفة.
 - وضعت ميزان الحرارة في فتحة في الكتلة.
 - وسجّلت درجة حرارة الكتلة كل 5 دقائق.

يعرض الرسم البيانيّ نتائج أميرة.

1) ادرس الرسم البيانيّ. كم كانت درجة حرارة الكتلة في بداية التجربة؟

لأن الكتلة ساخنة للغاية فقد تتعرض إلى حرق يديها.

٣) حدّد أيًا من العبارات التالية صواب أو خطأ.

صواب أم خطأ؟	العبارة
	بردت الكتلة بالتدريج.
X	انخفضت درجة حرارة الكتلة بسرعة كبيرة.
X	بعد 10 دقائق، كانت درجة حرارة الكتلة 70°C.
	بعد 20 دقيقةً، انخفضت درجة حرارة الكتلة بمقدار 2°33.
X	توقّفت أميرة عن القياس بعد 30 دقيقةً.
	بردت الكتلة؛ لأنّ الطاقة كانت تتسرّب منها للخارج.

٤) توجد ثلاث عبارات خاطئة في السؤال رقم (٣). اكتب العبارة الصحيحة لكل منها في الفراغات التالية.

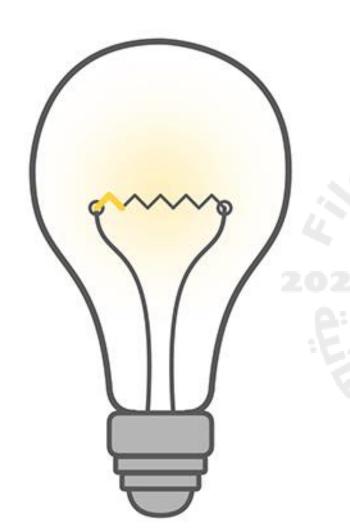
	العبارة
	انخفضت درجة حرارة الكتلة بسرعة أقل.
2026	بعد 10 دقائق، كانت درجةُ حرارةِ الكُتلةِ °C 60.
.e. 11	توقفت أميرة عن القياس بعد 40 دقيقة.

نقل الطاقة

Electric Circuits What is a Circuit? طاقة ضوئ<mark>ية</mark> مخزن طاقة BATTER كيميائية الكهرباء

الكهرباء ناقل للطاقة

الشحنات الكهربائية في السلك تحمل الطاقة الكهربائية إلى المكان الذي نحتاجه.


الأسئلة

(۱) تعرض القائمة بعض الأشياء المفيدة التي قد تجدها في مكتب: مصباح مكتبيّ هاتف مقصّ حاسب آليّ دبّاسة أيّ هذه الأجهزة مزوّد بطاقة كهربائيّة كي يعمل؟

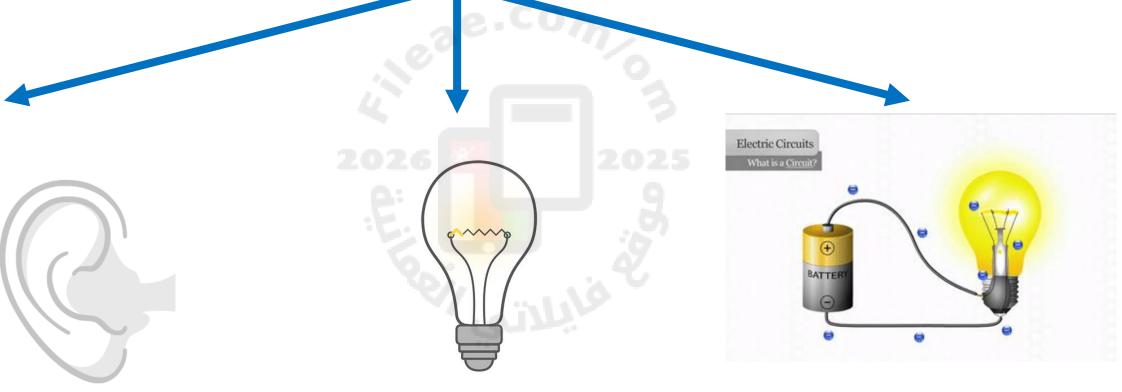
انبعاث الطاقة

الجسم الساخن مخزن للطاقة تنبعث منه الطاقة الحرارية المنبعثة

اذا سخن الجسم بشكل كبير فإنه يتوهج وتنطلق منه طاقة ضوئية

الأسئلة

(۲) أ- ما نوع الطاقة التي يجب إمدادها للمصباح كي يعمل؟
 ب- ما نوعا الطاقة اللذان ينبعثان من المصباح عندما يكون مضاءً؟


انتشار الصوت

عند اهتزاز جسم تحمل الاهتزازات عبر الهواء الطاقة الصوتية إلى آذاننا

نقل الطاقة

الإشعاع

الكهرباء

الصوت

نشاط ۲-۳ انتقال الطاقة

جرّب بعض التجارب القصيرة التي تظهر طرقًا مختلفةً لانتقال الطاقة، وفي كلّ منها قرّر ما نوع الانتقال:

- الانتقال عن طريق الكهرباء
- الانتقال عن طريق الإشعاع
- الانتقال عن طريق الصوت

وفي كلِّ نوع من الانتقال، فكّر في مثال آخر.

تمرين ٢-٦ تخزين الطاقة ونقلها

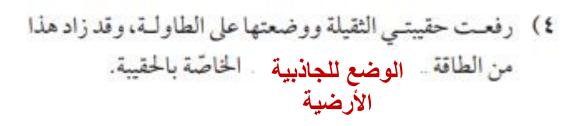
يمكن نقل الطاقة من مكان إلى آخر بطرق مختلفة، ستعمل هذه الأسئلة على اختبار فهمك لهذا.

استخدم الكلمات من هذه القائمة لإكمال الفراغات في الجمل التالية، يمكنك استخدام بعض الكلمات أكثر من مرة.

> الوضع للجاذبيّة الأرضيّة الحراريّة

الكيميائية الطاقة الكهربائية الحرارية المنتقلة الضوئية

 ١) في الساعة السادسة صباحًا، انطفأ المنبه. توجد في المنبه بطاريّة غزّن الطاقة الكيميائية ... به.



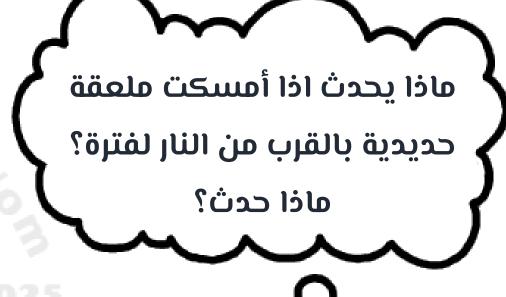
٣) يصدر نوعان من الطاقة من الضوء:

طاقة..... ضوئية ... والتي نستخدمها لنرى بأعيننا،

وطاقة حرارية التي تشعرنا بالدفء.



 أكلت ثلاث شرائح من الخبز لأتأكد أن لدي مخزونًا جيدًا من الطاقة الكيميائية في جسمي لليوم.



تنتقل الطاقة الحرارية من مخزن الطاقة الساخن عبر الحديدة

التوصيل الحراري

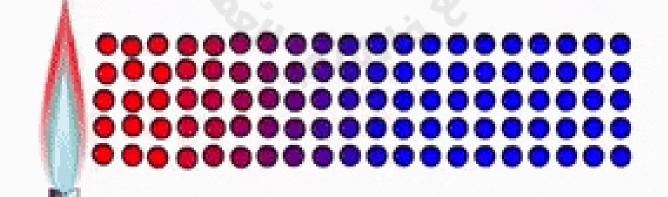
المواد

العازلة

موصلة ضعيفة للحرارة

المواد الغير معدنية

الخشب البلاستيك الموصلة


موصلة جيدة للحرارة

المواد المعدنية

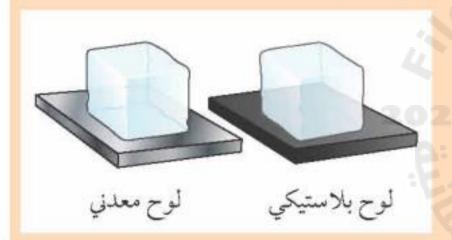
النحاس الألمنيوم الحديد الصلب (الفولاذ)

كيف يتم توصيل الحرارة؟

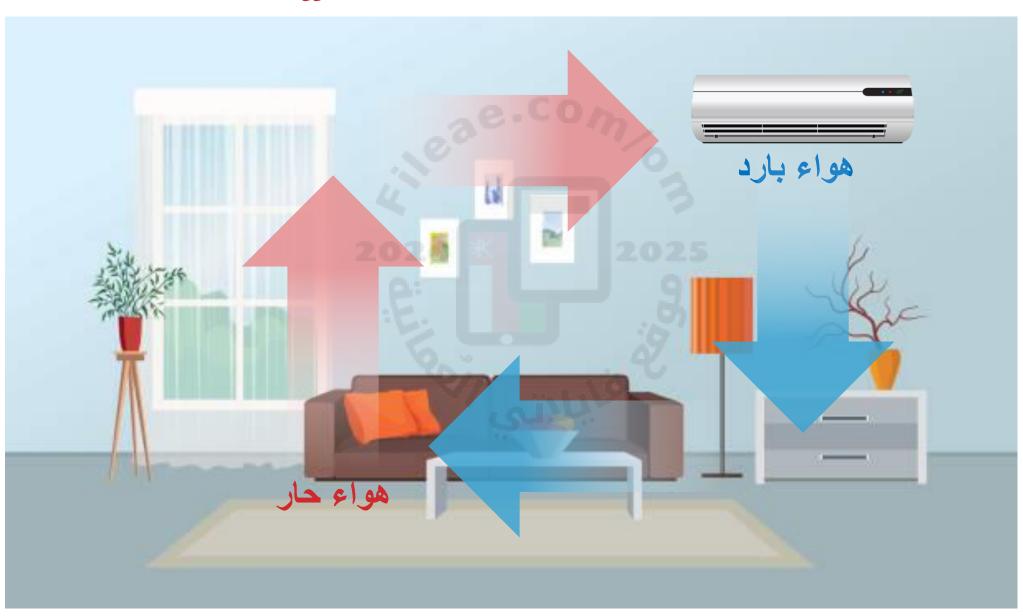
تهتز الجزيئات في الطرف الساخن لأنها تحوي طاقة كبيرة ومن ثم تصطدم بالجزيئات التي بجوارها حتى يصل للطرف الآخر

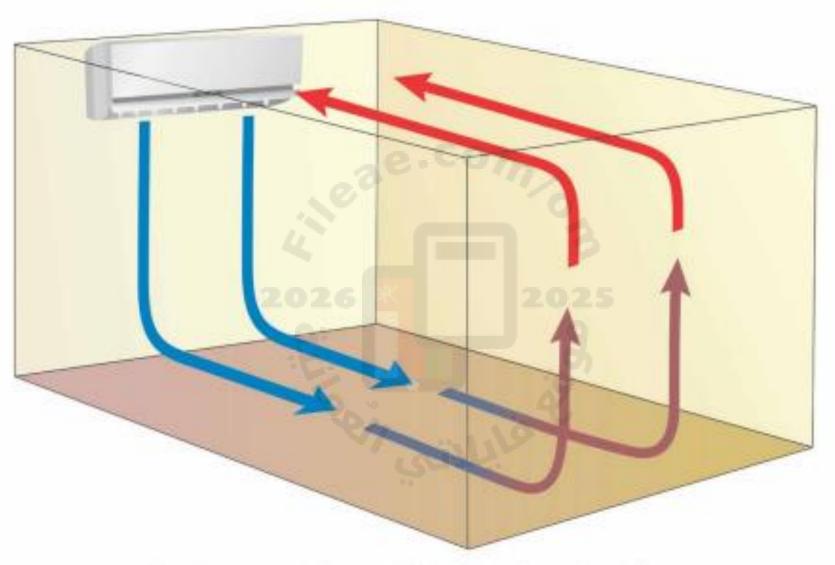
لاستلة

- (۲) غالبًا ما تقدّم المشروبات في أكواب من البوليسترين، لماذا تكون هذه الأكواب أسهل
 للمسك من الأكواب الورقيّة؟
 - (٣) اقترح سببين لصنع أواني الطهي من المعدن وليس البلاستيك.

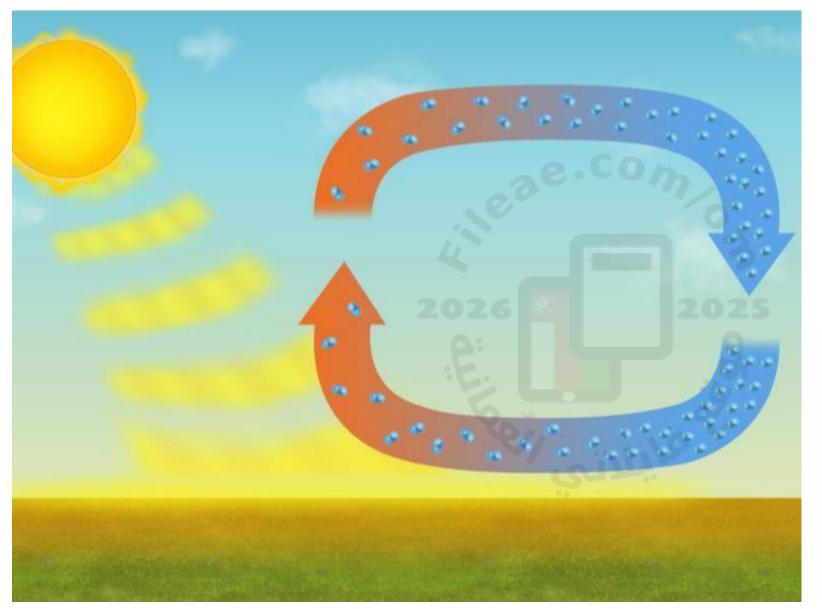

- (٢) تُشعرك الملعقة المعدنية بالبرودة أكثر من الملعقة البلاستيكية؛ وسرعان ما تُشعرك الملعقة البلاستيكية بالدفء.
 - (٣) يكون جلدك أكثر سخونة من قطعة من البلاستيك.
 - عندما تلمس البلاستيك، لا تسري الطاقة داخل البلاستيك لأنه عازل.
 - ولذلك فلا يشعر إصبعك بالبرودة، وترسل أعصابك الإشارات إلى الدماغ بأن البلاستيك دافئًا.

نشاط ۳-۷ (ب) انصهار الثلج


في هذا النشاط سيكون لديك لوحان أحدهما من الفلزات والآخر من البلاستيك.


وسيوضع مكعّب من الثلج على كلّ لوح، أيّهما سينصهر أوّلًا؟ قبل أن تجري التجربة فكّر في هذه الأسئلة:

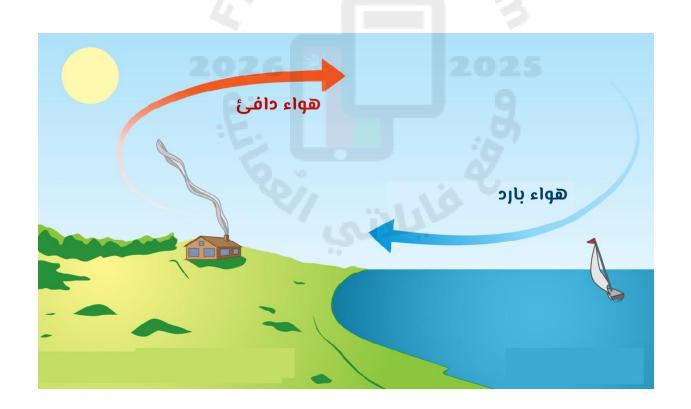
- لماذا سينصهر الثلج؟
- كيف يمكن أن تصل الطاقة إلى الثلج؟
 اشرح أفكارك، واكتب وصفًا لما تلاحظه مع الشرح.



الحمل الحراري

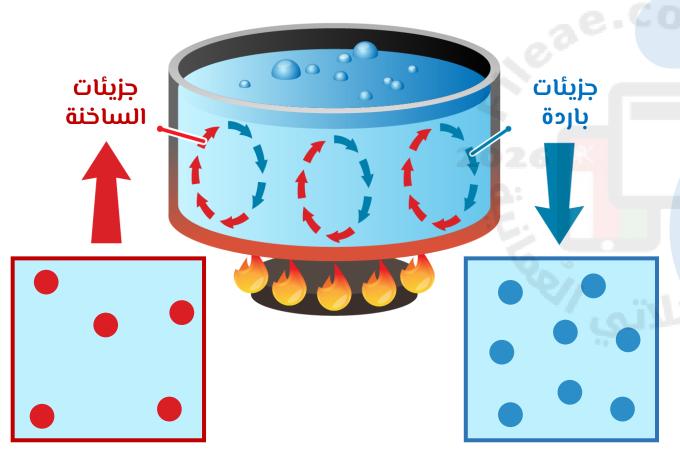
ينقل تيَّار الحمل الحراريّ الطاقة من المكيف إلى باقي الغرفة.

يرتفع الهواء الدافئ حاملا الطاقة من الأرض الدافئة ويسمى


تيار الحمل الحراري

النسر يحلّق فوق الهواء الدافئ المرتفع.

(١) إذا ذهبت إلى شاطئ البحر في يوم حارّ، فقد تلاحظ نسيمًا باردًا يهبّ من البحر على الأرض. اشرح لماذا يهبّ هذا النسيم.

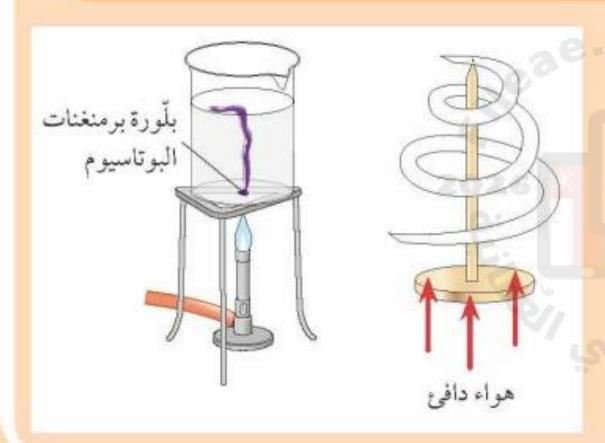

(١) يسخن الهواء الموجود أعلى الشاطئ ثم يرتفع إلى أعلى. ينخفض الهواء البارد الموجود أعلى البحر ليحل محله.

كيف يحدث الحمل الحراري؟

يحدث في الغازات والسوائل (الموائع)

عندما يسخن الهواء تتحرك الجزيئات بسرعة وتبتعد فيتمدد الهواء فيصبح الهواء أقل كثافة من الهواء المحيط به وينزل الهواء البارد لأنه أعلى كثافة

CONVECTION


الأستلة

ت + ا

- (٢) اشرح لماذا لا يمكن للحمل الحراريّ أن ينقل الطاقة خلال الموادّ الصلبة.
- (٣) لماذا تهبّ الرياح؟ قديمًا، كان البعض يعتقدون أنّ حركة أوراق الأشجار هي السبب، فكيف تقنع شخصًا أنّ هذه الفكرة خاطئة؟
- (٤) تساعد تيارات المحيطات على نقل الطاقة من المناطق الاستوائيّة إلى المناطق القطبيّة، اشرح لماذا تهبّ تيّارات الماء الدافئ بالقرب من سطح المحيط بينها تكون تيّارات الماء البارد أكثر عمقًا.

- (۲) تتخذ جزيئات الصلب مواضع ثابتة و لا تتحرك داخل المادة، ولذلك لا يمكن إعداد تيار الحمل لها.
- (٣) اذهب إلى مكان خالٍ من الأشجار (الصحراء أو المحيط)، ستجد أن الرياح تهب على الرغم من عدم وجود أشجار لتسبب هبوبها.
- (٤) إنّ الماء الدافئ أقل كثافة من الماء البارد؛ ولذلك يرتفع إلى السطح، إما الماء البارد أكثر كثافة ولذلك فيغوص لأسفل.

ملاحظة تيار الحمل الحراري

سيشرح لك معلمك تيار الحمل الحراري الذي يرتفع فوق المدفأة وذلك باستخدام دائرة من الورق مقطوعة على شكل حلزوني.

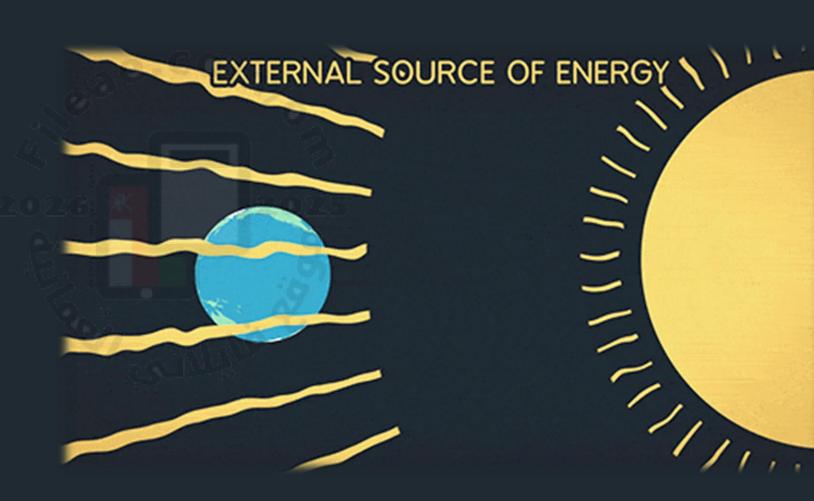
وسترى أيضًا كيف ينشر تيّار الحمل الحراريّ الطاقة خلال الماء، وتحتاج إلى ماء ملوّن كي ترى كيف تتدفّق الطاقة.

اكتب شرحًا لكيفيّة نقل تيّار الحمل الحراريّ الطاقة عبر الماء.

طرق انتقال الحرارة

في المواد السائلة والغازية

في المواد الصلبة


الإشعاع

الطاقة الشمسية

تحتاج الطاقة الشمسية للإنتقال عبر **الفراغ** حتى تصل لنا

تنتقل هذه الطاقة هلى هيئة أشعة تحت الحمراء

أي جسم دافئ يطلق أشعة تحت الحمراء أو يمتصها

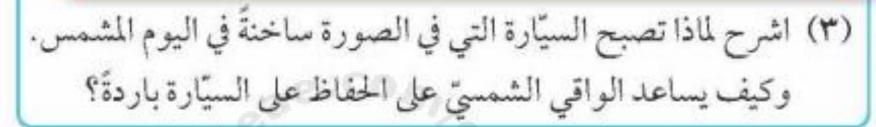
الأسئلة

- (١) إذا وقفت أمام فرن ساخن، فستشعر بالحرارة هل تصل إليك هذه الطاقة بالتوصيل أم بالحمل الحراريّ أم بالإشعاع؟ وضّح إجابتك.
- (٢) من السهل أن تفهم لماذا يصبح الجوّ حارًا خلال النهار، فالأرض تمتصّ الأشعّة من الشمس، ولكن لماذا يصبح الجوّ أقل حرارة بالليل؟ أين تذهب الطاقة الموجودة في الأرض؟
- (١) تصل الطاقة إليك عن طريق الإشعاع. ترتفع الطاقة المنتقلة من خلال الحمل الحراري أعلى الموقد. لا يوجد هناك أي مادة صلبة أو سائلة بينك وبين الموقد، ولذلك لا يمكن للطاقة أن تسري إليك عن طريق التوصيل.
 - (Y) إنَّ الأرض أكثر سخونة من الفضاء، ولذلك، ففي الليل، تبرد حيث تشع الطاقة في الفضاء.

قدرة الأسطح على الإمتصاص والإشعاع

أسطح فضية أو بيضاء لامعة

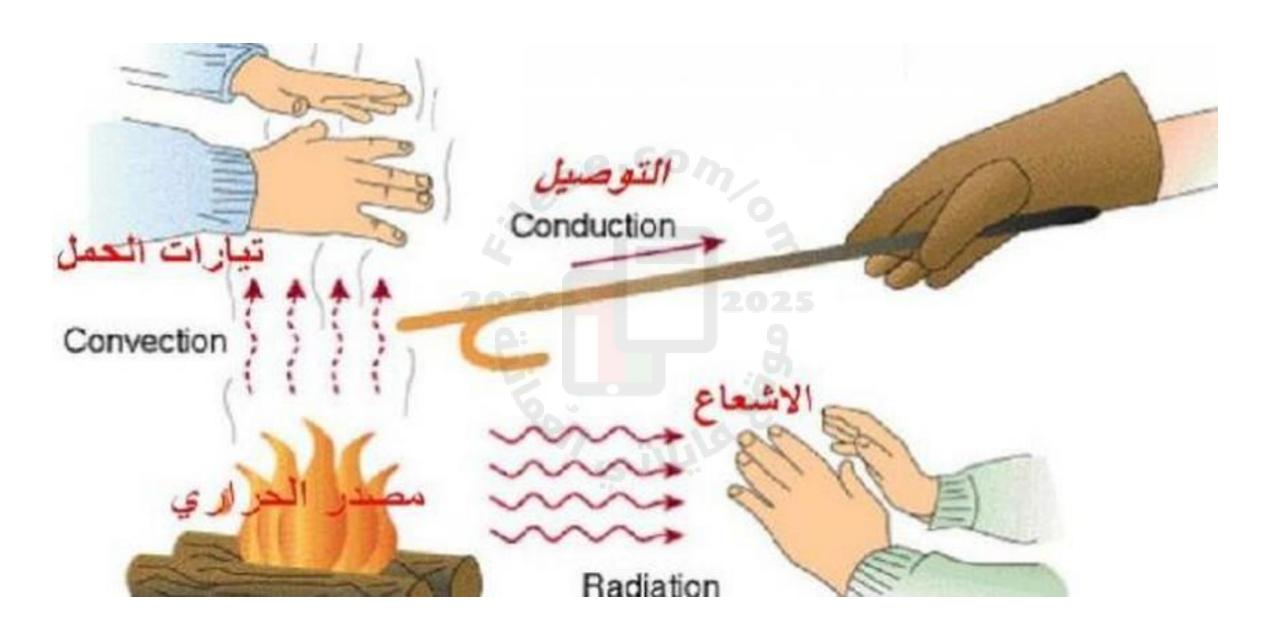
ضعيفة في إشعاع الطاقة الحرارية وامتصاصها

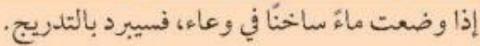

تعكس معظم الحرارة

أسطح معتمة غير لامعة

جيدة في إشعاع الطاقة الحرارية وامتصاصه

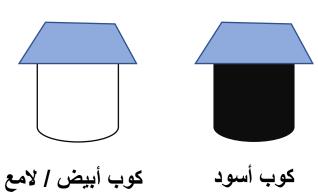
لا تعكس الحرارة


الاستلة

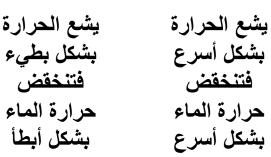

(٣) يمر الإشعاع من الشمس عبر زجاج النافذة ويتم امتصاصه من خلال الطبقة الداخلية السوداء، الّتي سرعان ما تصبح دافئة. يعتبر الواقي الحراري سطح لامع ولذلك يعكس معظم الإشعاع مرة أخرى خارج السيّارة.

التوصيل والحمل الحراري والإشعاع

١- أحضر عددًا من الأوعية المختلفة، تشبه الأوعية التي في الصورة، ويمكن أن تكون مصنوعة من المعدن أو الزجاج أو البلاستيك أو الورق المقوى، ويمكن أن يكون سطحها الخارجي أسود أو أبيض أو فضيًّا، ويجب أن يكون لبعضها غطاء.

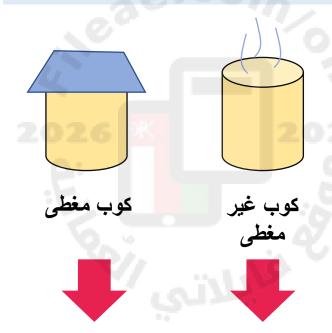

٢- صب ماءً يغلي في كل وعاء وضع ميزان حرارة
 وسجل درجات الحرارة تدريجيا أثناء ما يبرد الماء.

٣- حلّل نتائجك، هل يمكنك القول ما إذا كانت الطاقة تتسرب من الماء بالتوصيل أو الحمل الحراري أو الإشعاع؟



ملاحظة الإشعاع

تم وضع كمية ماء ساخن متساوية في الكوبين وتغطيتهما

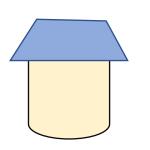


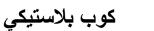
ملاحظة الحمل الحراري

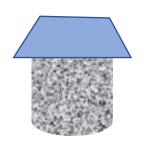
تم وضع كمية ماء ساخن متساوية في الكوبين وتغطية أحدى الكوبين

الكوب مغطى

ففقد الحرارة


سيكون


بالإشعاع فقط


تفقد الحرارة بواسطة الحمل من أعلى الكوب فتنخفض حراة الكوب بشكل أسرع

ملاحظة التوصيل الحراري

تم وضع كمية ماء ساخن متساوية في الكوبين وتغطية أحدى الكوبين

كوب معدني

تفقد الحرارة بواسطة التوصيل الحراري بشكل أبطأ لأن البلاستيك عازل للحرارة

تفقد الحرارة بواسطة التوصيل الحراري بشكل أسرع لأن المعدن موصل للحرارة

طرق انتقال الحرارة

الإشعاع الحراري

هو انتقال الطاقة عن طريق الموجات ويمكنها الانتقال عبر الفراغ أو المواد الشفافة.

الأجسام الدافئة تشعة أشعة تحت الحمراء

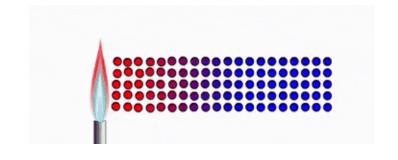
الأسطح السوداء المعتمدة جيدة في امتصاص الحرارة وإشعاعها.

الأسطح اللامعة تعكس الاشعاع وأقل امتصاصا.

الحمل الحراري

هو نقل الطاقة خلال الموائع (السائل والغاز) عندما يتحرك هذا المائع

المائع الأكثر دفئا أقل كثافة فيصعد لأعلى والبارد ينزل لأسفل

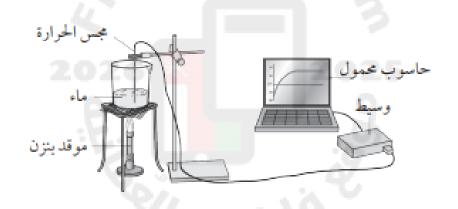


التوصيل الحراري

توصيل الطاقة من المكان الساخن إلى البارد في المواد الصلبة والسائل عن طريق ملامسة الجزيئات.

لا تتحرك الجزيئات وإنما تهتز الجزيئات وتنقل الطاقة من جزيء لآخر

يمكن أن يحدث التوصيل في المواد الصلبة والسائلة ...ولكنها أسرع في المواد الصلبة لقرب الجزيئات من بعضها



تمرين ٢-٨ استقصاء الحمل الحراري

في هذا التمرين، ستفسّر البيانات الخاصّة بفقدان الطاقة عن طريق الحمل الحراريّ، كما ستتدرّب على مهارات الاستقصاء العلميّ (١.ع).

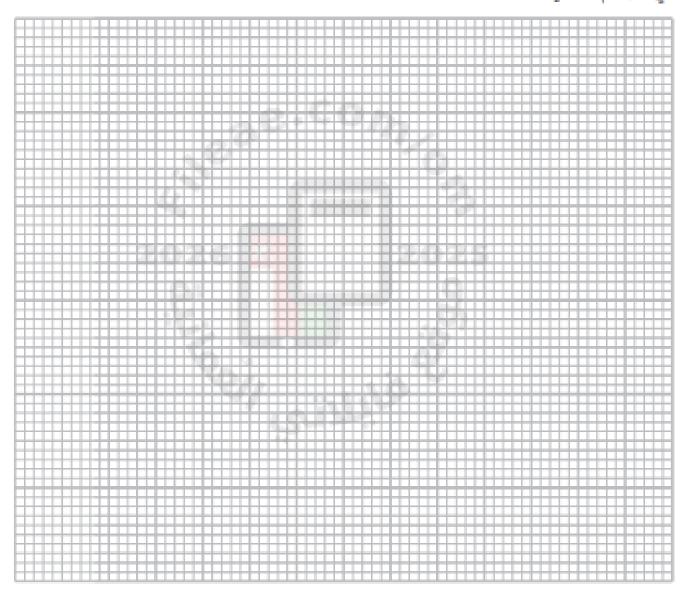
تجري منى استقصاءً حول كيفيّة تسرّب الطاقة من دورق ماء ساخن، وقد استخدمت موقد بنزن لتسخين بعض الماء، كما هو موضّح في الصورة.

يعمل مسجّل البيانات على تسجيل درجة حرارة الماء كل 10 ثوان ويعرض الحاسوب رسمًا بيانيًّا بالقياسات.

عند وصول الماء لدرجة حرارة °C و80، أطفأت منى موقد بنزن، وبدأ الماء يبرد.

اشرح كيف يمكن للطاقة أن تتسرّب من الماء عن طريق الحمل الحراري.

يسخن الهواء أعلى الماء بفعل الهواء الساخن. يرتفع لأعلى بفعل الحمل الحراري، آخذا معه الطاقة. ويتم استبداله بالهواء البارد الذي يسخن بعد ذلك، آخذا معه المزيد من الطاقة. وبهذا الشكل، يفقد الماء طاقته إلى الهواء.


- اقترح طريقة أخرى لتسرّب الطاقة من الماء.
 من خلال الحامل المعدني بالتوصيل أو بالإشعاع
- ٣) اذكر ميزتين لاستخدام مجس درجة الحرارة ومسجّل البيانات في هذه التجربة.
 - لا يوجد مجال لألخطاء البشرية في قراءة ميزان الحرارة

 عندما جمعت منى البيانات الكافية، كرّرت التجربة، ولكن هذه المرة بعد إطفاء موقد بنزن، ثمّ وضعت غطاءً من الورق المقوى على الكأس الزجاجية.

يوضّح الجدول التالي النتائج التي توصّلت إليها.

درجة الحرارة للكأس الزجاجية	درجة الحرارة للكأس الزجاجية	الوقت منذ إطفاء الموقد (s)	
بغطاء (°C)	بدون غطاء (°C)		
86	82	0	
82	73	50	
78	65	100	
75	59	150	
72	54	200	
69	50	250	
67	46	300	

على ورقة الرسم البيانيّ، ارسم رسمًا بيانيًّا يمثّل مجموعتيّ البيانات، وتأكّد من وضع البيانات الموضحة أعلاه على خطيّ الرسم البيانيّ، "بغطاء» و «بدون غطاء».

- ٥) من الرسم البياني، كم استغرقت درجة حرارة الماء لتنخفض من ℃ 80 إلى ℃.
 - أ- بدون غطاء؟ 60 ثانية

ب-بغطاء؟ 160 ثانية

وضّح على الرسم البيانيّ كيف توصّلت إلى هذه الإجابات.

آات منى: «أعتقد أنّه من دون الغطاء، الحمل الحراريّ هو الطريق الوحيد لتسرّب الطاقة من الماء».
 هل توصّلت منى إلى استنتاج جيّد من نتائجها؟ اشرح أفكارك.

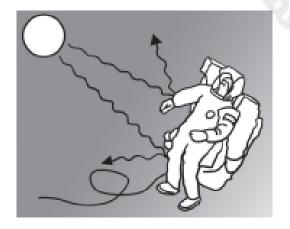
تبدو االستنتاجات التي توصلت إليها منى منطقية. ينخفض معدل درجة الحرارة بمقدار الثلث بعد إضافة الغطاء. ويشير هذا إلى أنه تم منع أكثر من نصف الطاقة المفقودة بإضافة الغطاء.

تمرين ٣-٩ تفسيرات الإشعاع

في هذا التمرين، ستستخدم ما تعرف عن كيفيّة امتصاص الإشعاع وانعكاسه لتشرح بعض الملاحظات.

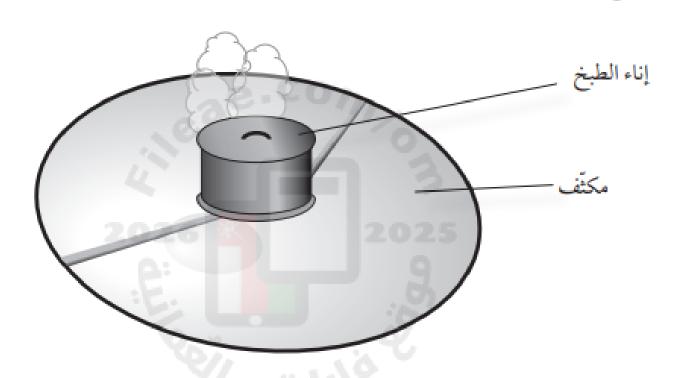
الماذا تجعلك الملابس الداكنة تشعر بالحرارة في الأيام المشمسة؟

تمتص الملابس الداكنة الإشعاع من الشمس، ولذلك يشعر الشخص الذي يرتدي مثل هذه الملابس بالسخونة.


لامعة أثناء السير خارج المركبة الفضائية؟

تعكس الملابس اللامعة الإشعاع الصادر من الشمس لتحميه من حرارة الشمس.

.....



لماذا تطلى المنازل باللون الأبيض غالبًا في الدول الحارّة؟	(٣
تعكس الجدران والأسقف البيضاء الإشعاع المنبعث من الشمس، وبالتالى فلن يسخن المنزل.	-
	-
	-

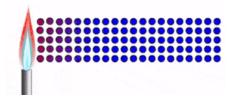
٤) توضّح الصورة التالية جهاز طهو يعمل بالطاقة الشمسيّة، وهو مصنوعٌ من وعاء معدنيّ مقوّس؛
 ويوضع إناء الطبخ فوق مركز الوعاء.

أ- اشرح كيف يعمل جهاز الطهو هذا.

يعكس الإناء اللامع الاشعاع الصادر من الشمس إلى إناء الطهي. ويكون الوعاء قاتما، ولذلك فيمتص الإشعاع. وعليه، يصبح الطعام في الوعاء ساخنًا.

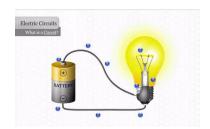
رًا أو باهظ الثمن.	س يكون فيه الوقود نادرُ	ذا مفيدًا في بلد مشم	د يكون جهاز الطهو ه	ب- اقترح لماذا قا
فليان.	ياه الشرب عن طريق الغ	قود، كما يمكن تعقيم ه	عام دون الحاجة إلى الو	يمكن طهي الط
		e-Co		
	<u>e</u>		3	

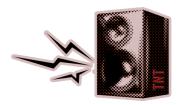
طاقة الجاذبية الأرضية


طاقة الحركة

الطاقة المرنة

الطاقة الحرارية المنبعثة


طاقة ضوئية


طاقة كيميائية

الطاقة الكهربائية

الطاقة الصوتية

الوصف	شكل الطاقة	
طاقة المادّة الكيميائيّة.	الطاقة الكيميائيّة	
طاقة جسم مبسوط أو مضغوط.	الطاقة المرنة	
الطاقة المنقولة بالكهرباء.	الطاقة الكهربائيّة Electrical Energy	
طاقة جسم تمّ رفعه.	طاقة الجاذبية الأرضية	
انبعاث الطاقة من جسم ساخن.	الطاقة الحرارية المنبعثة	
طاقة جسم متحرّك.	طاقة الحركة	
الطاقة المنبعثة من جسم ساطع.	الطاقة الضوئيّة	
طاقة جسم ساخن.	الطاقة الحراريّة	
انبعاث الطاقة من مصدر مهتز.	الطاقة الصوتية Sound Energy	

الأسئلة

(١) أيّ أشكال الطاقة تخزّن وأيها تنقل؟ أنشئ قائمتين.

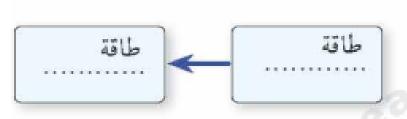
نشاط ٣-١٠ (i) تغيّرات الطاقة في لعبة الأفعوانية

ركوب لعبة الأفعوانية مثير، فالعربة تبدأ مرتفعة ثمّ تجري إلى أسفل المنحدر، وتجري أسرع وأسرع، وفي النهاية يضغط على المكابح فتبطئ تدريجيًّا حتى تتوقّف وتظل طاقة العربة تتغيّر عندما تصعد وتهبط. ناقش مع زميلك كيف تتغيّر طاقة العربة.

- ما شكل الطاقة التي تمتلكها وهي تصعد؟
- ما شكل الطاقة التي تمتلكها وهي تتحرّك بسرعة؟
- بينها تبطئ العربة تصبح المكابح ساخنةً، ما تغيّر الطاقة الذي يحدث؟

تتحول الطاقة من شكل لآخر

ما نوع الطاقة المتحولة في هذا المصباح؟


کهربائیة حراریة حراریة

ما نوع الطاقة المتحولة في هذا التلفاز؟

تتحول الطاقة من شكل لآخر

الأستلة

(٢) عندما تنطلق السيّارة، تستخدم ما بها من وقود (مخزّن طاقة كيميائيّة) كي تتمكّن من التحرّك (طاقة حركة)، انقل وأكمل المخطّط كي تعرض تحوّل الطاقة الذي يحدث عندما تنطلق السيّارة.

(٣) ما تحوّل الطاقة الذي يحدث في المصباح؟ ارسم مخطّطًا كي تعرضه.

نشاط ۲-۱۰ (ب) تغيّرات الطاقة

سيعرض عليك معلمك بعض الأمثلة على تغيّر الطاقة، لكلّ مثال:

- اذكر شكل الطاقة قبل التغيّر وبعده.
 - ارسم مخطّطًا لتمثيل تغيّر الطاقة.

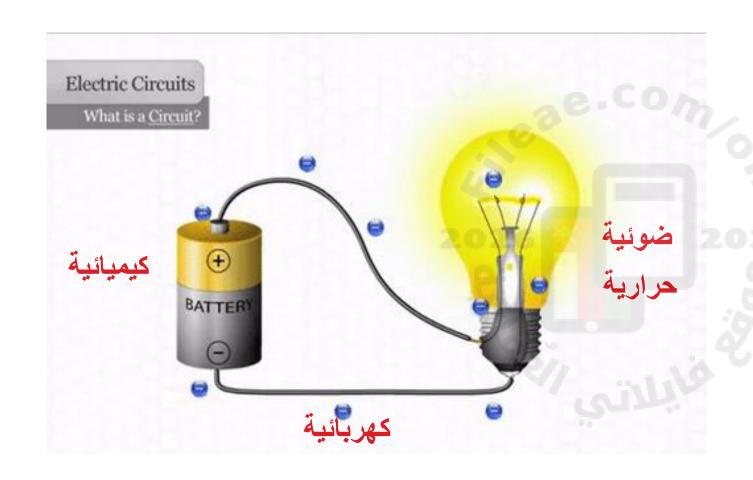
https://phet.colorado.edu/sims/html/energyforms-and-changes/latest/energy-forms-andchanges ar SA.html

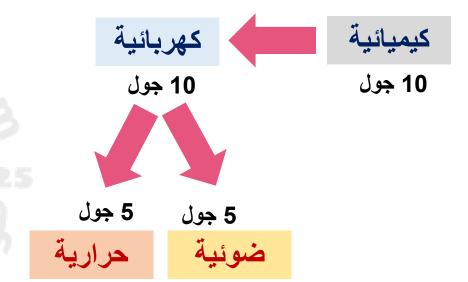
حفظالطاقة

في آلة الحفر أين تذهب الطاقة؟

تستمد طاقتها وتخزن في الوقود (طاقة كيميائية)

عندما يرفع الأشياء أو يدفعها فهو يبذل شغلا (طاقة جاذبية أرضية)


5 ملايين جول تحولت إلى شغل


5 ملايين جول تحولت إلى حرارة 10 ملايين جول من الوقود

وحدة قياس الطاقة هي الجول (ل)

حفظالطاقة

مبدأ حفظ الطاقة

الطاقة لا تفنى ولا تستحدث من العدم، ولكنها تتحول من شكل إلى آخر

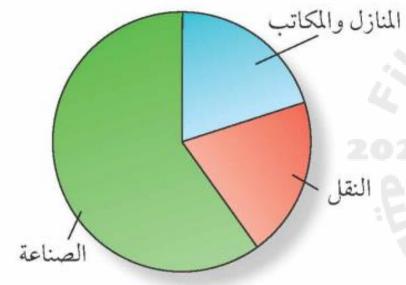
مقدار الطاقة قبل تحول الطاقة يساوي مقدار الطاقة الناتجة من التحول

الأستلة

(٣) إذا كانت بطارية تمد المصباح اليدوي بطاقة مقدارها لـ 100 من الطاقة كي يعمل، وكان المصباح اليدوي ينتج لـ 10 من الطاقة الضوئية، فكم كمية الطاقة الحرارية المنبعثة التي سينتجها المصباح اليدوي؟

(100 J = 90 J + 10 J) من الطاقة الحرارية ((70 J = 90 J + 10 J)

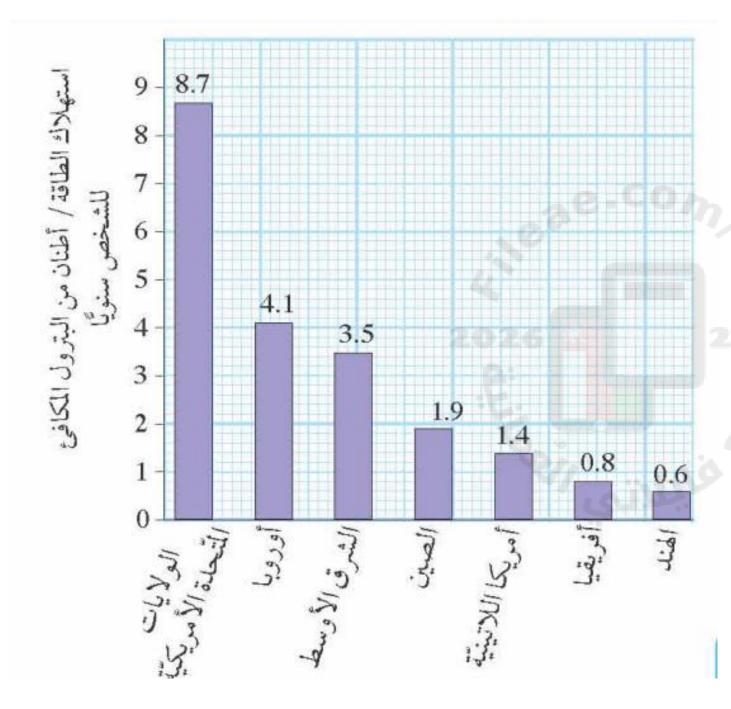
نشاط ٢-١١ ملصق الطاقة


إنّ مبدأ حفظ الطاقة أحد أهم المبادئ في العلوم. اصنع ملصقًا يساعدك على تذكّر هذا المبدأ المهم.

قد يعرض الملصق الطاقة وهي تتحوّل من شكل إلى آخر ولكنّها لا تفني أبدًا.

الماتكدام الطاقة

نستخدم الطاقة في حياتنا



القطاعات الرئيسيّة الثلاثة الّتي تستخدم فيها الطاقة.

الأسئلة

(١) انظر إلى المخطّط الدائريّ المقابل، أيّ القطاعات هو الأكثر استخدامًا للطاقة؟

الطاقة والتنمية

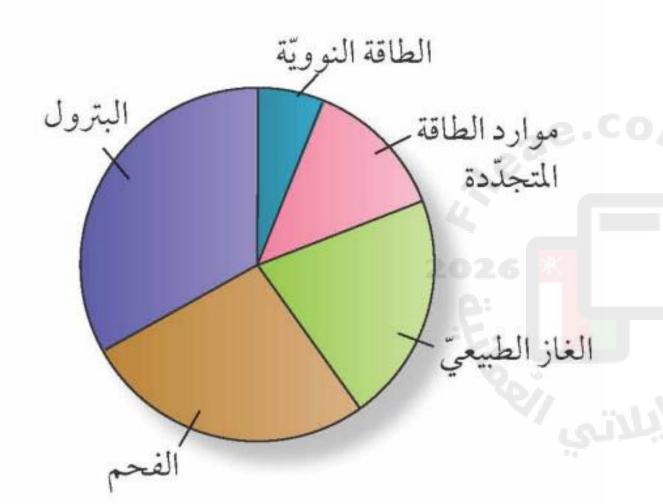
الأستلة

(٢) ادرس التمثيل البيانيّ بالأعمدة، واعلم أنّ متوسّط استهلاك الشخص للطاقة حول العالم 2.2 وحدة، في أيّ المناطق أو البلدان يستهلك الناس أكثر من ذلك؟

الطاقة في الصين والولايات المتّحدة الأمريكيّة

تظهر المخطّطات الدائريّة كيف تستهلك الطاقة في الصين والولايات المتّحدة الأمريكيّة.

ناقش مع أحد زملائك ماذا تخبرك هذه المخطّطات الدائريّة عن الاختلافات بين حياة الناس في الصين والولايات المتّحدة الأمريكيّة، (قد يكون بإمكانك الاستفادة من الرسومات البيانيّة الأخرى في هذه الصفحات).


استخدم شبكة المعلومات أو أيّ مصادر أخرى للبحث عن اختلاف استهلاك الطاقة من بلـد لآخر، واصنع ملصقًا تعرض فيه اكتشافاتك على الفصل.

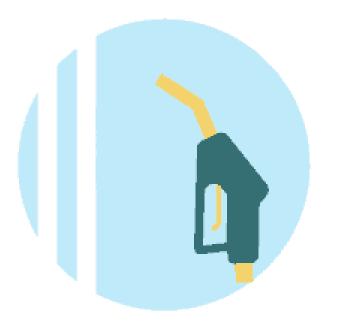
مصادر الطاقة

معظم مصادر الطاقة هي البترول والغاز الطبيعي والفحم

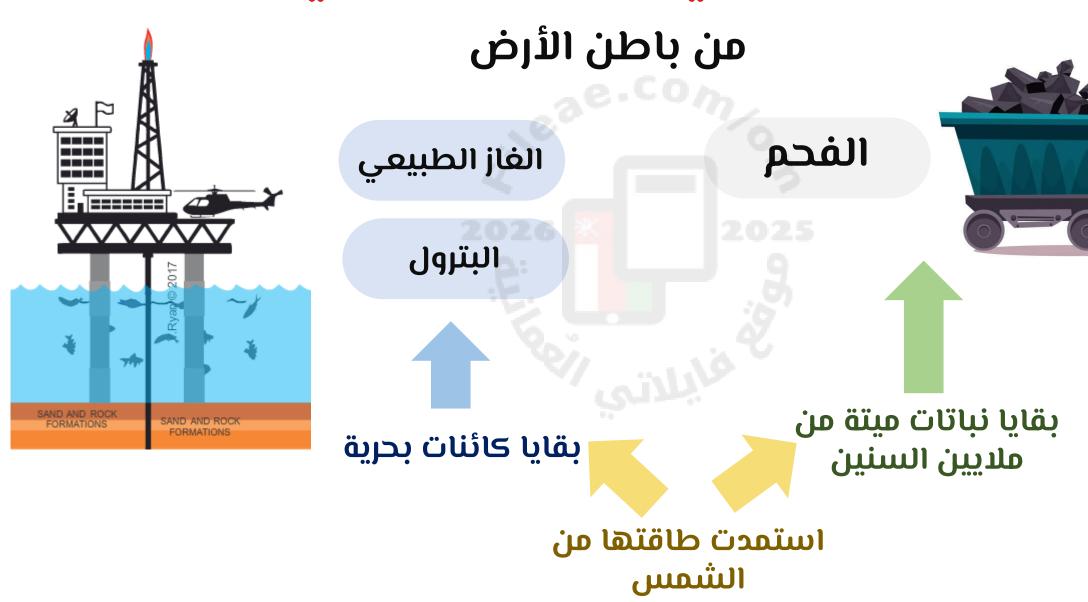
وهي تأتي من

الوقودالإحفوري

مصادر الطاقة التي نستهلكها حول العالم.


الأسئلة

(۱) أ- ما الوقود الأحفوريّ الأكثر استخدامًا كمصدر للطاقة؟ ب- استعن بالمخطّط الدائريّ كي تقدّر جزء طاقتنا الذي يأتي من الوقود الأحفوريّ.


الوقودالإحفوري

مخزن للطاقة الكيميائية

تتحرر الطاقة من الوقود عند احتراقه

من أين يأتي الوقود الإحفوري؟

الأسئلة

(٤) لماذا من الخطأ أن نقول إنَّ الوقود الأحفوريِّ مخزن لطاقة ضوئيَّة؟

(٤) الوقود الأحفوري مخزن للطاقة الكيميائية؛ فقد كانت هذه الطاقة في الأصل طاقة ضوئية ممتصة من الشمس، ولكن لم
 تُخزَّن في شكل ضوء.

محطّة طاقة في الصين تعتمد على الفحم المحترق.

يستخدم الوقود الإحفوري لتوليد الكهرباء

نشاط ۲-۱۳ تغترات الطاقة

تزوّد محطّات الطاقة النوويّة بالوقود النوويّ، وهذه المحطّات تنتج الكهرباء، ولكن بعض الطاقة تهدر حيث تهرب على شكل طاقة حراريّة منتقلة.

يعرض المخطط المدخلات والمخرجات بأسهم حمراء، ويظهر سهم الطاقة الأزرق تحوّل الطاقة الذي يحدث في محطّة الطاقة.

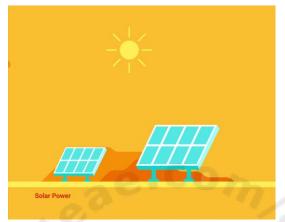
مهمتك أن ترسم مخططات مماثلةً لتشرح المواقف الموصوفة أدناه، وقد تحتاج إلى مراجعة الأشكال المختلفة للطاقة. ١- يحرق الفحم في محطّة طاقة لتوليد الكهرباء.

- ٧- عندما تبدأ سيّارة في الحركة فإنّها تستخدم البنزين المخزّن في خزّان الوقود بها.
 - ٣- يستخدم الموقد الغاز الطبيعيّ لتسخين الماء من أجل الطهي.
 - ٤- تحرق الطائرة الكيروسين؛ كي تطير بسرعة وترتفع.

مصادر الطاقة

متجددة

مصادر طاقة لا تفنى


غير متجددة

مصادر طاقة تفنى

الوقود الإحفوري الوقود النووي

الطاقة المائية

الوقود الحيوي

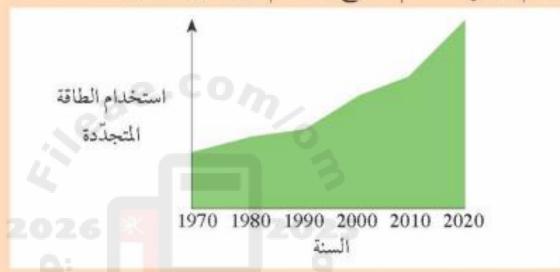
طاقة الرياح

الأسئلة

- (١) اذكر أربع طرق لتوليد الكهرباء المذكورة أعلاه.
- (٢) ارسم مخططات سهمية للطاقة لتعرض تغيّرات الطاقة التي تحدث في الخليّة الشمسيّة وتوربين الرياح.
 - (١) توربينات الرياح، الطاقة الكهرومائية، الخلايا الشمسية، الوقود الحيوي
 - (٢) الخليّة الشمسية: الطاقة الضوئية → الطاقة الكهربائية

توربينات الرياح: طاقة الحركة → الطاقة الكهربائية

الأسئلة


- (٣) اشرح لماذا يعد استخدام طاقة الرياح لإدارة توربين الرياح مصدرًا متجدّدًا للطاقة.
 - (٣) لأن الرياح ستستمر في الهبوب في المستقبل (على الرغم من قوتها المتغيرة).

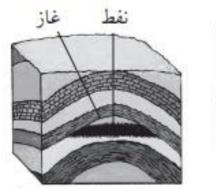
(٤) اليورانيوم هو وقود نوويّ ينقب عنه في باطن الأرض. فهل اليورانيوم مصدر طاقة متجدّد؟ وضّح إجابتك.

(٤) إن عنصر اليورانيوم مصدر غير متجدد لأنه بمجرد استخدامه، فلن يتم استبداله بعنصر يورانيوم جديد في الأرض.

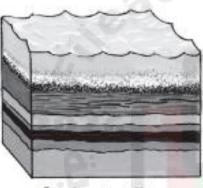
نشاط ۳-۱۴ مستقبل الطاقة

يوضّح الرسم البياني أنّ العالم أصبح يستخدم المزيد من مصادر الطاقة المتجدّدة.

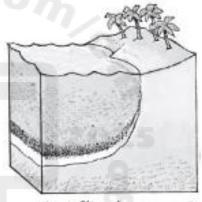
مهمتك أن تكتشف المزيد عن أحد المصادر المختلفة للطاقة المتجدّدة و تعدّ تقريرًا أو عرضًا تقديميًا لتشاركه مع باقي طلاب الصف.

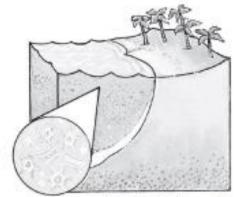

يجب أن تجيب عن هذه الأسئلة:

- كيف تستخدم مصادر الطاقة؟
 - هل تستخدم في عُمان؟
 - ما تغيّرات الطاقة الموجودة؟
 - لماذا يوصف بأنّه متجدّد؟
 - ما فوائده ومشاكله؟


تمرين ٣-١٣ كيف تشكّل الوقود الأحفوريّ؟

ستستخدم في هذا التمرين ما تعلّمته عن الطاقة لتشرح كيف يتكوّن الوقود الأحفوري.


١) يوضّح تسلسل الصور أدناه كيف يتشكّل النفط والغاز، تفحّص الصور ثمّ أجب عن الأسئلة التالية.


تتحول هذه الكائنات تدريجيًا إلى نفط وغاز محصورين تحت الصخور.

تدفين الكائنات الميتة تحت طبقات من الرمال.

تموت هذه الكائنات وتغوص في القاع.

تخزن الكائشات البحرية الطاقة.

أ- استخدم ما تعلّمته عن السلاسل الغذائيّة لتشرح كيف تحصل المخلوقات البحريّة على طاقتها.

تنمو النباتات من خالل امتصاص طاقة أشعة الشمس. تأكل الحيوانات هذه النباتات ويخزنون الطاقة منها.

.....

ب-استخدم مفهوم الكثافة لتشرح سبب غرق المخلوقات الميّتة في قاع البحر.
إن مخلوقات البحر الميتة كثافتها أكبر من ماء البحر، ولذلك فتغوص ألسفل.
ae-com
ج- عبر ملايين السنين، انسحقت المخلوقات الميّتة. استخدم فكرة الضغط لشرح هذا.
يشكل وزن الرمل والماء فوق مخلوقات البحر ضغط المرتفعا، وهو ما يؤدي إلى ضغط تلك المخلوقات.

......

د- ما شكل الطاقة التي يخزّنها الوقود الأحفوريّ؟

.. مخزن للطاقة الكيميائية

٢) توضّح سلسلة الصور التالية كيف يتكون الفحم عبر ملايين السنين. تفحّص الصور.

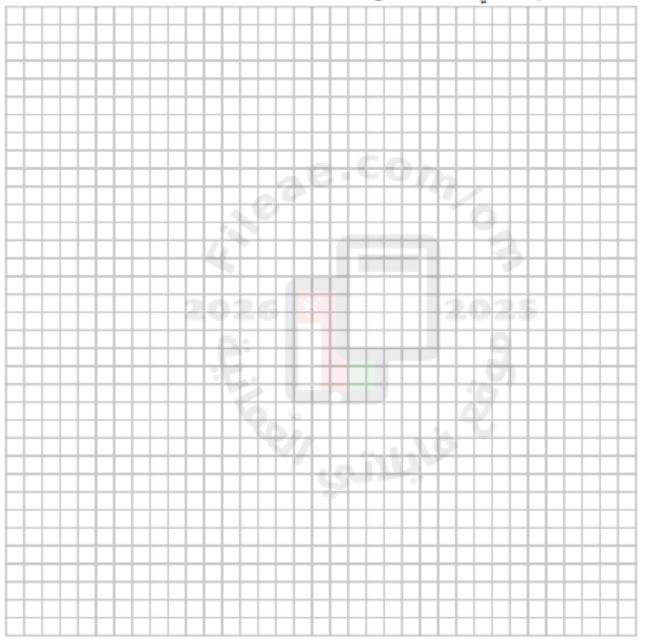
يقول أحد الأشخاص: «عندما نحرق الفحم، فنحن بذلك نستخدم طاقة ضوء الشمس القديم». اكتب تفسيرًا علميًّا لما يعنيه هذا.

تستخدم الأشجار الطاقة الضوئية الناجمة عن أشعة الشمس خلال عملية التمثيل الضوئي لصنع مخازن الطاقة الكيميائية في أخشابها. تتحول األشجار تدريجيا إلى الفحم نتيجة ضغط المواد عليها. لا يزال الفحم يخزن الطاقة الكيميائية من الأشجار، حيث يرجع أصل هذه الطاقة إلى أشعة الشمس.

ورقة العمل ٣-٥(أ) الداعمة للنشاط ٣-٥(ب)

سوف تجرى استقصاءًا بشأن كيفية تبريد الماء حيث تنتشر الطاقة في الوسط الخارجي. ستحتاج إلى:

- كأس زجاجي سعة 250 mL
 - ميزان حرارة
 - ساعة إيقاف
- مصدر من الماء الساخن (إبريق كهربائي أو كأس زجاجية كبيرة)


أنتبه! اسكب الماء الساخن بحرص من الإبريق الكهربائي أو الكأس الزجاجية الكبيرة.

- (١) اسكب ما يقرب من 100 mL من الماء الساخن في الكأس وضع ميزان الحرارة في الماء.
 - (٢) ابدأ بضبط ساعة الإيقاف وتدوين درجة الحرارة.
 - (٣) دون درجة حرارة الماء كل دقيقة في الجدول الموضح أدناه.

_ . -

درجة الحرارة (°C)	الزمن (s)		درجة الحرارة (°C)	الزمن (s)
	0.1	E i	0.6	
	, leave			
			7 3	
	2026		2025	
	:E. L.	IJ	.60	
	80%	254.1	الفاق	
	is	13	••	

(٤) عندما يبرد الماء إلى حوالي °C، مثل نتائجك بيانيًا.

	(٥) حاول تفسير الشكل الذي حصلت عليه في التمثيل البياني.

	إشارات
؟ يمكن أن تفيدك هذه الأفكار:	كيف يمكنك تفسير الشكل الذي حصلت عليه في التمثيل البياني؟

- - عندما يسخن الماء، يكتسب طاقة.
 - عندما يفقد الماء طاقة، يصبح أكثر برودة.
 - يحتوي الماء الساخن على المزيد من الطاقة أكثر من الماء البارد تحت نفس الحجم.
 - يفقد الماء الساخن الطاقة أسرع من الماء البارد إذا كانا بنفس الحجم.

ورقة العمل ٣-٧ الشعور بالحرارة، الشعور بالبرودة

9 6

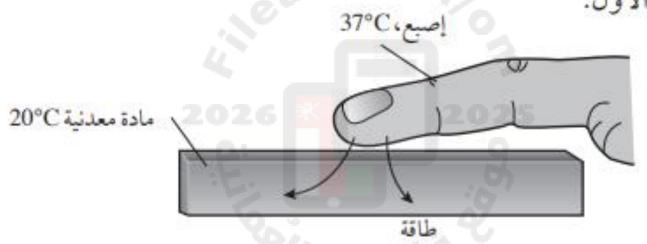
(١) يمكن لبعض المواد أن تشعرك بالبرودة عند لمسها، وعلى الجانب الآخر، هناك مواد أخرى تشعرك بالدفء، حتى إذا كانت جميعها تحت نفس الظروف من درجة الحرارة. توضّح القائمة أدناه بعض المواد المختلفة.

ارسم دائرة حول جميع هذه المواد التي تعتقد أنها تشعرك بالبرودة عند لمسها.

النحاس الورق المقوى (الألومنيوم البوليثين الممدد (الستايروفوم) الصلب الخشب الصوف

(٢) جرّب هذا في المنزل:

ضع ملعقة معدنية وأخرى بلاستيكية في الثلاجة، واتركهما ليكتسبا البرودة.


أخرج الملعقتين من الثلاجة ثم ألمسهما بلطف بالجزء العلوي من شفتيك. (تحتوي شفتيك على أعصاب حساسة لدرجة الحرارة).

سجّل ما لاحظته.

(٣) فيما يلي ملاحظتان نحتاج إلى توضيحهما:

• المواد المعدنية موصّلات حرارية، إنها مواد عادة ما تولد الشعور بالبرودة عند لمسها.

المواد غير المعدنية مواد عازلة حرارية، إنها مواد عادة ما تولد الشعور بالدفء عند لمسها.
 فيما يلى التفسير الأول:

- يكون جلدك أكثر سخونة من قطعة من المعدن.
- عندما تلمس المعدن، تسري الطاقة من إصبعك إلى المعدن.

يتسبب هذا الإجراء في جعل إصبعك أكثر بارد، حيث ترسل أعصابك الإشارات إلى الدماغ بأن المعدن بارد.

اشرح لماذا ولّدت قطعة من البلاستيك الشعور بالدفء

بكون جلدك أكثر سخونة من قطعة من البلاستيك. عندما تلمس البلاستيك، لا تسري الطاقة داخل البلاستيك لأنه عازل. ولذلك فلا يشعر إصبعك بالبرودة

ورقة العمل ٣-٩ الترموس

صمّم الترموس للحفاظ على درجة حرارة المشروبات الساخنة، وتوضح الصورة كيف يتم صنعه.

- يصنع الترموس من الزجاج، ويحتوي على جدارين من الزجاج مع وجود فراغ بينهما.
 - يكون الجزء الداخلي للجدارين الزجاجين لامعًا.
 - تصنع سدادة الفوهة من البلاستيك الرغوي.

مهمتك هي التفكير في الكيفية التي يحافظ بها الترموس على المشروبات الساخنة، كيف يوقف تسرب الطاقة خارجًا؟

بالنسبة لكل نقطة من النقاط أدناه، اشرح كيف يتمكن الترموس من منع تسرب الطاقة خارجًا، يجب أن تحتوي كل إجابة تحتوي كل إجابة على مصطلحات التوصيل أو الحمل الحراري أو الإشعاع، يجب أن تتضمن كل إجابة كلمة «لأن». لقد تمت الإجابة عن السؤال الأول كمثال توضيحي.

- (١) لماذا تكون الجدران الزجاجية لامعة؟ يعمل هذا على منع الطاقة من التسرب خارجًا عن طريق الإشعاع؛ لأن الأسطح اللامعة تعكس الإشعاع.
 - (٢) لماذا تصنع الجدران من الزجاج؟

يعمل الزجاج على إيقاف الطاقة المتسربة عن طريق خاصية التوصيل، لأن الزجاج مادة موصلة رديئة للحرارة.

(٣) لماذا يوجد فراغ بين الجدران الزجاجية؟

يوجد فراغ بين الجدران الزجاجية لأنها تعمل على إيقاف الطاقة المتسربة من خلال التوصيل أو الحمل الحراري. يمكن للطاقة أن تمر عبر هذا الفراغ فقط من خلال الإشعاع.

(٤) لماذا توجد سدادة على فوهة الترموس؟

تعمل على إيقاف الطاقة المتسربة من خلال التوصيل الحراري. لا يمكن لتيار الحمل الحراري (الهواء الساخن) أن يرتفع أعلى سطح السائل.

(٥) لماذا تصنع السدادة من البلاستيك الرغوي؟

تصنع سدادة الفوهة من بالستيك رغوي لأنها تمنع الطاقة المتسربة من خالل التوصيل. يعتبر البلاستيك الرغوي مادة عازلة.

ورقة العمل ٣-١٠(أ) أشكال الطاقة

(١) توضح القائمة أدناه بعض أشكال الطاقة، استخدم الكلمات المذكورة أدناه لإكمال العمود الثاني من الجدول، وفي بعض الحالات، يجب عليك كتابة أكثر من كلمة واحدة.

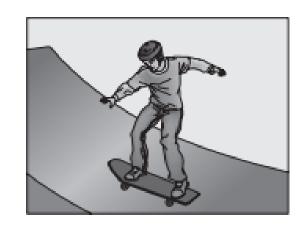
رنة كهربائية حركية كيميائية

صوتية حرارية الجاذبية الأرضية

202 شكل الطاقة 2026	الوصف 25
a:	الطاقة المخزّنة عن طريق الوقود مثل الخشب
: E. L	الطاقة التي تصل الأرض من الشمس
8	طاقة سيّارة متحركة
فايلان و	طاقة طائرة تحلق لأعلى في السماء
	الطاقة التي نكتشفها بآذاننا
	الطاقة التي نحصل عليها من مصباح إضاءة
	الطاقة المخزّنة في زنبرك مشدود
	الطاقة المخزّنة في بطارية
	الطاقة المتحررة من بطارية

٢) صف التغييرات التي تطرأ على الطاقة في الأمثلة الموضحة أدناه.
أ- يضئ المصباح عند تدفق الطاقة خلاله.
 ب- تتباطأ سرعة سيّارة، تصبح مكابحها ساخنة وتحدث ضجيجًا.
•••••••••••••••••••••••••••••••••••••••

ورقة العمل ٣-١٠ (ب) تحويل الطاقة


(۱) ما التغييرات التي تطرأ على الطاقة في كل مثال من الأمثلة الموضحة بالجدول؟ اكتب الإجابات التي توصّلت إليها في العمود الثاني من الجدول.

تغيرات الطاقة	2025	الوصف
لة حرارية وضوئية → طاقة حرارية	طاق	ضوء الشمس خلايا شمسية
	يصبح الماء	بسطع ضوء الشمس على الخلايا الشمسية، ساخنًا.

تبدأ السيّارة (اللعبة) في التحرك من أعلى المنحدر، تزداد سرعتها كلما اتجهت لأسفل المنحدر.

طاقة حركة → طاقة الجاذبية الأرضية (+طاقة حرارية)

تقل سرعة الفتى تدريجيًا عند تزلجه باتجاه أعلى المنحدر.

(٢) في بعض الأحيان، يتغير شكل الطاقة أكثر من مرة. فيما يلي مثال على ذلك لإكماله.

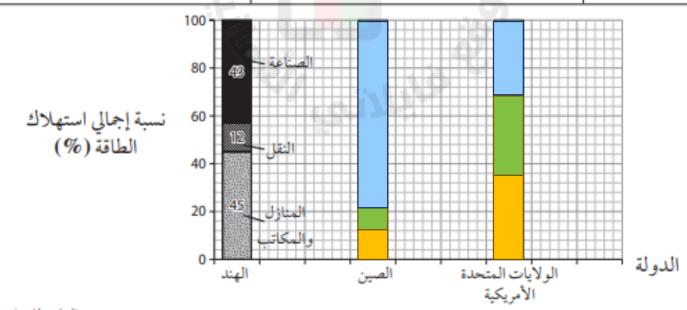
تغيرات الطاقة	eae.	com/	الوصف	
ة ← طاقة كهربائية ← طاقة كيميائية	طاقة حرارية وضوئي	لايا الشمسية، وهذا في الأسلاك؛ حيث أ.		يسبب سريان

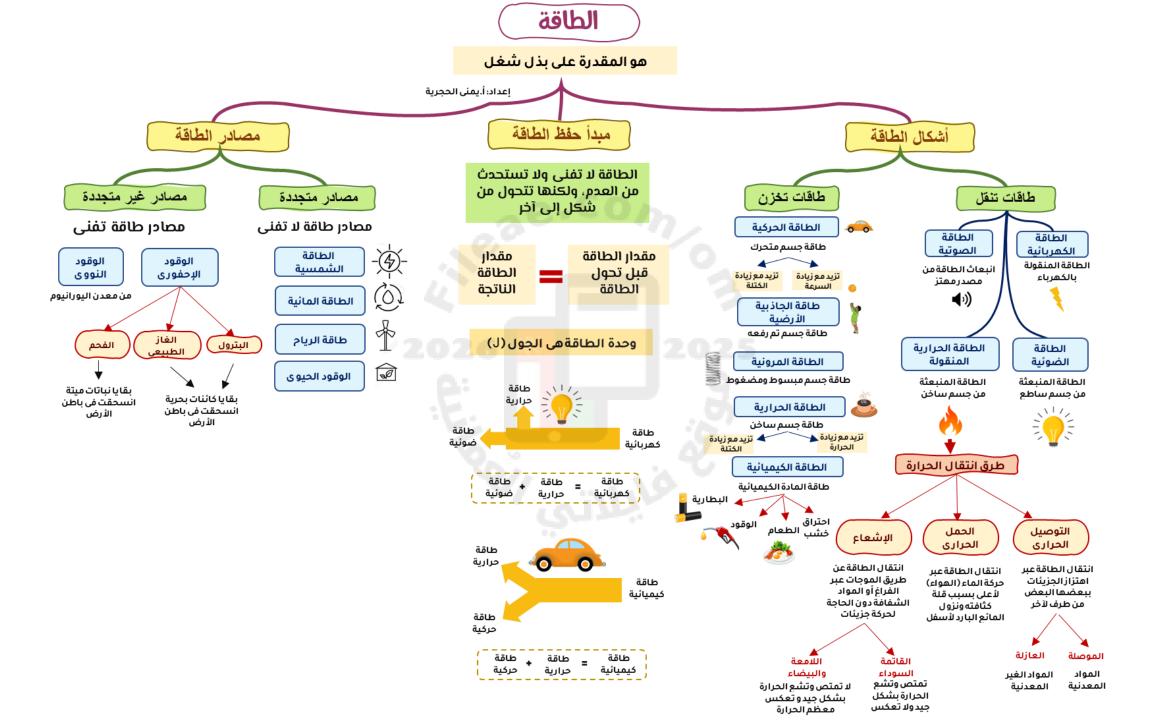
(٣) والآن، يمكنك التفكير في مثال يتوافق مع تغيرات الطاقة الموضحة في الجدول أدناه. سجّل أفكارك في العمود الأول.

تغيرات الطاقة	الوصف
طاقة مرنة → طاقة حركة 2026 - الله عند	مثال، إطلاق سهم رماية.
طاقة كيميائية → طاقة كهربائية → طاقة حرارية	مثال، توفر البطارية تيارًا في دائرة كهربائية مما يعمل على تسخين سخان (أو مصباح) وإشعاعه بالحرارة.

ورقة العمل ٣-١٢ استخدام الطاقة

نسبة الطاقة الكلية المستخدمة (%)	القطاع 🌕
43	الصناعة
12026	النقل 2025
45	المنازل والمكاتب

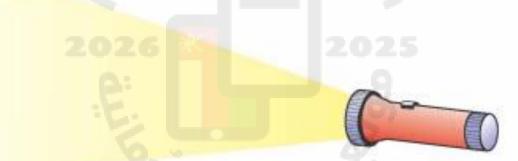

استخدم هذه البيانات لرسم مخطط دائري، يمثل كل قسم من التمثيل البياني الفارغ %10. قم بتلوين أو تظليل الأقسام الخاصة بالمخطط الدائري وتسميتها.



(٢) يوفر المخطّط الموضح أدناه طريقة أخرى لتمثيل البيانات على هيئة تمثيل بيانيّ بالأعمدة، ويمثل التمثيل البياني جميع استخدامات الطاقة، ويتم تقسيمها لإظهار الجزء المخصص لكل قطاع من قطاعات الاقتصاد.

يظهر العمود الأول البيانات الخاصة بالهند، أكمل الأعمدة الخاصة بالصين والولايات المتحدة الأمريكية باستخدام البيانات من الجدول، ثم قم بتلوين الأقسام أو تظليلها.

القطاع	نسبة الطاقة الكل الصين	ية المستخدمة (%):	نسبة الطاقة الكلية المستخدمة (%): الولايات المتحدة الأمريكية	
الصناعة	3	77	4	32
النقل	2025	S × 8	202	29
المنازل والمكاتب	9	15	6:	39



الوحدة الثالثة أسئلة نهاية الوحدة

١ يمكن استخدام البطاريّة في جهاز كهربائيّ مثل المصباح اليدوي.
 أ- ما نوع مخزن الطاقة في البطارية؟

ب- عندما يكون المصباح اليدوي مضاءً تتحوّل الطاقة من البطاريّة إلى المصباح، ما شكل الطاقة التي
 تنتقل إلى المصباح؟

[1]

[1]

[7]

ج- ما نوعا الطاقة اللتان تنتقلان من المصباح عندما يكون المصباح اليدوي مضاءً؟

٢- يعمل جميل في السيرك، ويجري على الأرض ثمّ يثب على منطّة (ترامبولين) ثمّ يرتفع في الهواء.

[1]

[1]

[1]

أ- اذكر نوع الطاقة التي تكون لدى جميل عندما يجري.
 ب- اذكر نوع الطاقة التي تخزّنها المنطّة (ترامبولين) عندما تكون مبسوطةً لأسفل.
 ج- اذكر نوع الطاقة التي تكون لدى جميل عندما يرتفع في الهواء.

لاء البارد وحرّكت	لدى فاطمة كأس من الماء الدافئ، وكانت درجة حرارته °C، ثمّ صبّت بعض الم	-٣
	المخلوط، وعندما قاست درجة حرارة الماء كانت قد هبطت إلى C°C.	
	أ- قالت فاطمة «لقد اختفي قدر كبير من الطاقة التي كانت في الماء الدافئ»،	
[7]	اشرح لماذا العبارة التي قالتها فاطمة خاطئة.	
[7]	 ب- اشرح لماذا انخفضت درجة حرارة الماء عندما أضيف الماء البارد إلى الماء الدافئ. 	
	فيها يلي قائمة بأربع مواد مختلفة من الوقود:	- ٤
	الخشب الفحم اليورانيوم الغاز الطبيعي	
[1]	أ- أي مادة من هذه المواد مثال على وقود نوويٌ؟	
[1]	 ب- أي مادة من هذه المواد مثال على وقود حيوي؟ 	
[7]	ج- أي من هذه المواد مثالان على وقود أحفوريٌ؟؟	
[1]	د- أي مادة من هذه المواد مثال على مصدر طاقة متجدّدة؟ وضّح إجابتك.	

عرض الشكل الآي خليّة كهروضوئيّة (خليّة شمسيّة).

أ- ما تحوّل الطاقة الذي يحدث عندما تمتص الخليّة ضوء الشمس؟
 ب- اذكر إحدى الطرق الأخرى التي يمكن بها استخدام ضوء الشمس مصدرًا للطاقة.
 ج- اشرح لماذا يوصف ضوء الشمس بأنّه مصدر متجدّد للطاقة.

فيها يلي ثلاث طرق يمكن بها أن تنتقل الطاقة من مكان ساخن إلى مكان بارد: التوصيل، الحمل الحراريّ، الإشعاع

في كلّ من العبارات الواردة أدناه، قرّر ما نوع الانتقال الذي تصفه العبارة.

أ- هواء دافئ يرتفع فوق سطح طريق ساخن.

ب- كوكب الزهرة دافئ بفعل الطاقة الشمسية.

ج- الطاقة تنتقل بسرعة في قضيب من الصلب ولكن تنتقل ببطء في قضيب من الزجاج.

د - عندما يسخّن مائع تنخفض كثافته ويطفو إلى أعلى.

هـ- تعبر الطاقة من جزيء متذبذب إلى الذي يليه.

و- تنتقل الطاقة خلال الخلاء (الفراغ).

٧- يعرض الشكل الآي طبقًا به ماء ترك على الطاولة في يوم دافئ. وبعد بضع ساعات اختفى معظم الماء من الطبق.

[1]	اذكر اسم العمليّة التي تسبّبت في اختفاء الماء من الطبق.	-1
[1]	لقد أصبح الماء بخار ماء، فهل هذا صلب أم سائل أم غاز؟	
[7]	حرارة الماء أقلّ من حرارة ما يحيط به. اشرح، في ضوء جزيئات المادة، لماذا حدث ذلك.	

الوحدة ٢ الإجابات الخاصة بأسئلة نهاية الوحدة

- ١- أ. كيميائية
- ب. كهربائية
- ج. ضوئية، حرارية
- ٧- أ. طاقة الحركة
 - ب. الطاقة المرنة
- ج. طاقة الجاذبية الأرضية
- ٣- أ. لا يمكن أن تفنى الطاقة، ولكنها تتحول من شكل لآخر.
 - ب. ينتشر المخزون الحراري للطاقة في الماء البارد.
 - ٤- أ. اليورانيوم
 - ب. الخشب
 - ج. الفحم والغاز الطبيعي
- د. الخشب، فبمجرد قطع الأشجار، يمكن أن تنمو أشجار جديدة لتحل محلها.

أ. تتحول الطاقة الضوئية إلى طاقة كهربائية.

ب. مثال على ذلك هو تسخين الماء في لوحة شمسية.

ج. لا يمكننا استهلاك مصدر ضوء الشمس، حيث تشرق الشمس باستمرار.

٦- أ. الحمل الحراري

ب. الإشعاع

ج. التوصيل

د. الحمل الحراري 2025

هـ. التوصيل

و. الإشعاع

١- أ. التبخر

ب. غاز

ج. تتحرك جزيئات الماء.

تنطلق الجزيئات التي تحتوي على قدر أكبر من الطاقة من سطح الماء. "

تظل الجزيئات الّتي تحتوي على طاقة أقل.