دفترية الوحدة الثالثة مقدمة في النهايات والاتصال

تم تحميل هذا الملف من موقع المناهج العمانية

موقع فايلاتي ← المناهج العمانية ← الصف الثاني عشر ← رياضيات متقدمة ← الفصل الأول ← ملفات متنوعة ← الملف

تاريخ إضافة الملف على موقع المناهج: 27-10-2025 14:14:01

ملفات ا كتب للمعلم ا كتب للطالب ا اختبارات الكترونية ا اختبارات ا حلول ا عروض بوربوينت ا أوراق عمل منهج انجليزي ا ملخصات وتقارير ا مذكرات وبنوك ا الامتحان النهائي ا للمدرس

المزيد من مادة رياضيات متقدمة:

إعداد: سالم الجهوري

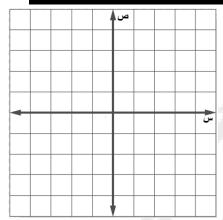
التواصل الاجتماعي بحسب الصف الثاني عشر

صفحة المناهج العمانية على فيسببوك

المزيد من الملفات بحسب الصف الثاني عشر والمادة رياضيات متقدمة في الفصل الأول	
ملخص شامل وحل تمارين الكتاب للوحدة الأولى القياس الدائري من سلسلة العبير	
حل تمارين الوحدة الثانية حساب المثلثات	
حل أسئلة نهاية الوحدة الأولى القياس الدائري	
مراجعة شاملة لدروس وحدات المنهج	
كراسة تدريبية للوحدة الرابعة التفاضل مع الإجابات	

ثاني عشر متقدم الوحدة الثالثة

مقدمة في النهايات والاتصال


معلم اول سالم الجهوري

الوحدة الثالثة: مقدمة في النهايات والاتصال

دروس الوحدة			
نهاية الدالة كثيرة الحدود	(٢)	نهاية الدالة النسبية	(١)
نهاية الدالة المعرفة بأكثر من قاعدة	(٤)	نهاية الدالة النسبية	(٣)
خواص النهايات	(٦)	نهاية الدالة النسبية عند اللانهاية	(0)
مراجعه عامة على الوحدة(اختبار الوحدة)	(V)	الاتصال	(Y)

تمهيد : مثل بيانا الدالة د(س) = ٣س ، ثم اوجد:

١) د(-۲) =

۲) د(٠) =

٣) د(٢) =

نلاحظ ان :

..... / ۱ م۲۰۲م

١-٣ نهاية الدالة عند نقطة

نهاية الدالة عند نقطة: هي القيمة التي تقترب منها الدالة عندما يقترب المتغير من قيمة محددة .

فمثلا: د(س) = ٣س ، اكمل الجدول التالي وسجل ملاحظاتك

من جهة اليسار		
د (س) = ۳س	س	
۱۱,۷	٣,٩	
	٣,٩٩	
	٣,٩٩٩	
	٣,٩٩٩٩	

من جهة اليمين		
د (س) = ۳س	س	
١٢,٣	٤,١	
	٤,٠١	
	٤,٠٠١	
	٤,٠٠٠١	

لاحظاتك:

نتيجة (١)

إذا كان أ، ل عددين حقيقيين، فإن:

$$i = (w) = U \Leftrightarrow i = (w) = i \Leftrightarrow w \rightarrow i^+ = (w) = i \Leftrightarrow w \rightarrow i^- = w \rightarrow i^- = v \Leftrightarrow w \rightarrow i^- = v$$

وجود نهاية للدالة عندما س \rightarrow ألا يعنى بالضرورة أن تكون الدالة معرّفة عند س= أ.

<u>الدالة كثيرة الحدود هي</u> : دالة تحتوي على حد واحد أو أكثر لمتغير مرفوع الى قوة صحيحة غير سالبة .

<mark>ؤال</mark> : أي الدوال الاتية كثيرة حدود		
د(س) = س + ۷س + ۸	0	۱ د(س) = ۳س - ۵
د(س) = آ√س+۸	٦	۲ د(س) = - ه
$\left((\omega) = \omega \left(\omega + \frac{1}{\omega} + \omega \right) \right) = \omega$	٧	۳ د (س) = س + س = (س) ع
د(س) = س (سٌ + سٌ - ٤)	٨	٤ د(س) = س٣+ س٢ ع

مثال (١): استخدم رمز النهاية لتكتب كل عبارة من العبارات الآتية:

- أ قيمة الدالة ع(س) تقترب من -٣ عندما تقترب قيمة س من ٢ من جهة اليسار.
 - ب عندما تتناقص قيمة س لتقترب من ٥، فإن قيمة هـ (س) تقترب من ١١
 - ج تقترب ك (س) من الصفر عندما تقترب قيمة س من -١
- د عندما تقترب س من ٤ من جهة اليسار، ومن جهة اليمين، فإن قيم الدالة د (س) تقترب من ٧، وعليه تكون د (س) تقترب من ٧ عندما تقت<mark>رب س</mark> من ٤

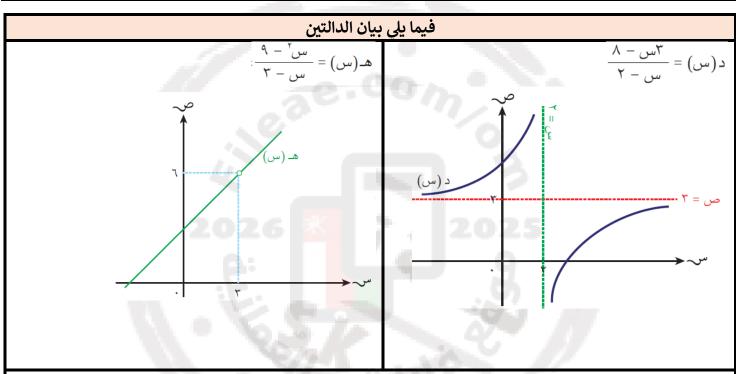
مثال (۲) : أنشئ جدولَين، وأكملهما لتقدّر نهيا م $\binom{w}{w}$ حيث م $\binom{w}{w}$ = $m^7 - 11$ مثال (۲) :

	نلاحظ :
م (س) =	نھ س ← _+
	نها س ← ۲-
م (س) =	نها س ← _۲

من جهة اليسار		
م(س)	س	
رز الرال	۲,۱-	
	۲,۰۱-	
	۲,۰۰۱ –	
-	۲,۰۰۰۱ –	

من جهة اليمين		
م (س)	س	
	۱,۹-	
	1,99-	
	1,999—	
	1,9999—	

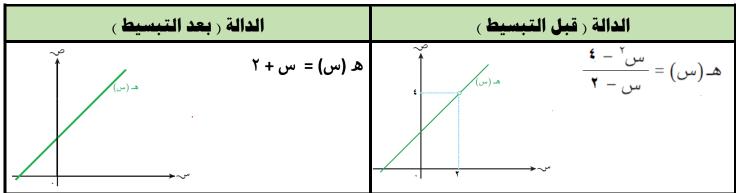
مثال (۳): أنشئ جدولَين، وأكملهما لتقدّر نهيا ن(س) حيث ن (س) = Λ س $\to 3$

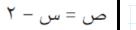

	للاحط :
ل ن(س) =	نھ_ س
س = (س) =	نه_ س
= (س) =	نھــ س

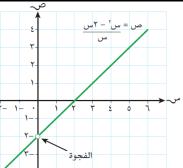
من جهة اليسار		
س ن(س)		
	٣,٩٩	
	٣,9999	

من جهه اليمين		
ن(س)	س	
	٤,١	
	٤,٠٠١	

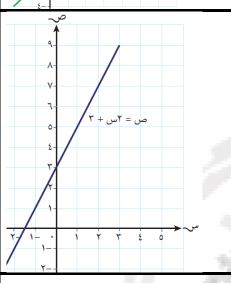
ع ض الأمثلة على دوال نسبية			
م (س) =	$\mathbf{A}_{-}(\mathbf{w}) = \frac{\mathbf{w}^{2} - \mathbf{v}}{\mathbf{w} - \mathbf{v}}$	$L\left(m\right) = \frac{\gamma_m - \lambda}{m - \gamma}$	
و(س) =	$\frac{7\omega^{7}}{\omega} = \frac{1}{\omega^{7} + \lambda}$	$\frac{2 - \frac{4}{3}}{4 - \frac{4}{3}} = \frac{2}{3}$	

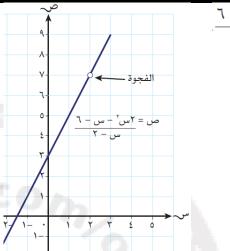



ملاحظة


المنحنيان في بيان الدالة د (س) يقتربان أكثر فأكثر من المستقيمين المنقطين، ولكن لا يصلان إليهما أبدًا. يسمى كل من هذين المستقيمين بخط التقارب asymptote، ويشير خط التقارب الرأسي إلى قيم س التي تكون الدالة عندها غير معرّفة.

النقطة الناقصة في منحنى الدالة هـ (س) تعرف بالفجوة hole.


أولا : الفجوة :



 $\underline{\omega} = \frac{\omega^{7} - \gamma_{\omega}}{\omega}$

فلاحظ ان:

منحني الدالة ص (قبل التبسيط) والدالة ص (بعد التبسيط) متشابهان حيث :

🛭 كل منهما مستقيم 💮 ميل كل منهما متساوي 📵 مقطع كل منهما مع المحور الصادي متساوي ولكن يوجد فرق واحدُ مهم بينهما ، هو أنه يوجد في منحنَّى الدالة ص(قبل التبسيط) فجَّوة عند قيمة س ، ويمكننَّا إيجاد قيمة ص بالتعويض عن قيمة س في معادلة المستقيم (بع<mark>د ا</mark>لتبسيط)

مثال (١) : منحني كل من الدوال النسبية الاتية مستقيم يتضمن فجوة

إذا علمت أن د (س) =
$$\frac{7w - 7}{w - 0}$$
، فأوجد:

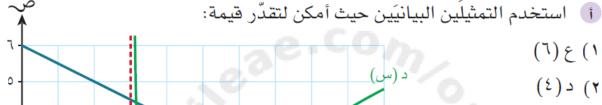
إذا علمت أن ك (س) =
$$\frac{m^7 + 7m - 11}{m - 7}$$
، فأوجد:

١) قيمة س عندما تكون الدالة د(س) غير معرّفة.

. د د د د د	. ٢س٢ - ٢س - ٢٨	إذا علمت أن ل (س) =
، قاوجد.	- س + ۲	إدا علمت أن نارس) -

٢) إحداثيات الفجوة.

١) قيمة س عندما تكون الدالة د(س) غير معرّفة.


تهرين:

إذا علمت أن هـ (س) = $\frac{\Lambda_{m} + \Upsilon_{m}}{3 + m}$ ، فأوجد:

١) قيمة س عندما تكون الدالة هـ (س) غير معرّفة.

٢) إحداثيات الفجوة.

مثال (۲) : يبيّن الرسم الآتي منحنى الدالتين د (m)، ع (m) على الفترة $m \leq m \leq m$

(m) $\stackrel{}{\overset{}{\overset{}}{\overset{}}}$ $\stackrel{}{\overset{}{\overset{}}}$ $\stackrel{}{\overset{}{\overset{}}}$ $\stackrel{}{\overset{}}$

(m)E

علام يدلك المستقيم المنقط الذي معادلته س = ٣ حول تمثيل الدالة د(س)؟

 $\frac{17 + vw - vw}{2} = \frac{w^{7} - vw + 17}{w - 2}$: إذا كانت الدالة ع $(w) = \frac{w^{7} - vw}{w - 2}$:

- أ اشرح سبب أن الدالة ع (س) غير معرّفة عند س = ٤
- استخدم جدولًا لتجد نهایة ع (س) عندما تقترب س إلى ٤ من:
 ۱) جهة الیسار.
 - (m) aic (m) aic (m) aic (m) = 3

٤

ثانيا: خطى التقارب (الافقى والعمودي)

مثال (٤): انسخ وأكمل الجدولين الآتيين اللذين يبينان قيمة د(س) عندما تقترب س من الصفر من جهة اليسار ، ومن جهة اليمين .

من جهة اليسار				من جمة اليمين								
٠,١_	•,••=	+,+1=	.,	.,1-	.,	.,	.,1	.,	٠,٠١	٠,٠٥	٠,١	w
												ص

ب اذكر ما إذا كان ممكنًا إيجاد أي نهاية من النهايتَين الآتيتَين، وأعط سببًا لكل إجابة

$$(u) : \underset{w \longrightarrow ++}{\overset{\wedge}{\vdash}} = (w).$$

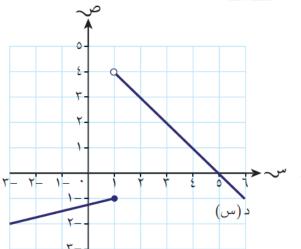
ج ماذا تستنج عن نهيا د (س)؟ $w \rightarrow v$

سوف يتم دراسة خطي التقارب بصورة أوسع في الدرس (٣-٢)

٣-١ج نهاية الدالة المعرّفة بأكثر من قاعدة

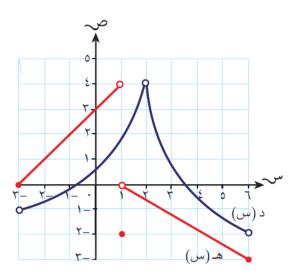
٠٢٠٢٥ /

تتكوّن الدالة المعرّفة بأكثر من قاعدة المعرّفة بأكثر من قاعدة على مستقيمات أو منحنيات أو مزيج من الاثنين. قد يحوي أيضًا على فجوات و/أو قفزات jumps، وتحدث القفزات عندما تتغير قيمة الدالة بشكل كبير.


مثال (٥): يبين الرسم المقابل منحنى الدالة المعرّفة بأكثر من قاعدة في المجال $-7 \leq m \leq 7$:

- أ حدد مدى الدالة د (س) في المجال المعطى.
- ب استخدم الرسم لتقدر قيمة كلّ من:

 (س) نه المسلم المقدر قيمة كلّ من:


 (س) نه المسلم المقدر فيمة كلّ من:

 (س) $\rightarrow -1$

- ۲) نها د (س) غیر موجودة. $m \to 1$
- ج بیّن أن:

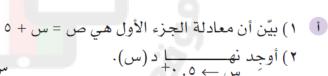
 ۱) نهـــا د (س) موجودة. $m \to 0$

يبيّن الشكل الآتي منحنى الدالتّين د (س)، هـ (س):

الدالة هـ (س) معرّفة في المجال $-7 \leq m \leq 7$

أ أوجِد مجال الدالة د (س).

 $\mathbf{v} = \mathbf{v} \quad \mathbf{v}$

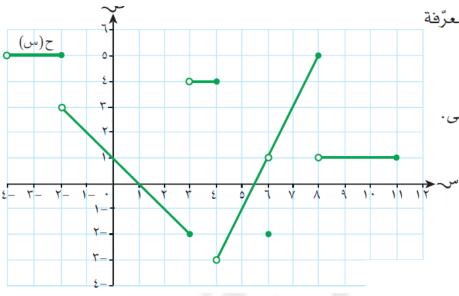

 (\dot{l})

(

يبيّن الشكل المقابل أجزاءً من منحنى الدالة د (س):

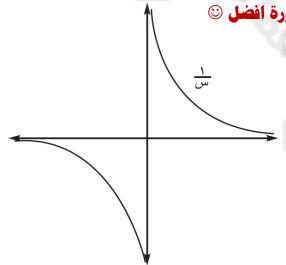
يمر الجزء الأول (العلوي) من بيان الدالة ص = د (m)بالنقطتَين (١،٦)، (٣، ٨).

> يمر الجزء الثاني (السفلي) من منحنى الدالة ص = c(m) بالنقطتين $(-7, \cdot), (\cdot, 7)$.


- ب ١) أوجد معادلة الجزء الثاني من منحنى الدالة في صورة ص = م س +جـ.
 - Y) $le \neq c$ $le \neq c$
- ج ما دلالة إجابتَيك في الجزئيَّتَين أ (٢)، ب (٢)؟

مثال(۸):

يبيّن الرسم المقابل منحنى الدالة المعرّفة بأكثر من قاعدة ح (س) في المجال -٤ < س ≤ ١١


- أ أوجد مدى الدالة في المجال المعطى.
 - ب استخدم المنحنى لإيجاد قيمة ح (۲–) ح (۳) ح
 - ح إذا كانت -٤ < ك < ١١،

- c leek قيمة b, حيث z(b), i = 1 z(m)كلاهما موجودتان، ولكن غير متساويتين.

 $(\infty \pm \pm \infty)$ نهاية الدالة النسبية عند اللانهاية $(\omega \pm \pm \infty)$

عرض الصفحة في كتاب الطالب رقم ١١٥ لتوضيح مقدمة الدرس بصورة افضل 😊 لاحظ من الشكل المقابل:

طريقة إيجاد قيمة النهاية عند اللانهاية

إذا أمكن كتابة دالة في صورة دالة نسبية، فيمكن أن نقسم كلًا من البسط والمقام على المتغير ذي القوة الأكبر في الدالة.

مثال (١): أوجد قيمة كل مما يلى:

$\frac{1 + 7 \dots \Lambda}{1 + 7 \dots \Omega} \longrightarrow \frac{1 + 7 \dots \Lambda}{1 + 7 \dots \Omega}$	$\frac{w^2 - 7w^7}{w^2 + 7w} \longrightarrow 0$	$\frac{7+\omega^{+}}{7-\omega^{-}} \longrightarrow \infty$
	o Cox	

نلاحظ ان:

ينتج خط التقارب الافقي	عندما تتساوى أكبر قوة في البسط مع أكبر قوة في المقام، فإن ناتج النهاية يساوي النسبة بين معامل أكبر قوة في البسط، ومعامل أكبر قوة في المقام.	1
ا	إذا كانت أعلى قوة في البسط أكبر من أعلى قوة في المقام، فإن النهاية عند $\pm \infty$ تكون غير موجودة.	۲
L	إذا كانت أعلى قوة في البسط أقل من أعلى قوة في المقام، فإن النهاية عنده $\pm \infty$ تساوي \cdot (صفرًا).	4

مثال (۲): أوجد نهاية كل دالة من الدوال الآتية عند س $\pm\infty$:

$$c(w) = \frac{\sqrt{w^{7} - w}}{\sqrt{v}} = (w)$$

$$c(w) = \frac{\sqrt{w^{7} - w}}{\sqrt{w}} = (w)$$

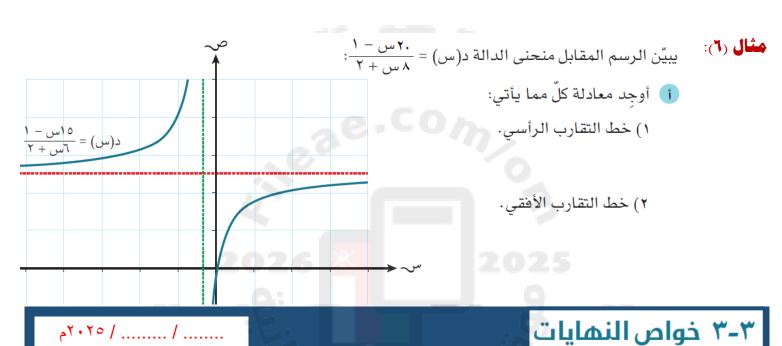
$$c(w) = \frac{\sqrt{w^{7} - 1}}{\sqrt{w}} = (w)$$

$$c(w) = \frac{\sqrt{w^{7} - 1}}{\sqrt{w}} = (w)$$

د (س) =
$$\frac{3 + 7س}{7س7}$$

$$\frac{\delta}{L} = \frac{\delta}{L}$$

$$\frac{\mathsf{Vu}^{\mathsf{P}}}{\mathsf{Vu}^{\mathsf{Q}} - \mathsf{P} \mathsf{I} \mathsf{u}^{\mathsf{Q}} + \mathsf{u}} = \frac{\mathsf{Vu}^{\mathsf{P}}}{\mathsf{Vu}^{\mathsf{Q}} - \mathsf{P} \mathsf{u}^{\mathsf{Q}}}$$


مثال (۳) :

لتكن الدالة د $(س) = \frac{3}{m} - س$:

أ اكتب العبارة ³/_س - س في صورة نسبية.

ب بیّن أن نهے
$$\frac{3}{m} - m$$
 غیر موجودة. $m \to \infty$

مثال (ه) إذا علمت أن نهيا
$$\frac{m^0 - Vm^0}{m \to \infty} = \frac{\pi}{2}$$
، فأوجِد قيمة ت. $m \to \infty$

إذا كان ك عددًا حقيقيًا، أ ينتمي إلى مجال كل من د (س)، ع (س). وكانت نهــــا د (س)، نهـــا ع (س) موجودتَين، فإن: $m \rightarrow 1$

(س) نها (ك د (س)) = ك نها د (س)) انها د (س)
$$\rightarrow$$
 أ

مميلا

(س) + ع (س) + ع (س) + نها ع (س) + نها ع (س)
$$\rightarrow$$
 أ \rightarrow س \rightarrow أ \rightarrow س \rightarrow أ

فمثلا

(
$$w$$
) $= (w) - 3(w) = i + 3(w) - i + 3(w) = (w) - i + 3(w) = (w) - i + 3(w) = (w) + 3(w) = (w)$

فمثلا:

$$(w) \times 3$$
 نها $(c(w) \times 3(w)) = 3$ نها $c(w) \times 3$ نها $3(w) \times 3$ نها $3(w) \times 3$

فمثلا

فمثلا

$$((w))^{\circ} = (i)^{\circ} = (i)^{\circ}$$
 ((w)) $((w))^{\circ}$ حیث ن عدد صحیح موجب. (w)

فمثلا :

$$(w) > \cdot$$
 فإن نهيا $(w) > \cdot$ فإن نهيا $(w) = 0$ فإن نهيا $(w) = 0$ (w)

فمثلا

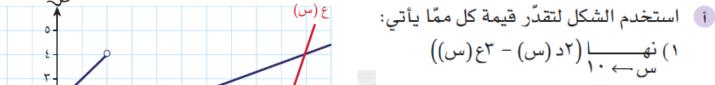
نمثلا

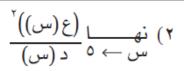
نتائج أخرى لنهايات خاصة :

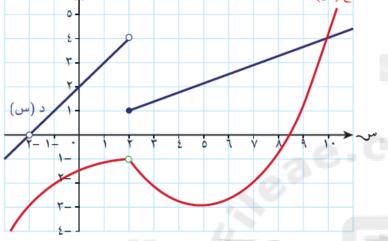
- أ) نها ج= ج، حيث ج عدد ثابت. \longrightarrow الس \longrightarrow أ
 - $\begin{array}{ccc} \bullet & & & & \\ \bullet & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array}$
- ج) نهيا $m^{\circ} = 1^{\circ}$ ، حيث ن عدد صحيح موجب. $m \rightarrow 1$
- د) نها $\sqrt[4]{m} = \sqrt[6]{1}$ ، حیث ن عدد صحیح موجب، أ \sim

نه	
نه له (س) × ه (س)) ا	
$\frac{(w)}{(w)} \xrightarrow{(w)}$ نه $w \to Y$	نها (هـ (س)) ^۳
il dae.	$\gamma_{\frac{1}{m} \rightarrow 1} P \setminus (c(m) - a(m))^{\gamma}$

- مثال(۲): أ إذا علمت أن نها د (س) = ۳٦، نها $\frac{c(m)}{m \to 1}$ فأوجِد نها ك (س). النا علمت أن نها د $\frac{1}{m}$ النا علمت أن نها د (س) = ۳٦، نها د (س) النا علمت أن نها د (س) = ۳٦، نها د (س) النا علمت أن نها د (س) = ۳۵، نها د (س) النا علمت أن نها د (س) = ۳۵، فأوجِد نها د (س) النا علمت أن نها د (س) = ۳۵، نها د (س) النا علمت أن نها د (س) = ۳۵، نها د (س) النا علمت أن نها د (س) = ۳۵، نها د (س) النا علمت أن نها د (س) = ۳۵، نها د (س) النا علمت أن نها د (س) = ۳۵، نها د (س) النا علمت أن نها د (س) = ۳۵، نها د (س) النا علمت أن نها د (س) = ۳۵، نها د (س) النا علمت أن نها د (س) النا علمت أن نها د (س) = ۳۵، نها د (س) النا علمت أن نها د (س) = ۳۵، نها د (س) النا علمت أن د (س) النا علمت أن نها د (س) النا علمت أن ال
 - ب إذا علمت أن نه ____ م (س) = -٢، نه ___ (ن (س)) = -٨، فأوجِد $m \to -1$ $m \to -1$


مثال (۳): إذا علمت أن نها د (س) = ۲,۷، نها
$$\frac{7c(m)}{m \to 1} = 1.00$$
 نها ع (س) موجودة، $m \to 1$ في $m \to 1$ في


إذا علمت أن نهــــا هـ (س) = ١٠، نهــــا ك (س) = ٨، فاستخدم خواص النهايات لتجد كلًا ممّا يأتي: $w \to \cdot$


$$\begin{array}{ccc}
 & & & \downarrow \\
 &$$

$$\begin{array}{ccc}
 & & & \downarrow \\
 &$$

مثال (٤): يبين الشكل الاتي أجزاء من منحني الدالتين د(س) ، ع(س)

")
$$\frac{1}{100} \left(c \left(w \right) + 3 \left(w \right) \right)^{7}$$

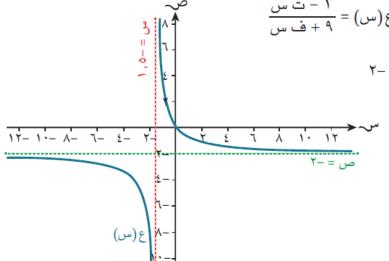
$$= ((w) - 3)$$
 ب أوجِد قيمتَي أ الممكنة إذا علمت أن نهيا $(x - 3) = 0$

ج أعطِ سببًا يوضح أن نهيل
$$\sqrt{c}$$
 \sqrt{c} غير موجودة.

مثال (٥): لتكن د (س) دالة تربيعية حيث نهيا د (س) = ۷، نهيا د (س) = ۱۲، ع (س) دالة خطيّة: $m \to 7$

$$(*, 0) = \frac{3(m)}{m}$$
 $(*, 0) \times 3(m) = 0$ $(*$

فأوجِد العبارة الجبرية للدالة ع (س)، وأوجِد قيمة نها ع (س).
$$m \to 0$$


مثال(۱):

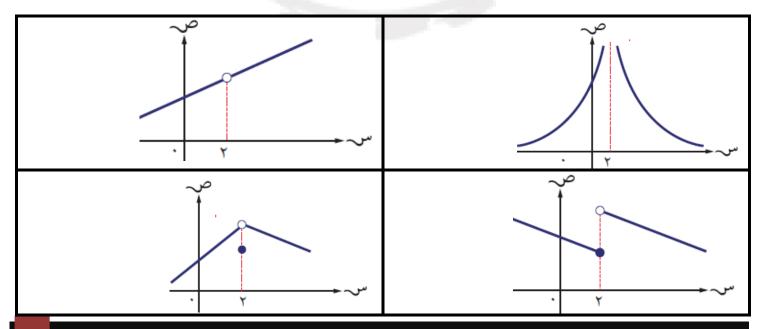
يبيّن الشكل الآتي أجزاء من منحنى الدالة ع (س) = $\frac{1-\bar{u}}{\rho+\dot{u}}$ يبيّن الشكل الآتي أجزاء من منحنى الدالة ع (س) = $\frac{1}{\rho+\dot{u}}$ يوجد للمنحنى خط تقارب رأسي عند

س = -٥,١، وخط تقارب أفقي عند ص = -٢

- أ أوجد قيمتي ت، ف.

إلى أقرب منزلتين عشريتين.

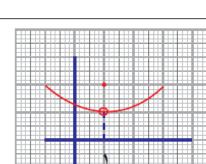
٣-٤ الاتصال

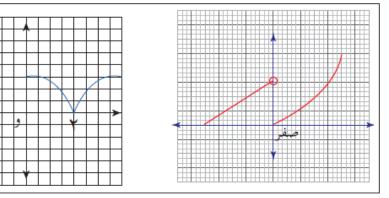

/ ۲۰۲۰م

أولا : الاتصال عند نقطة :

تكون الدالة د (س) متصلة عند النقطة س = أ إذا -وفقط إذا- كان:

- ١) د (أ) موجودة
- Y) i_{0} i_{0} i_{0} i_{0} i_{0} i_{0} i_{0}
- (1) (1) (2) (3) (4) (5) (5) (6) (7)

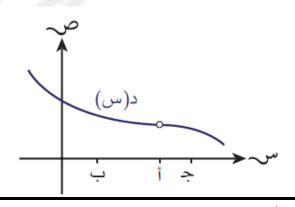


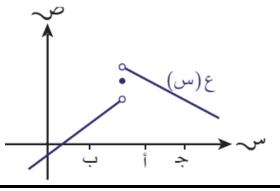


تمرین :

آ) عن*د* س = ٠

اذكر سبب عدم قابلية الدوال في الأشكال التالية للاشتقاق عند النقطة الموضحة فوق كل شكل.

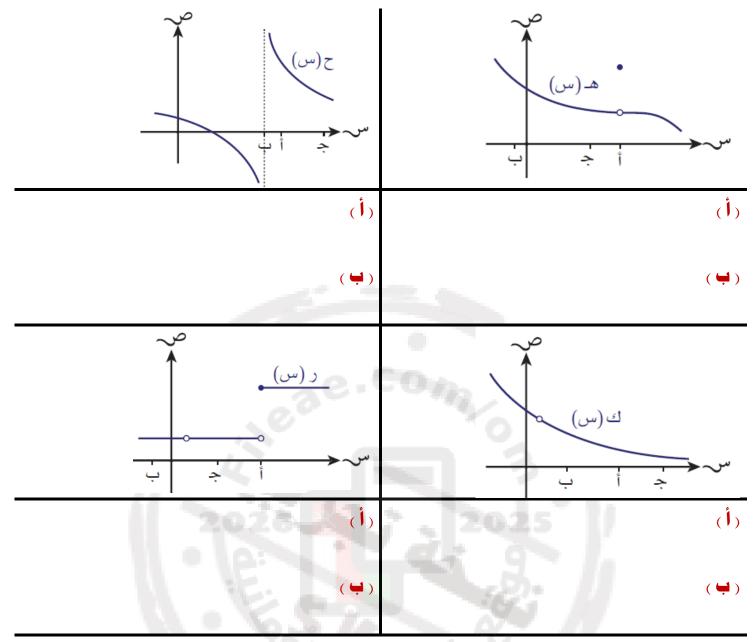

/ ۲۰۲۰م


ثانيا: الاتصال على فترة معلقة

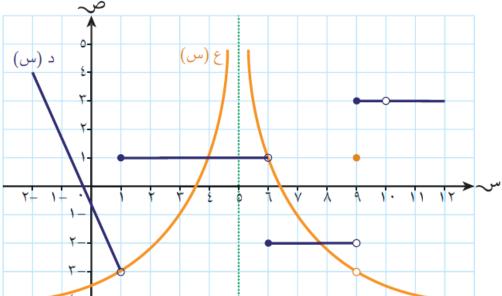
1 عند س = أ.

تكون الدالة متصلة على الفترة أ ≤ س ≤ ب إذا -وفقط إذا-كانت متصلة عند كل النقاط في تلك الفترة.

مثال (٢): في كل دالة مما يأتي ، حدد فيما اذا كانت الدالة متصلة أو غير متصلة مع ذكر السبب:



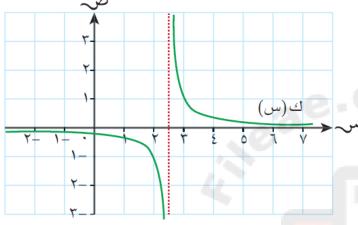
(1)


(₩)

(📛)

مثال (٣) يبيّن الشكل الآتي منحنى الدالتّين د (س)، ع (س) في الفترة $-7 \leq m \leq 11$:

أي نقطة (أو نقاط) في الفترة -٢ ≤ س ≤ ١٢ تكون الدالة ع (س) غير متصلة ؟
 أعط سببًا لكل منها.



- ب عند أي نقطة (أو نقاط) في الفترة $-7 \leq m \leq 11$ تكون الدالة د(m) غير متصلة ؟ أعط سببًا لكل منها.

مثال(٤) :

يبيّن الشكل المقابل جزءًا من منحنى الدالة ك(س).

- أ اكتب معادلة خط التقارب الرأسي.
- $\frac{1}{\psi}$ إذا علمت أن ك (س) = $\frac{1}{\varpi_w + \dot{\omega}}$ وتمر بالنقطة (٢، -١)، فأوجد قيمة كل من ت، ف التي تكون عندها الدالة غير متصلة.

- ج استخدم المنحنى لتوضح أن الدالة ك (س) متصلة على الفترة ٣ ≤ س ≤ ٧
- د بيّن أن الدالة ك (س) غير متصلة على الفترة $1 \leq m \leq 3$
- ﴾ إذا علمت أن الدالة ك(س) متصلة على الفترة -٢ ≤ س ≤ أ، فأوجِد قيمة أكبر عدد صحيح ممكن لـ أ

مثال(۱)

بيّن أن الدالة د $(m) = \frac{m+0}{m-\Lambda}$ متصلة على الفترة 0 < m < 0، وغير متصلة على الفترة 0 < m < 0

$\frac{1}{m} = (w)$: لتكن الدالة د (w)

- ا بيّن أن الدالة د (س) متصلة على الفترة $1 \leq m \leq 1$
- ب اكتب أي فترة مغلقة بحيث تكون الدالة د (س) = $\frac{1}{m}$ غير متصلة عندها.

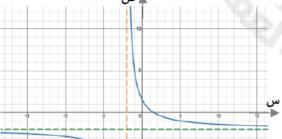
$$\frac{1}{1}$$
 لتكن الدالة د $(w) = \frac{1}{w^7 - \Lambda w - 7}$

- 1) بيّن أن الدالة د (س) غير متصلة على الفترة $9 \leq m \leq 11$
 - ب أوجِد قيمة س السالبة بحيث تكون د (س) غير متصلة.

إذا كان منحنى الدالة ع (س) = $\frac{m^7 - 7m - 10}{m + 7}$ مستقيمًا يتضمن فجوة:

أ عند أي قيمة لـ س تكون الدالة ع (س) غير معرّفة؟ با أوجد إحداثيات الفجوة.

- 3 A A A I	1 .	1 . 7 4 1
	1 1	إختيا
	_	الاستنداد

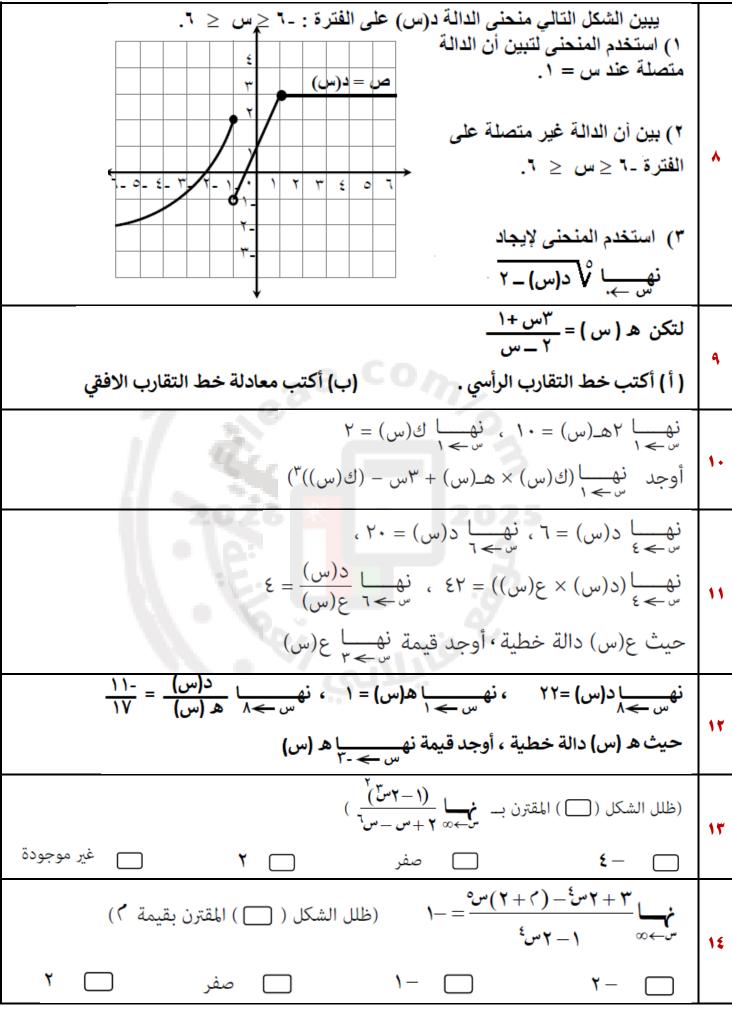

ظلل الشكل () المقترن باحداثيات الفجوة

منحنی الدالة د(س) =
$$\frac{1 - \sqrt{100} - 1}{1 - \sqrt{100}}$$

الدالة هـ (س) =
$$\frac{m-7}{0}$$
 متصلة على الفترة $0 \le m < \infty$

(ب) أوجد قيمة ج اذا علمت أن د(س) =
$$\frac{1}{\alpha(m)}$$
 غير متصلة عند $m=-\infty$

منحنی معادلته ه (س) =
$$\frac{m^7 + \frac{1}{100} + \frac{1}{1000}}{m - 1}$$
 له فجوة عند س = ۱ ، احداثیاتها (۱ - ۱)



يبين الرسم المجاور جزاء من منحنى الداله د(س) =
$$\frac{9 + 1 m}{15 + 10 m}$$
 أوجد

اذاکانت م(س) =
$$\frac{a(m)}{\pi}$$
 ، $\frac{a(m)}{m \to 1} = -\pi$ أوجد $\frac{a(m)}{m} = 0$

$$\frac{\gamma_{\omega}}{(\omega + \omega)} = \frac{\gamma_{\omega}}{(\omega + \omega)}$$

(ظلل الشكل(
$$\Box$$
) المقترن بقيمة س التي تكون هـ(س) غير متصلة في الفترة $= 9 \le m \le 7$

