مذكرة المجال الكهربائي مع أسئلة اختبارية

تم تحميل هذا الملف من موقع المناهج العمانية

موقع فايلاتي ← المناهج العمانية ← الصف الثاني عشر ← فيزياء ← الفصل الأول ← ملفات متنوعة ← الملف

تاريخ إضافة الملف على موقع المناهج: 13:17:04 2025-11-18

ملفات اكتب للمعلم اكتب للطالب ا اختبارات الكترونية ا اختبارات ا حلول ا عروض بوربوينت ا أوراق عمل منهج انجليزي ا ملخصات وتقارير ا مذكرات وبنوك ا الامتحان النهائي ا للمدرس

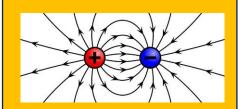
المزيد من مادة فيزياء:

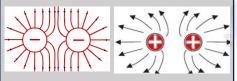
إعداد: فاطمة الراشدية

التواصل الاجتماعي بحسب الصف الثاني عشر

صفحة المناهج العمانية على فيسببوك

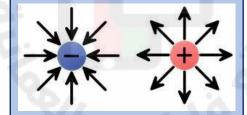
المزيد من الملفات بحسب الصف الثاني عشر والمادة فيزياء في الفصل الأول	
أنشطة محلولة على درس شدة مجال الجاذبية	1
مذكرة المغناطيسية والحث الكهرومغناطيسي مع حل الأسئلة الاختبارية	2
مذكرة الدوائر الكهربائية مع حل الأسئلة	3
حل أسئلة مراجعة المادة	4
تمارين على الوحدة الرابعة المكثفات	5


المجال الكهربائي

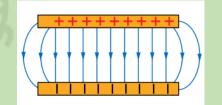

المجال الكهربائي بين شحنتين نقطيتين مختلفتين

اتجاهها من الشحنه + إلى الشحنة -	$\dot{ar{E}}_1 + E_2$ المحصلة كالمحالي المنظم المنظ
اتجاهها لشحنة اختبارية + نحو الشحنة – - نحوالشحنة +	$ ilde{F}_1+F_2$ المحصلة $ ilde{F}_1$ كلاهما في نفس الأتجاه
غير متجهه	$V = V_1 + V_2$ جهد الشحنة السالبة -
غير متجهة	$E_P = E_{P1} + E_{P2}$

4


المجال الكهربائي بين شحنتين نقطيتين متشابهتين

اتجاهها نحو الأعلى شدة	$\dot{E}_1 - E_2 = K_1 - K_2$ المحصلة متعاكسات في الإتجاه
اتجاهها نحو الأعلى قوة	$\dot{F}_1 = F_1 - F_2$ المحصلة متعاكسات في الإتجاه
غیر متجهه (-) شحنتین سالبتین (+) شحنتین موجبتین	$V = V_1 + V_2$
غير متجهة	$E_P = E_{P1} + E_{P2}$



المجال الكهربائي يحال الشعاعي

$\vec{E} = \frac{K Q}{r^2}$	$\vec{F} = \frac{K Qq}{r^2}$
$V = \frac{KQ}{r}$	$E_P = \frac{KQq}{r}$
$\Delta V = KQ(\frac{1}{r_0} - \frac{1}{r_1})$	$W = KQq\left(\frac{1}{r_2} - \frac{1}{r_1}\right)$

2 المجال الكهربائي المنتظم

ين اللوحين
$$\overrightarrow{E}=rac{\Delta V}{\Delta d}$$
 ثابته عند أي ألبته عند أي ألبته عند أي ألبعد بين اللوحين Δd

 $V = E \times \Delta d$ الجهد عند نقطة الزاحة النقطة عن (أو مستوى)

1

ما هو المجال الكهربائي ؟

هو المنطقة التي يتأثر فيها جسم مشحون بقوة كهربائية.

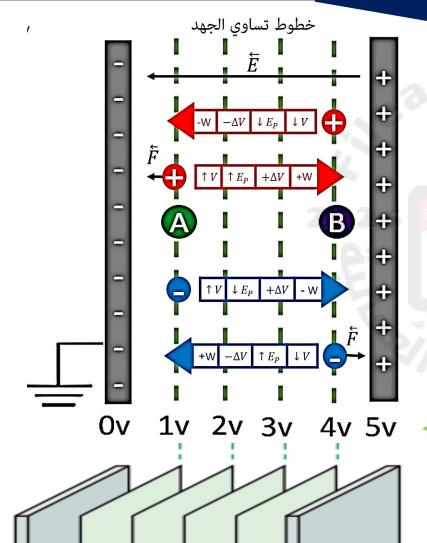
ولكل مجال كهربائي

$$E \times q = F$$

$$V \times q = E_P$$

$$\Delta V \times q = W$$

المجال الكهربائيية المخال الكهربائيية المحال الكهربائيية المحال الكهربائيية المحال الكهربائيية المحالة المحالة


ية	نوع الكم	وحدة قياسها	قانون حسابها	تعريفها	رمزها	الكمية الفيزيائية
خارج من الشحنة الموجبة داخل في الشحنة السالبة	متجهه	NC^{-1} Vm^{-1}	في المجال منتظم $ec{E}=rac{\Delta V}{\Delta d}$ في المجال الشعاعي $ec{E}=rac{K}{r^2}$	القوة لكل وحدة شحنة والتي تؤثر على شحنة كهربائية موجبة ثابته موضوعة عند تلك النقطة.	É	شدة المجال الكهربائي عند نقطة
(-) تجاذب (تتقارب) (+) تنافر (تتباعد)	متجهة	N	$ec{F}=ec{E} imes q$ قانون کولوم $ec{F}=rac{K\ Qq}{r^2}$ في مجال شعاعي	القوة التي تنشأ بسبب التجاذب أو التنافر الحاصل بين شحنتين.	F	القوة الكهربائية
(-) جهد الشحنة السالبة (+) جهد الشحنة الموجبة	عددية	<i>V</i> J <i>C</i> ^{−1}	الإزاحة عن لوح التأريض $V= \overleftarrow{E} imes \Delta d$ في المجال منتظم $V=rac{K\ Q}{r}$	الشغل المبذول لكل وحدة شحنة كهربائية لنقل شحنة كهربائية موجبة من اللانهاية إلى تلك النقطة.	V	الجهد الكهربائي عند نقطة
(دامًا +)	عددية	J	$E_P = V imes q$ $E_P = rac{KQq}{r}$ في المجال الشعاعي	الطاقة التي تكتسبها الشحنة نتيجة لوضعها في المجال الكهربائي لشحنة أخرى.	E_P	طاقة الوضع الكهربائية
(+) الجهد يزيد (-) الجهد يقل	عددية	<i>V</i> J <i>C</i> ^{−1}	$\Delta V = V_2 - V_1$ $\Delta V = KQ(rac{1}{r_2} - rac{1}{r_1})$ في المجال الشعاعي	الشغل المبذول لنقل وحدة شحنة اختبار موجبة من نقطة البداية إلى نقطة النهاية داخل المجال الكهربائي.	ΔV	فرق الجهد الكهربائي
(+) شغل خارجي يرفع طاقة وضع الشحنة (-) تبذل الشحنة شغل يقلل من طاقة وضعها	عددية	J	$W=\Delta E_P=E_{P2}-E_{P1}$ $W=\Delta V imes q$ $W=KQq(rac{1}{r_2}-rac{1}{r_1})$ في المجال الشعاعي	التغير في طاقة الوضع الكهربائية للشحنة	W	الشغل

المجال الكهربائي المنتظم

شدة المجال:

$$\stackrel{\overleftarrow{E}}{=} rac{\Delta oldsymbol{V}}{\Delta oldsymbol{d}}$$
القوة الكهربائية :

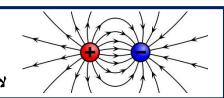
 $F = E \times q$

شحنة نقطية + مع خطوط المجال شحنة نقطية -عكس خطوط المجال عكس خطوط المجال تعتمد كلا من القوة الكهربائية وطاقة الوضع والشغل على كمية الشحنة (q) المؤثر عليها عجال الكهربائي

$$E \times q = F$$

$$V \times q = E_P$$

$$\Delta V \times q = W$$

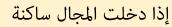

الجهد الكهربائي V(عددي):

- *يزيد كلما اقتربنا من اللوح +
- وابتعدنا عن اللوح السالب –
- *اللوح المتصل بالأرض دامًا V=0

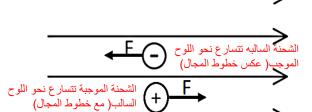
$$V = E \times \Delta d$$

الجهد عند نقطة

إزاحة النقطة عن لوح التأريض

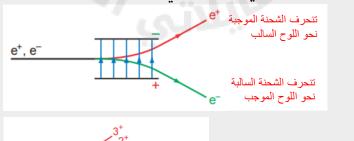

المجال الكهربائي المنتظم

لا تتوقف عن الصبر، عن المحاولة ، عن الدعاء


كيف تتحرك الشحنة داخل المجال المنتظم

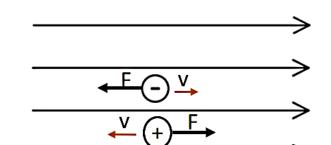
تتسارع بسبب القوة الكهربائية

$$\ddot{a} = \frac{\ddot{F}}{m}$$



إذا دخلت متحركة بسرعة ثابته عمودية على خطوط المجال

- السرعة العمودية على خطوط المجال تبقى ثابته
- تزيد السرعة الموازية لخطوط المجال (تتسارع) بسبب القوة


$$\ddot{a}=rac{\dot{F}}{m}$$
الكهربائية

فتتحرك الشحنة في مسار منحني

(الكتلة الأكبر)

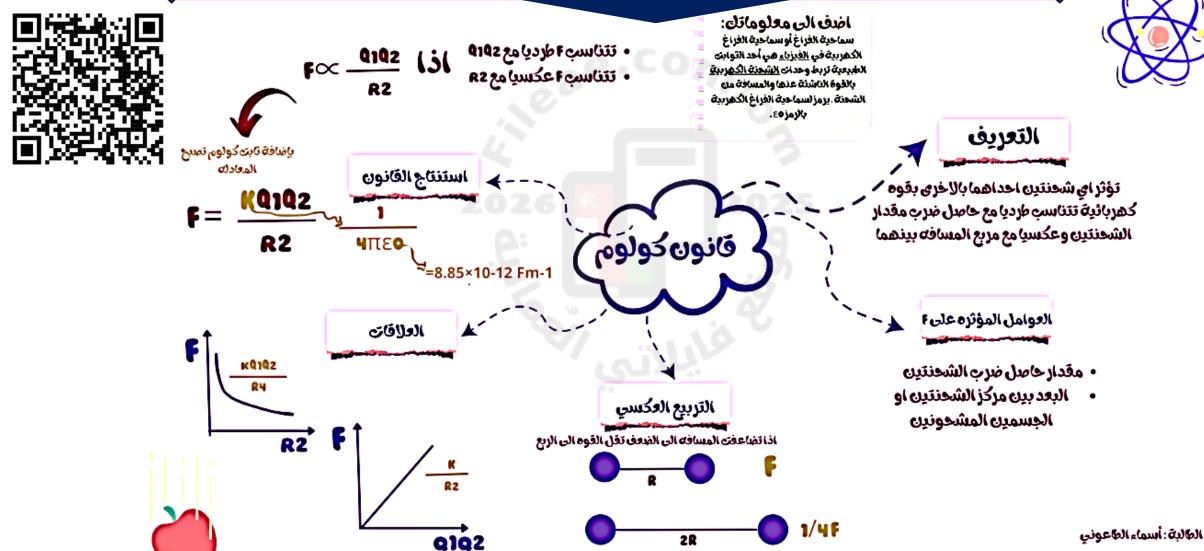
- كلما زادت كتلة الشحنة قل انحرافها

إذا دخلت متحركة بسرعة ثابته موازية لخطوط المجال

إذا دخلت الشحنة السالبة تتحرك بسرعة عكس خطوط تتحرك بسرعة عكس خطوط المجال فإنها المجال فإنها:

تتباطئ بسبب القوة الكهربائية حتى تقف ثم تتسارع باتجاه اللوح الموجب (عكس خطوط المجال)

المجال فيها تتباطئ بسبب القوة الكهربائية حتى تقف ثم تتسارع باتجاه اللوح السالب (مع خطوط المجال)



المجال الكهربائي الشعاعي

مذكرة فيزيائية للمف الثاني عشر إعداد الأستاذة فاطمة الراشدية

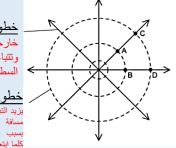
قانون كولوم

المجال الكهربائي الشعاعي

لا تتوقف عن الصبير، عن المحاولة ، عن الدعاء

 $\vec{E} = \frac{K Q}{r^2}$

 $V = \frac{KQ}{r}$


 $\Delta V = KQ(\frac{1}{r_2} - \frac{1}{r_1})$

الشحنة الموجبة

الشحنة الموجبة

تنتج جهدا موجبا يقل كلما

ابتعدنا عن سطحها. $V_{\infty}=0$

المسافة r

اقتراب شحنة -

$\downarrow r$	$\uparrow F$	↑ E	↑ V	$\downarrow E_P$	$+\Delta V$	-W
----------------	--------------	-----	-----	------------------	-------------	----

اقتراب شحنة +

(اقتراب شحنة عكس اتجاه خطوط المجال)

ابتعاد شحنة -

 $W = KQq(\frac{1}{r_2} - \frac{1}{r_1})$

$\uparrow r$	$\downarrow F$	↓ E	↓ V	$\uparrow E_{D}$	$-\Delta V$	+W
1 /	W 1	W 11	₩ V	ı Lp	_·	

التعاد شحنة +

↓ E $\downarrow E_P$ ↓ V

(ابتعاد شحنة مع اتجاه خطوط المجال)

الجهد=0

الجهد

المجال الكهربائي الشعاعي

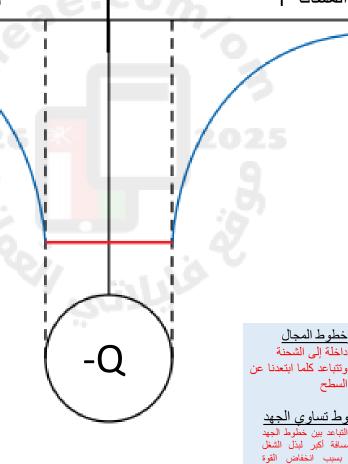
الشحنة السالبة

المسافة r

أي مسافة أكبر لبذل الشغل

الجهد=0

(ابتعاد شحنة عكس اتجاه خطوط المجال)


ابتعاد شحنة -

$\uparrow r \downarrow F \downarrow E \uparrow V \downarrow E_P + \Delta I$	V -W
---	------

التعاد شحنة +

↓ E $\uparrow E_P + \Delta V$

$\vec{E} = \frac{KQ}{r^2}$	$\vec{F} = \frac{K Qq}{r^2}$
$V = \frac{KQ}{r}$	$E_P = \frac{KQq}{r}$
$\Delta V = KQ(\frac{1}{r_2} - \frac{1}{r_1})$	$W=KQq(\frac{1}{r_2}-\frac{1}{r_1})$

(اقتراب شحنة مع اتجاه خطوط المجال)

اقتراب شحنة -

$\downarrow r$	↑ <i>F</i>	↑ E	↓ V	$\uparrow E_P$	$-\Delta V$	+W
----------------	------------	-----	-----	----------------	-------------	----

اقتراب شحنة +

r	$\uparrow F$	↑ E	↓ V	$\downarrow E_P$	$-\Delta V$	-W

الشحنة السالبة

تنتج <u>جهدا سالبا.</u> يزيد الجهد كلما ابتعدنا عن سطحها.

(سالبية الجهد تقل)

$$V_{\infty}=0$$

۱) الشكل (۱-۱) يعرض شحنتين (9nC+) و (15nC-) وضعتا بحيث يكون البعد بين مركزيهما (10mm).

القوة الكهربائية التي تؤثر بها كل شحنة على الأخرى:

- 1.2 × 10¹⁶N
- $1.2 \times 10^{-2} \,\mathrm{N}$
- 1.2 × 10⁻⁴ N
- $1.2 \times 10^4 \,\mathrm{N}$

ركا الشكل (۱-۲) أيون كتلته (10^{-17} 10^{-17} وشحنته (10^{-17} أيون كتلته (10^{-17}

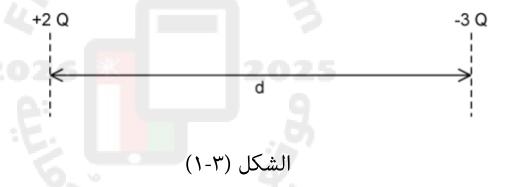
البعد بين اللوحين يساوي:

ملاحظة:

الشحنة ساكنة بين اللوحين لأن محصلة قوتي الوزن و الكهربائية تساوي الصفر. 300 m

33.0 cm

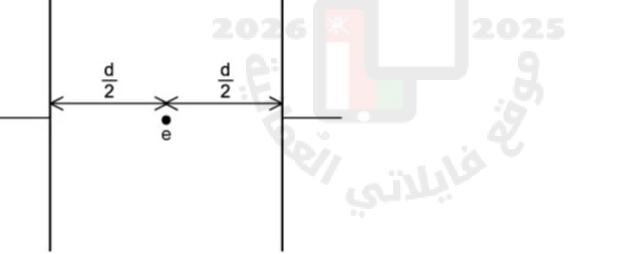
17.0 cm


330 m

٣) الشكل (٣-١) يعرض جسيمين مشحونين (+2Q) و (3Q-) تؤثر كلا منهما على الأخرى بقوة جذب F.

إذا تم إضافة شحنة (+Q) لكل جسيم ومضاعفة البعد بينهما تكون القوة بينهما:

$$\frac{F}{4}$$
 قوة تنافر $\frac{F}{4}$ قوة تنافر \Box

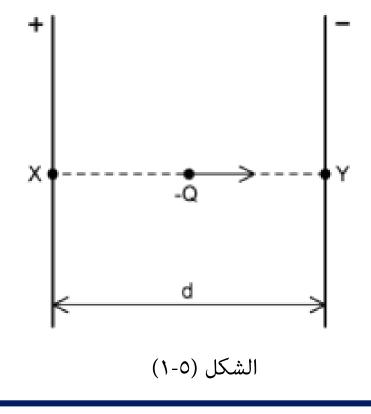

$$\frac{F}{2}$$
 قوة جذب $\frac{F}{2}$ قوة تنافر \square

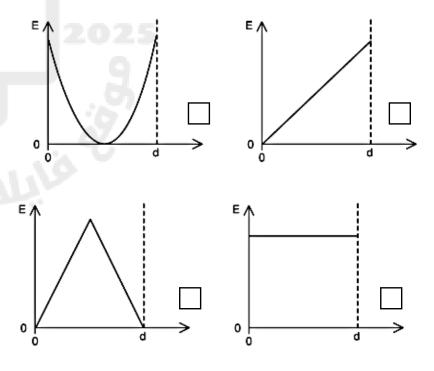
٤) الشكل (٤-١) يعرض لوحين متوازيين بينهما مسافة (20cm)، عند وضع إلكترون (e) بينهما أثرت عليه قوة كهربائية (4mN).

قيمة الجهد الكهربائي في المنتصف بين اللوحين:

الشكل (١-٤)

$$2 \times 10^{-16} \text{ V}$$


$$5 \times 10^{15} \text{ V}$$


$$2.5 \times 10^{15} \text{ V}$$

0) الشكل (0-1) يعرض شحنة (Q-) تتحرك من اللوح X إلى اللوح Y ، اللوحين بينهما مسافة Y التمثيل البياني الذي يعرض العلاقة بين التغير في شدة المجال Y والمسافة Y التمثيل البياني الذي يعرض العلاقة بين التغير في شدة المجال Y

٦) الشكل (١-٦) يعرض شحنة نقطية Q وضعت أعلى لوح معدني متصل بالأرض. X وY نقطتين بين الشحنة Q واللوح المعدني.

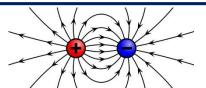
إذا كانت شدة المجال الكهربائي عند X تساوي (E_X) وعند Y تساوي (E_Y) أي عبارة من العبارات التالية صحيحة

3

ě

X,

 $E_x = 0$


 $E_{_{X}} > E_{_{Y}}$

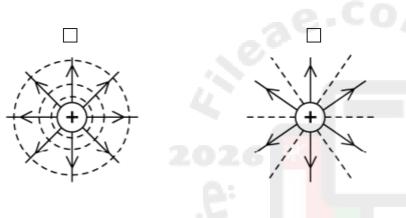
 $E_Y = E_X$

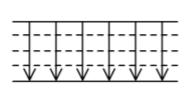
 $E_Y > E_X$

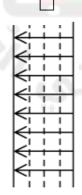
____ الشكل (٦-١)

۷) الشكل (۱-۷) يعرض شحنة كهربائية (3nc+) الجهد الكهربائي عند النقطة x يساوي (629V) و الجهد الكهربائي عند y يساوي (413V).

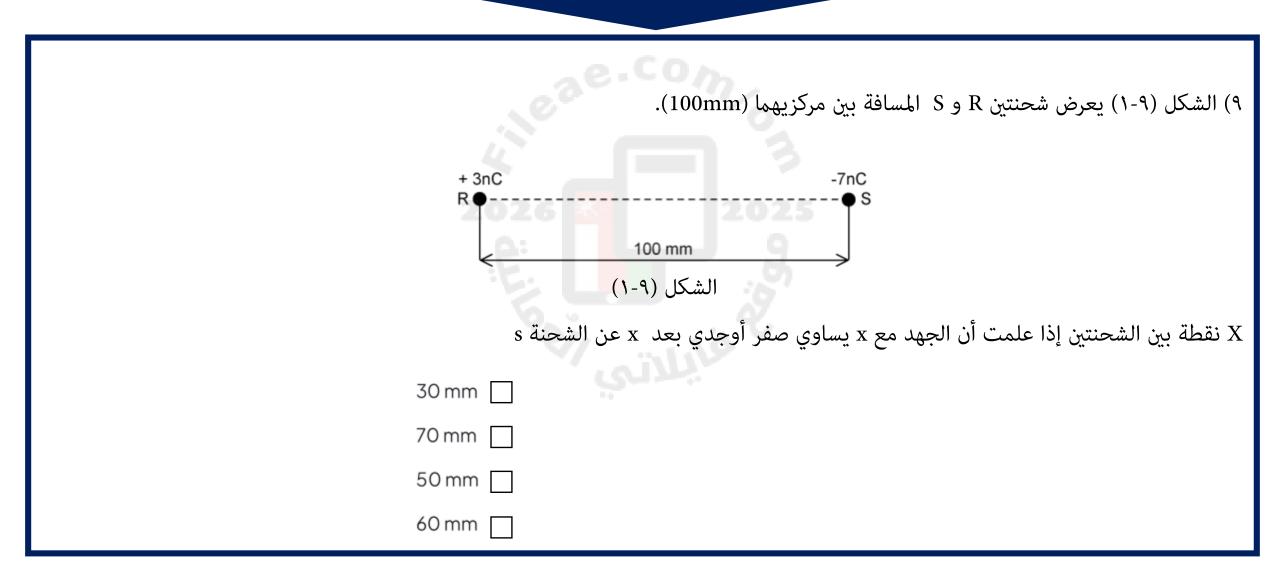
ما مقدار الشغل المبذول لنقل (3nC+) من X إلى X

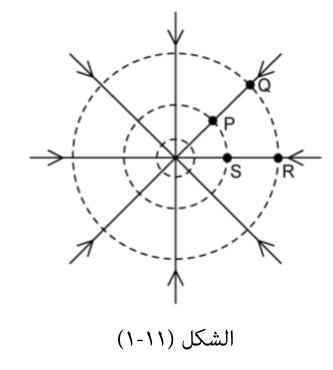

$$6.5 \times 10^{-7} \text{ J}$$


$$3.7 \times 10^{-7} \text{ J}$$



٨) أي مخطط يعبر عن خطوط تساوي الجهد بشكل خاطئ.




۱) البعد الذي يكون فيه الجهد الناتج عن الشحنة (9μc) يساوي (21MV).	
64 mm	

١١) الشكل (١١-١) يعرض خطوط تساوي الجهد حول شحنة سالبة. أي العبارات التالية <u>لا تعبر بشكل صحيح</u> عن حركة شحنة نقطية موجبة في مجالها:

 \mathbf{P} الشغل المبذول لتحريك الشحنة من \mathbf{Q} إلى \mathbf{P} يساوي الشغل المبذول من \mathbf{R} إلى \mathbf{P}

 \square لديها طاقة وضع كهربائية عند \square أكبر عن \square

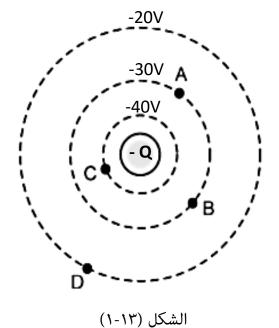
P إلى R ألى Q إلى Q إلى Q إلى Q المبذول من Q إلى Q

 \square طاقة الوضع الكهربائية لها أكبر عند \square

١٢)الشكل (١٢-١١) يعرض مجال كهربائي منتظم. طاقة الوضع الكهربائية لشحنة (2e) في منتصف المسافة بين اللوحين.

$$2.2 \times 10^{-17} \text{ J}$$

$$5.8 \times 10^{-17} \text{ J}$$



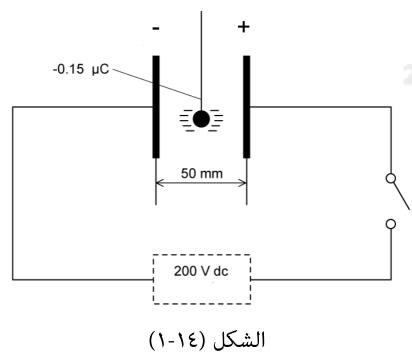
۱۳)الشكل (۱۳-۱) يعرض ثلاث أسطح متساوية الجهد حول الشحنة (Q -).

. (-Q) بين مواضع مختلفة في مجال الشعل اللازم لنقل شحنة $(2\mu C)$ بين مواضع مختلفة في مجال الشحنة (Q-).

الشغل	فرق الجهد	المواضع التي تنتقل بينها الشحنة q
الله الله	6,5	من B إلى A
200	2	من C إلى B
97.0	inlais	من B إلى C
).		من D إلى B
		من C إلى D

الشكل (۲۰۱۳)

۱٤) الشكل (۱۶-۱) يعرض صفيحتين متوازيتين موصلتا بمصدر للجهد (200v) بينهما مسافة (50mm)، . عند غلق الدائرة الكهربائية:


أ. ارسم اربع خطوط تصف المجال الكهربائي الناشئ بين اللوحين.

ب. احسب شدة المجال الكهربائي بين اللوحين مع تحديد وحدة قياسها.

- $E = \frac{200}{50 \times 10^{-3}}$ [1 mark]
- E=4000[1mark]

ج. احسب القوة الكهربائية المؤثرة على كرة مشحونة (0.15μc-) معلقة بخيط وضعت في المجال المنتظم مع تحديد اتجاهها.

- $F = 4000 (0.15 \times 10^{-6}) [1 \text{ mark}]$
- $F = 6 \times 10^{-4} \text{ N [1 mark]}$

١٥) الشكل (١٥-١) يعرض صفيحتين متوازيتين (A وb)موصلتا بمصدر للجهد ، أدخل شعاع ألفا بين الصفيحتين، فلوحظ انحرافه نحو الصفيحة A .

أ. ماذا يقصد بشدة المجال.

ب. ارسم اتجاه المجال الكهربائي بين الصفيحتين.

ج. صف حركة سيل من الإلكترونات إذا تم إدخالها بين الصفيحتين.

- د. إذا تم زيادة المسافة بين اللوحين صف ما يحدث لكل من:
 - شدة المجال الكهربائي بين اللوحين
 - مسار شعاع ألفا

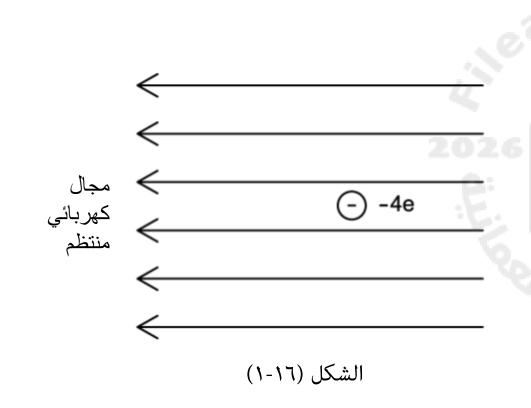
A

الشكل (١٥-١)

١٦) الشكل (١٦-١) أيون سالب (4e-) وضع في مجال كهربائي منتظم.

أ. حدد اتجاه القوة الكهربائية المؤثرة على الأيون .

ب. صف حركة الأيون في المجال.


 $4 imes 10^{-15} N$ ج. إذا علمت أن مقدار القوة الكهربائية

احسب شدة المجال الكهربائي.

• $E = \frac{F}{Q} = \frac{4.5 \times 10^{-15}}{6.4 \times 10^{-19}}$ [1 mark]

• $E = 7031.25 = 7000 \,\mathrm{N}\,\mathrm{C}^{-1}$ [1 mark]

د. إذا تم عكس اتجاه خطوط المجال ، صف ما يحدث لحركة الايون.

اسئلة اختى

١٧) الشكل (١٠-١) وضع أيون موجب p شحنته (2e+) في منتصف المسافة بين لوحين متوازيين بينهما مسافة (65mm) موصلات مصدر جهد فرق الجهد بينهما .(20v)

أ. ارسم اتجاه خطوط المجال بين اللوحين.

 $F_{\rm F} = 9.8462 \times 10^{-17} \, {
m N}$.P ب. احسب القوة المؤثرة على

ج. إذا علمت أن الشحنة P ظلت ساكنة ، احسبي كتلة m.

$$mg = F_E$$

• $m = \frac{F_E}{g} = \frac{9.8462 \times 10^{-17}}{9.81}$ [1 mark]

• $m = 1.0 \times 10^{-17} \text{ kg [1 mark]}$

20 V 65 mm

الشكل (١-١٧)

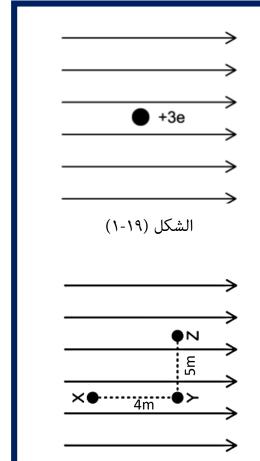
د. ارسم ثلاث خطوط تساوي الجهد بين الصفيحتين مع تحديد قيم الجهد لكل خط.

١٨)الشكل (١٨-١) يعرض خطوط تساوي الجهد فوق لوح مشحون بشحنة موجبة، كمية .

الشكل (۱-۱۸)

یتحرك إلكترون من A إلى B ثم من B إلى C أوجد:

أ. فرق الجهد من A إلى B


A إلى A إلى اللازم لتحريك إلكترون من

C إلى B ثم من B إلى B ألى B ألى B

الشكل (۱۹-۲)

. الشكل (۱۹-۱) يعرض أيون شحنته (3e+) تؤثر عليه قوة (10^{-15} N) في مجال كهربائي منتظم (۱۹-۱۹) الشكل

أ. أحسب طاقة الحركة التي تكتسبها الشحنة نتيجة لحركتها مسافة 51mm موازية لخطوط المجال.

$$W = (7.3 \times 10^{-15}) \times (51 \times 10^{-3})$$

$$KE = 3.723 \times 10^{-16} \text{ J}$$

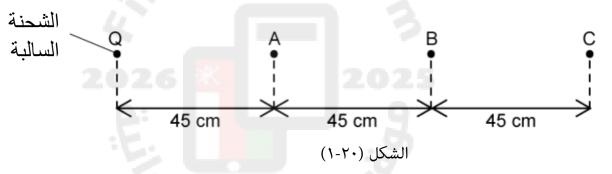
ب. أحسب فرق الجهد ع طول المسار الذي تحركه الأيون.

$$\Delta V = \frac{W}{Q} = \frac{3.723 \times 10^{-16}}{4.8 \times 10^{-19}}$$
$$\Delta V = 775.625 = 780 \text{ V}$$

ج. احسب السرعة التي وصل إليها الإلكترون في نهاية المسار. إذا علمت أن كتلة الأيون $(8.35 \times 10^{-27} \, \text{kg})$

$$V = \sqrt{\frac{2 \times KE}{m}} = \sqrt{\frac{2 \times (3.723 \times 10^{-16})}{8.35 \times 10^{-27}}}$$

 $V = 298620 = 2.99 \times 10^{5} \text{ m s}^{-1}[1 \text{ mag}]$


د. احسب التغير في طاقة الوضع الكهربائية للأيون إذا تحرك من X إلى Y إلى Y إلى Y المكل (٢-١٩) د. $\Delta E_p = 2.92 \times 10^{-14} \, \mathrm{J}$

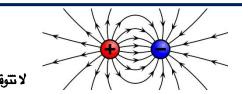
٢٠) الشكل (٢٠-١) يعرض جزء من منطقة حول الشحنة السالبة، الجهد الكهربائي عند الموقع B (6V)

أ. احسب الجهد الكهربائي عند الموضع A

$$V_B = 2 \times -6.0 = -12.0 \text{ V}$$

 $(-1.6 \times 10^{-19} \mathrm{C})$ ب. أثبت رياضيا أن كمية الشحنة

$$V_B = \frac{Q}{4\pi \varepsilon_0 r_B}$$


. C إلى A المبذول المبذول لتحريك شحنة A المبذول المبذو

 $\Delta V = V_C - V_A = -4.0 - (-12.0) = 8.0 \text{ V[1 mark]}$ $\Delta E_P = q \, \Delta V = (3.0 \times 10^{-9}) \times 8.0 = 2.4 \times 10^{-8} \text{ J[1 mark]}$

إعداد الأستاذة فاطمة الراشدية

الحمد لله دائما وابدا

كلهَا اتسعَت <mark>م</mark>سامَة التفاؤل في عينيك رأيت نعيهاً لا يبصرهُ إلا من المسن ظنهُ بالله