مفردات على الوحدة الثانية المجالات الكهربائية للورقة الامتحانية

تم تحميل هذا الملف من موقع المناهج العمانية

موقع فايلاتي ← المناهج العمانية ← الصف الثاني عشر ← كيمياء ← الفصل الأول ← ملفات متنوعة ← الملف

تاريخ إضافة الملف على موقع المناهج: 18-11-39 2025

ملفات اكتب للمعلم اكتب للطالب ا اختبارات الكترونية ا اختبارات ا حلول ا عروض بوربوينت ا أوراق عمل منهج انجليزي ا ملخصات وتقارير ا مذكرات وبنوك ا الامتحان النهائي ا للمدرس

المزيد من مادة كيمياء:

التواصل الاجتماعي بحسب الصف الثاني عشر

صفحة المناهج العمانية على فيسببوك

المزيد من الملفات بحسب الصف الثاني عشر والمادة كيمياء في الفصل الأول	
أسئلة الوحدة الثانية المجالات الكهربائية وفق منهج كامبريدج	1
نشاط درس جهود الأقطاب الكهربائية من مبادرة عقول	2
مذكرة أسئلة في الكيمياء الكهربائية	3
اختبار نهائي للوحدة الثانية	4
مصطلحات الوحدة الثالثة طاقة الشبكة البلورية	5

مفردات على الوحدة الثانية للورقة الامتحانية للصف الثاني عشر

	الأكسدة في الخلية الكهروكيميائية يعرف ب:	.
		<u>(ظلل الإجابة الصحيحة)</u>
	_ جهد القطب القياسي	_ جهد القطب الكهربائي
_	_ جهد الخلية	_ جهد الاختزال القياسي
1		
	ائي لمحلول Mg(OH) ₂ باستخدام قطبين خاملين كما هو موضح	- قام أحد الطلبة بعملية التحليل الكهرب في الشكل أدناه.
	Pt	Pt
3		
	ذا كانت كمية الكهرباء المارة في الخلية تساوي 20000 كولوم.	H_2 أحسب كتلة غاز H_2) المتصاعد إ
2		

- يوضىح الجدول الآتي نتائج استخدام أقطاب لفلزات افتراضية (x, y, z) بالإضافة الى قطب الهيدروجين القياسي في خلية جلفانية .

جهد الخلية القياسي	نصف تفاعل المهبط	الأقطاب	رقم الخلية
1.20 V	X ⁺ (aq) + e ⁻ → X(s)	Z,X	١
0.14 V	Y _(aq) + 2e ⁻ → Y _(s)	Y,Z	۲
0.26 V	2H ⁺ (aq) + 2e ⁻ → H _{2(g)}	H ₂ , Y	٣

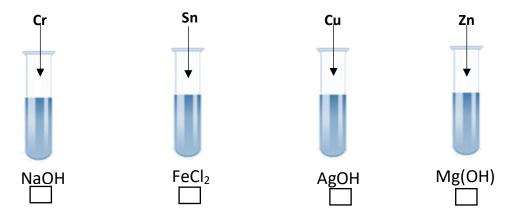
	٤- احسب جهد الخلية ^e Er للايون ⁺² Z
	e.co/
2	
2	٥- رتب المواد (X+, Z ²⁺ , Y ²⁺) حسب قوتها كعوامل مؤكسدة.
2	

- قيمة جهد الاختزال القياسي لنصف الخلية أدناه والتي تحتوي على أيونات $Cu^{+}_{(aq)}$ و $Cu^{+}_{(aq)}$ تساوي +0.15.

$$Cu^{2+}_{(aq)}$$
 + $Sn^{2+}_{(aq)}$ — $Cu^{+}_{(aq)}$ + $Sn^{4+}_{(aq)}$

٦- أحسب جهد الاختزال مستخدماً البيانات الآتية:

وتركيز أيونات _(aq)	ترکیز _(aq)	درجة الحرارة	المعادلة
0.1 mol/L	0.02 mol/L	298 K	$E_r = E_r^{\circ} - 0.059/Z \log_{10} Q$


1

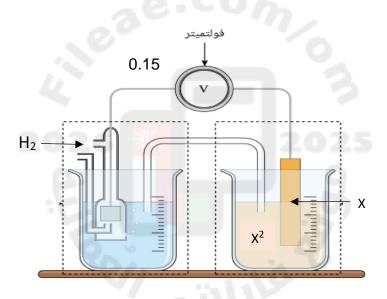
۷- استخدم المعادلة أعلاه لشرح السبب في أن قيمة جهد الاختزال لنصف خلية تحتوي على أيونات $Cu^{2+}_{(aq)}$ و $Cu^{2+}_{(aq)}$ متساوية. $Cu^{2+}_{(aq)}$ و $Cu^{2+}_{(aq)}$ متساوية.

٩- ما هو التفاعل الذي يحدث تلقائيا؟:

(ظلل الإجابة الصحيحة)

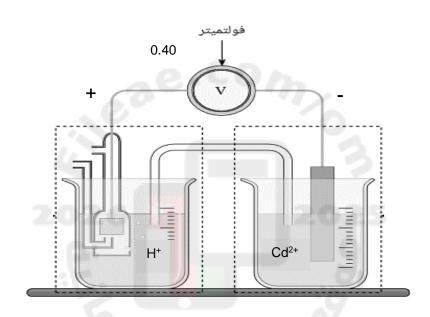
2

1


٠١- الشكل المقابل يمثل خلية فولتية، أي من الآتي يصف اتجاه حركة أيونات $K^+_{(aq)}$ وكتلة

لوح الخارصين (Zn): (ظلل الإجابة الصحيحة)

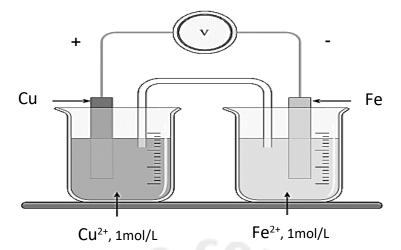
حركة أيونات +K	كتلة Zn	
تتجه نحو قطب Co	تزيد	
تتجه نحو قطب Co	تقل	
تتجه نحو قطب Zn	تزيد	
تتجه نحو قطب Zn	تقل	


1

- الشكل السابق يوضح طريقة قياس جهد الاختزال القياسي للقطب الافتراضي X ،أدرسه جيداً ثم أجب عما يلي:

	11- أحسب جهد القطب X القياسي.
1	
	the test to the te
	١٢- أكتب معادلة نصف التفاعل لقطب الهيدروجين القياسي .
1 I	

	 ١٣ حدد كلاً من المصعد والمهبط في الخلية السابقة إذا تم استبدال القطب Xبالقطب الافتراضي Y
	(جهد الاختزال القياسي له يساوي ٧ 2.38-).
2	



1	١٤- ما قيمة جهد الاختزال القياسي لنصف الخلية أعلاه؟
	١٥- ما المقصود بجهد الاختزال القياسي؟
1	

- في الشكل التالي:

١٦- أكتب التفاعلات الحاصلة عند كلاً من المصعد والمهبط، موضحاً اتجاه تدفق الالكترونات

على المخطط.

.....

3

١٧- ارسم مخططاً يوضح قياس قيمة جهد الاختزال القياسي لنصف الخلية الأتي:

$$Sn^{2+}_{(aq)} + 2e^{-}$$
 $Sn_{(s)}$

- ضمن قيمة Er الخلية التي تساوي (Er+) في مخططك .

١٨- أي الظروف الأتية تنطبق على قطب الهيدروجين القياسي؟

(ظلل الإجابة الصحيحة)

	☐ ضغط مقداره 1kPa، أيونات +H بتركيز H· 0.10 mol/L ، درجة حرارة 298K / القطب الكهربائي:Pt
	ــــــــــــــــــــــــــــــــــــ
	ــــــــــــــــــــــــــــــــــــ
	"
1	
ä	19- ارسم مخططاً لخلية جلفانية مكونة من نصف الخلية +Pb/Pb ² ،ونصف الخلية Fe ²⁺ /Fe مع كتابة أنصاف التفاعلات الحادثة واتجاه تدفق الالكترونات.
	- (استخدم سلسلة جهود الاختزال القياسية)
	فايلاتي في
151	