ملخص مبسط لدرس حلقة (دورة) بورن هابر

تم تحميل هذا الملف من موقع المناهج العمانية

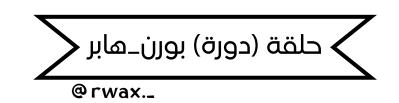
موقع فايلاتي ← المناهج العمانية ← الصف الثاني عشر ← كيمياء ← الفصل الأول ← ملفات متنوعة ← الملف

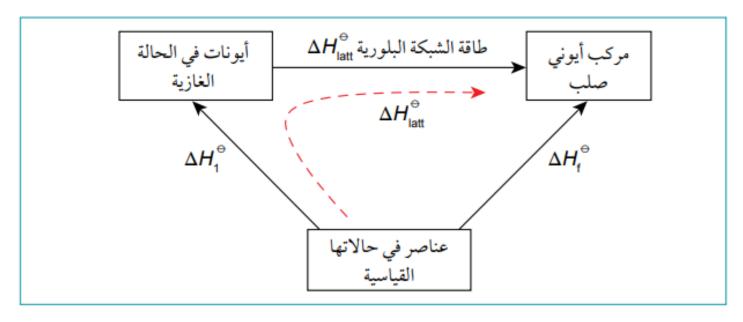
تاريخ إضافة الملف على موقع المناهج: 11:49:30 2025-11-06

ملفات اكتب للمعلم اكتب للطالب ا اختبارات الكترونية ا اختبارات ا حلول ا عروض بوربوينت ا أوراق عمل منهج انجليزي ا ملخصات وتقارير ا مذكرات وبنوك ا الامتحان النهائي ا للمدرس

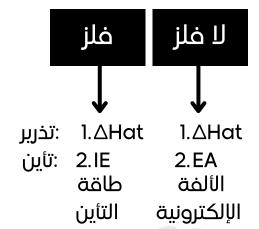
المزيد من مادة كيمياء:

التواصل الاجتماعي بحسب الصف الثاني عشر





صفحة المناهج العمانية على فيسببوك


المزيد من الملفات بحسب الصف الثاني عشر والمادة كيمياء في الفصل الأول	
ملخص شرح درس التغير في المحتوى الحراري للمحاليل	1
ملخص شرح درس التغير في المحتوى الحراري للتذرير (التفكيك) والألفة الإلكترونية	2
تجميع تعاريف المادة حسب الأهداف التعليمية	3
أنشطة دروس الوحدة الرابعة مع نماذج الإجابة من مبادرة عقول مبدعة	4
أنشطة دروس الوحدة الثالثة مع نماذج الإجابة من مبادرة عقول مبدعة	5

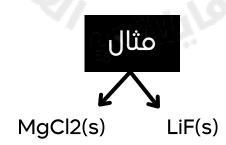
حلقة بورن_هابر:

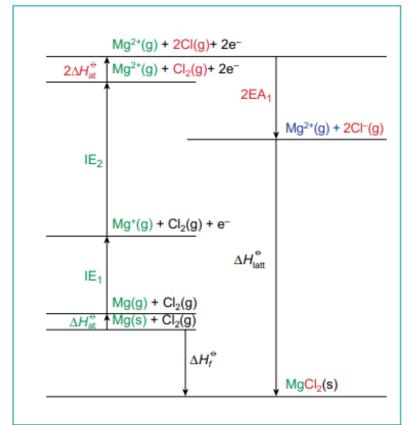
$$\Delta H_1^{\ominus} + \Delta H_{latt}^{\ominus} = \Delta H_f^{\ominus}$$
 $\Delta H_{latt}^{\ominus} = \Delta H_f^{\ominus} - \Delta H_1^{\ominus}$

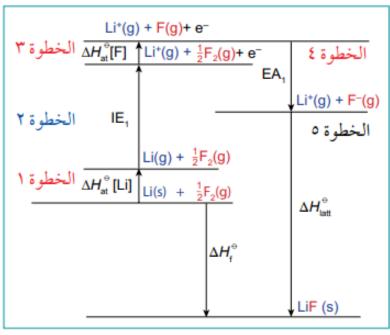
حلقة بورن_هابر كمخطط مستوى طاقة:

الخطوات:.

1.كتابة المركب الأيوني الصلب.

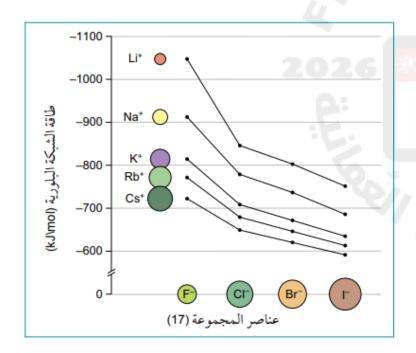

وضع الأيونات في حالتها القياسية في الطرف الأيسر من المخطط.


3.تذرير الفلز ثم طاقة التأين للفلز (الس<mark>هم للأ</mark>على).


4. تذرير اللافلز ثم الألفة الإلكترونية للا<mark>فلز (السه</mark>م للأعلى).

5. إضافة ΔHf السهم للأسفل من ثاني خطوة للمركب الأيوني الصلب.

6.إضافة ∆Hlatt السهم للأسفل من آخر خطوة للمركب الأيوني الصلب.


العوامل المؤثرة في قيمة طاقة الشبكة البلورية:

طاقة الشبكة البلورية وحجم الأيونات (1

كلما إزداد حجم الأيونات تقل طاقة الشبكة البلورية (علاقة عكسية).

تأثير حجم الأنيون مع (+Na)	تأثير حجم الكاتيون مع (-Cl)	مثال
تقل طاقة الشبكة البلورية عبر المجموعة 17 من الأعلى للأسفل	تقل طاقة الشبكة البلورية عبر المجموعة 1 من الأعلى للأسفل	شرح التأثير على طاقة الشبكة البلورية
بسبب زيادة حجم الأنيونات من الأعلى للأسفل عبر المجموعة	بسبب زيادة حجم الكاتيونات من الأعلى للأسفل عبر المجموعة	السبب
$AH_{latt}^{\Theta} = -787 \text{ kJ/mol}$ $AH_{latt}^{\Theta} = -751 \text{ kJ/mol}$ $AH_{latt}^{\Theta} = -751 \text{ kJ/mol}$ $AH_{latt}^{\Theta} = -705 \text{ kJ/mol}$	تقل طاقة الشبكة البلورية (C)	صورة

من الرسم البياني الموضح أدناه اشرح تأثير حجم الأيونات على قيم طاقة الشبكة البلورية:

طاقة الشبكة البلورية وشحنة الأيونات

كلما ازدادت شحنة الأيونات زادت طاقة الشبكة البلورية (علاقة طردية), اشرح ذلك إستناداً على تأثير القوى الكهروستاتيكية بين الأيونات.

$\Delta H_{\text{latt}}^{\ominus}$ [LiF] = -1049 kJ/mol $\Delta H_{\text{latt}}^{\ominus}$ [MgO] = -3923 kJ/mol	$\Delta H_{\text{latt}}^{\oplus} [\text{CaCl}_2] = -2195.2 \text{ kJ/mol}$ $\Delta H_{\text{latt}}^{\oplus} [\text{NaCl}] = -787 \text{ kJ/mol}$	مثال
طاقة الشبكة البلورية لـأكسيد الماغنيسيوم أكبر من طاقة الشبكة البلورية لفلوريد الليثيوم	طاقة الشبكة البلورية لـكلوريد الكالسيوم أكبر من طاقة الشبكة البلورية لكلوريد الصوديوم	الملاحظة
لأن قوة الجذب الكهروستاتيكية بين Mg+2 كبر مقانة مع −Li+, F- أكبر مقانة مع	لأن شحنة أيون Ca+2 أكبر من شحنة أيون +Na	السبب

• يكون تأثير الشحنة الأيونية أكبر من تأثير الحجم الحجم الأيوني على طاقة الشبكة البلورية.