أسئلة شاملة وملمة لدروس الوحدة الثالثة (طاقة الشبكة البلورية)

تم تحميل هذا الملف من موقع المناهج العمانية

موقع فايلاتي ← المناهج العمانية ← الصف الثاني عشر ← كيمياء ← الفصل الأول ← ملفات متنوعة ← الملف

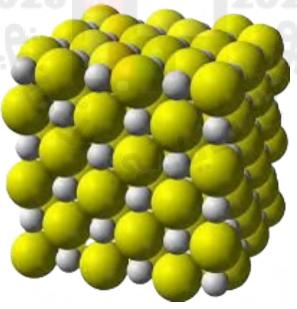
تاريخ إضافة الملف على موقع المناهج: 12:03:33 2025-11-06

ملفات اكتب للمعلم اكتب للطالب ا اختبارات الكترونية ا اختبارات ا حلول ا عروض بوربوينت ا أوراق عمل منهج انجليزي ا ملخصات وتقارير ا مذكرات وبنوك ا الامتحان النهائي ا للمدرس

المزيد من مادة كيمياء:

إعداد: حاتم الحامدي

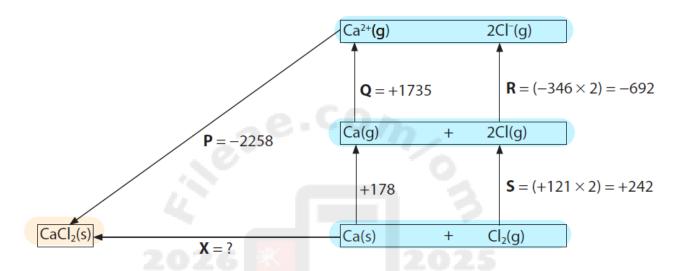
التواصل الاجتماعي بحسب الصف الثاني عشر


صفحة المناهج العمانية على فيسببوك

المزيد من الملفات بحسب الصف الثاني عشر والمادة كيمياء في الفصل الأول	
ملخص درس حلقة (دورة) بورن هابر وفق منهج كامبريدج	1
ملخص مبسط لدرس حلقة (دورة) بورن هابر	2
ملخص شرح درس التغير في المحتوى الحراري للمحاليل	3
ملخص شرح درس التغير في المحتوى الحراري للتذرير (التفكيك) والألفة الإلكترونية	4
تجميع تعاريف المادة حسب الأهداف التعليمية	5

مدرسة خميس بن سعيد الشقصي للتعليم الأساسي

أ. حاتم الحامدي


أولا: الأسئلة الموضوعية: (ظلل الشكل المام الإجابة الصحيحة)

١. ما هي معادلة الألفة الإلكترونية الأولى للكبريت؟

$$S_{(g)}+e-\longrightarrow S_{(g)}^{-}$$
 \square $S_{(s)}+e-\longrightarrow S_{(g)}^{-}$ \square

$$S_{(g)} \longrightarrow S^+_{(g)} + e^- \square$$
 $S_{(s)} \longrightarrow S^+_{(g)} + e^- \square$

ريوضح الرسم البياني دورة بورن-هابر لكلوريد الكالسيوم ، قيم التغير في المحتوى الحراري $kJ \, mol^{-1}$.

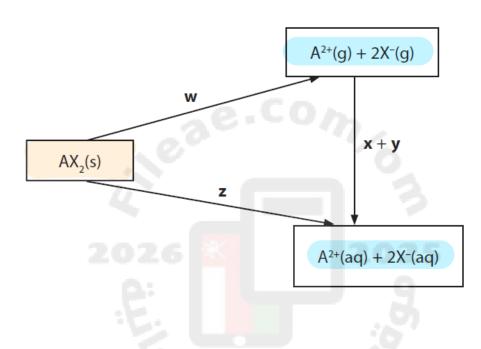
ح ع <mark>لى ا</mark> لرسم البياني؟	ا و د و کا و د	1 0.1 - 11 0 11	والمواات في	آ
ح علی الرسم البيايي:	موضع بسكن صعيي	المعتوى العواري ا	ما هو التعاير في	•)

- تغير المحتوى الحراري لتكوين كلوريد الكالسيوم (P).
 - طاقة التأين الأولى للكالسيوم (Q).
 - □ الألفة الإلكترونية للكلور (R).
 - صعف التغير في المحتوى الحراري لذرات الكلور (S)
 - $\mathrm{kJ}\ \mathrm{mol}^{-1}\ \mathrm{y}$ ب. ما هي قيمة X بوحدة
- +3721 +795 -795 -3721 -3721

7. أي من البيانات التالية ليست ضرورية لحساب طاقة الشبكة البلورية لكلوريد الصوديوم عند استخدام دورة بورن - هابر ؟

تغير المحتوى الحراري لتذرير الصوديوم.

□ الألفة الإلكترونية للكلور.


- 🗆 تغير المحتوى الحراري لتكوين كلوريد الصوديوم.
 - طاقة التأين الأولى للكلور.

حرارة من طاقة الشبكة لفلوريد الماغنيسيوم لأن :	 طاقة الشبكة لأكسيد الماغنسيوم أكثر طردا للـ
	🗖 أيونات الأكسيد أكبر من أيونات الفلورايد.
•,	ا أيونات الأكسيد أكبر من أيونات الماغنيسيوم
ونات الفلورايد.	🗖 أيونات الأكسيد مشحونة بدرجة أكبر من أيو
. لكل أيون ماغنيسيوم.	🗖 يوجد أيون أكسيد واحد فقط وأيوني فلوريد
كترونية الأولى للأكسجين؟	 أي من المعادلات أدناه تمثل طاقة الألفة الإلـ
$O_{2(g)} + 2e - \longrightarrow 2O_{(g)} \square$	$O_{2(g)}$ - $2e$ - \longrightarrow $2O^{-}_{(g)}$ \square
$O_{(g)} + e - \longrightarrow O^{-}_{(g)}$	$^{1/2}O_{2(g)} + e - \longrightarrow O^{-}_{(g)} \Box$
لشبكة البلورية له الأكثر طاردة للحرارة؟	7. أي الأكاسيد التالية من المتوقع أن تكون طاقة ا
K ₂ O □ CaO □	MgO □ Na ₂ O □
	ş
	۷. في دورة بورن-هابر ليوديد البوتاسيوم، أي م
$K_{(g)} \longrightarrow K^+_{(g)} + e - \square$	$K_{(s)} \longrightarrow K_{(g)} \square$
$I_{(g)} + e - \longrightarrow I_{-(g)} \square$	$\frac{1}{2}I_{2(s)}$ $I_{(g)}$
ى الحراري لتذرير البروم ؟	 أي من المعادلات أدناه تمثل التغير في المحتور
$\frac{1}{2}Br_{2(g)} \longrightarrow Br_{(g)} \square$	$\frac{1}{2} Br_{2(l)} \longrightarrow Br_{(g)} \square$
$Br_{2(g)} \longrightarrow Br^{+}_{(g)} + Br_{(g)} \square$	$Br_{2(l)} \longrightarrow Br^+_{(g)} + Br_{(g)} \square$
ة للكلور؟	٩. أي من هذه المعادلات تمثل الألفة الإلكتروني
$Cl_{2(g)} - 2e - \longrightarrow 2Cl_{(g)} \square$	$Cl_{2(g)} + 2e \longrightarrow 2Cl_{(g)} \square$
$Cl_{(g)} + e - \longrightarrow Cl_{(g)} \square$	$\frac{1}{2}Cl_{2(g)} + e - \longrightarrow Cl_{(g)}$

المحتوى الحراري لتذرير اليود يعبر عنه بالمعادلة:	التغير في	.1.
--	-----------	-----

$$I_{2(s)} \longrightarrow 2I_{(g)} \square$$
 $I_{2(s)} \longrightarrow I_{2(g)} \square$

الله قتل الرموز (x وx وx وx وx المحتوى الحراري في الدور التالية والتي تحدث عندما يذوب المركب الأيوني $X_2(s)$ المركب الأيوني $X_2(s)$

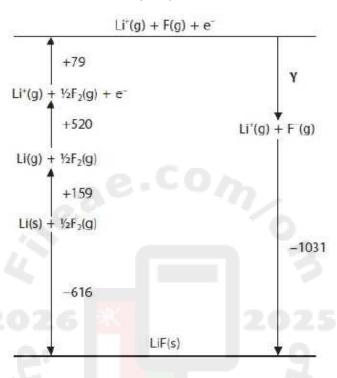
أي من التغيرات π ثل الطاقة الشبكية البلورية لـ $AX_{2(s)}$

$$z-x-y$$
 \longrightarrow z \longrightarrow $-w$ \longrightarrow $\frac{1}{2}$ w \bigcirc

الأيون	الحجم نانومتر
Li ⁺	0.074
Ca ²⁺	0.100
F-	0.133
Cl ⁻	0.180
O ²⁻	0.140
S ²⁻	0.185

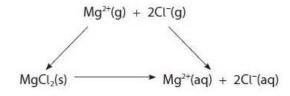
١٢. يوضح الجدول المقابل نصف القطر الأيوني لبعض الأيونات:

أي المركبات التالية يتمتع بأعلى طاقة شبكية بلورية طاردة للحرارة؟ (جميعهم لها نفس البنية البلورية)


LiCl \square	LiF 🗀

17. معادلة المحتوى الحراري لتميه أيون المغنيسيوم هي :

$$Mg^{2+}_{(g)} \longrightarrow Mg^{2+}_{(aq)} \square$$
 $Mg^{2+}_{(s)} \longrightarrow Mg^{2+}_{(aq)} \square$

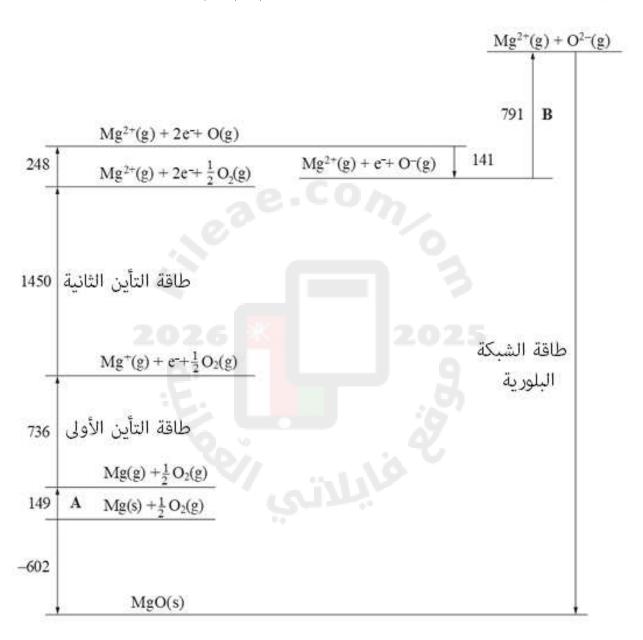

$$Mg^{2+}_{(aq)} \xrightarrow{\text{\tiny sU}$} Mg^{2+}_{(s)} \qquad \qquad \qquad Mg^{2+}_{(aq)} \xrightarrow{\text{\tiny sU}$} Mg^{2+}_{(g)} \square$$

1٤. فيُظهر الشكل التالي دورة بورن-هابر لفلوريد الليثيوم، يتم إعطاء تغييرات الطاقة بوحدة ألل kJ mol-1:

 $\mathrm{kJ}\ \mathrm{mol}^{-1}$ ما هي قيمة $\mathrm{Y}\ \mathrm{بوحدة}$

10. ما القيمة، بوحدة kJ mol-1، للتغير في المحتوى الحراري القياسي لذوبان كلوريد الماغنيسيوم؟

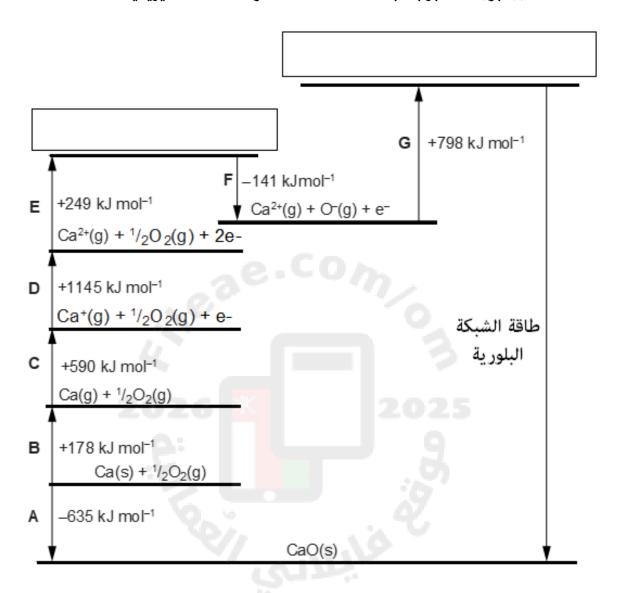
 $MgCl_2(s)$ طاقة الشبكة البلورية لـ = $-2526 \text{ kJ mol}^{-1}$


 $Cl^{-}(g)$ التغير في المحتوى الحراري لتميه = - 381 kJ mol

 $Mg^{2+}(g)$ التغير في المحتوى الحراري لتميه $-1921 \text{ kJ mol}^{-1}$

ثانيا: الأسئلة المقالية:

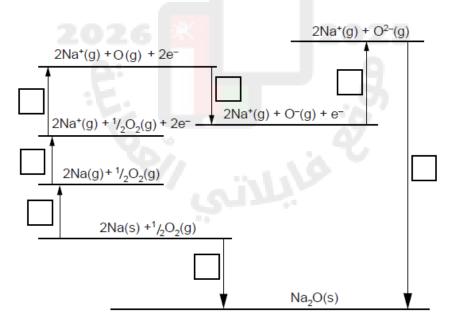
السؤال الأول: أكسيد المغنيسيوم، MgO ، هو مادة صلبة بيضاء ذات درجة حرارة انصهار عالية جدًا ويتم استخدامه كبطانة حرارية في الأفران.


توضح دورة بورن -هابر التالية التغيرات في المحتوى الحراري المرتبطة بتكوين أكسيد الماغنيسيوم. جميع التغييرات في المحتوى الحراري تكون بوحدة KJ/mol ، لم يتم رسم الدورة بشكل كامل .

- 1. ما الاسم الذي يطلق على التغير في المحتوى الحراري المشار إليه بالرمز A؟
- ٢. اذكر سبب كون طاقة التأين الثانية للماغنيسيوم أكبر من طاقة التأين الأولى.
- ٣. وضح سبب كون الألفة الإلكترونية الثانية للأكسجين، والمشار إليها بالرمز B موجبة .
 - 3. احسب قيمة طاقة الشبكة البلورية لأكسيد الماغنيسيوم.

السؤال الثاني: يمكن استخدام دورة بورن - هابر أدناه لتحديد طاقة الشبكة البلورية لأكسيد الكالسيوم. تتضمن الدورة قيم التغيرات في المحتوى الحراري للخطوات المشار إليها بالرموز A-G.

١. أكمل دورة بورن - هابر بكتابة المعادلات الناقصة موضحا الحالة الفيزيائية لكل مادة .



- ٢. قم بتسمية التغيرات في المحتوى الحراري للخطوات التالية في دورة بورن هابر .
 - الخطوة A:
 - الخطوة C :
 - الخطوة G:
 - ٣. احسب طاقة الشبكة البلورية لأكسيد الكالسيوم.
 - ٤. اشرح العوامل التي تؤثر على قيم طاقة الشبكة البلورية

السؤال الربع: هكن حساب طاقة الشبكة البلورية بطريقة غير مباشرة باستخدام دورات بورن-هابر. يوضح الجدول التالي التغيرات في المحتوى الحراري اللازمة لحساب المحتوى الحراري الشبكي لأكسيد الصوديوم Na_2O .

: 1-: H		a la tha a a tha sa	طاقة
الخطوة	تغيير المحتوى الحراري	kJ mol ⁻¹	
A	الألفة الإلكترونية الأولى للأكسجين	-141	
В	الألفة الإلكترونية الثانية للأكسجين	+790	
С	طاقة التأين للصوديوم	+496	
D	تكوين ذرات الأكسجين	+249	
E	تكوين ذرات الصوديوم	+108	
F	تكوين لأكسيد الصوديوم	-414	
G	طاقة الشبكة البلورية لأكسيد الصوديوم		

- ١. اذكر المقصود بمصطلح طاقة الشبكة البلورية .
- ٢. تربط دورة بورن-هابر أدناه طاقة الشبكة البلورية بالمحتوى الحراري لتكوين أكسيد الصوديوم
 في دورة بورن-هابر، اكتب الحرف الصحيح من الجدول السابق في كل مربع.

٣. احسب طاقة الشبكة البلورية المشار إليها في الجدول بالرمز G.

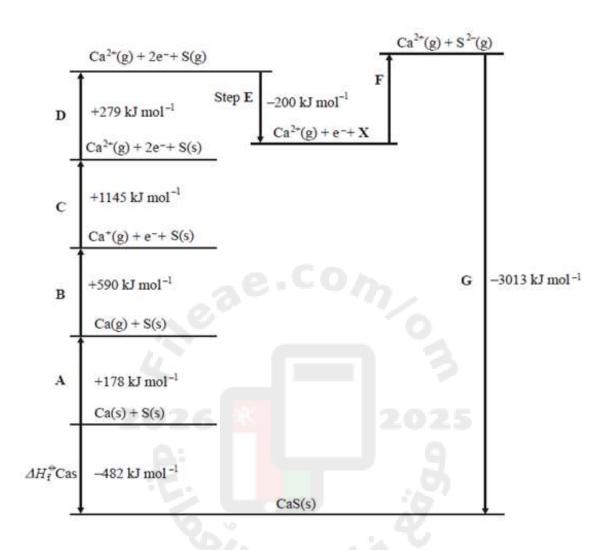
السؤال الخامس: هذا السؤال يتعلق بأكسيد الماغنسيوم، استخدم البيانات من الجدول أدناه المناسبة للإجابة على الأسئلة التي تليه:

البيانات	ΔH / kJ mol-1
طاقة الألفة الإلكترونية الأولى للأكسجين	-142
طاقة الألفة الإلكترونية الثانية للأكسجين	+844
طاقة التذرير للأكسجين	+248

- 1. من حيث القوى المؤثرة على الجسيمات، اقترح سببا واحدا لكون طاقة الألفة الإلكترونية الأولى للأكسجين هو عملية طاردة للحرارة.
 - ٢. أكمل دورة بورن هابر لأكسيد الماغنسيوم مستخدما البيانات في الجدول.

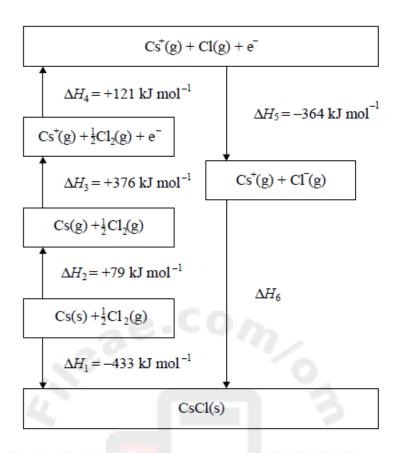
$$Mg^{2+}(g) + \frac{1}{2}O_{2}(g) + 2e^{-}$$

$$+1450 \qquad Mg^{+}(g) + \frac{1}{2}O_{2}(g) + e^{-}$$


$$+736 \qquad Mg(g) + \frac{1}{2}O_{2}(g)$$

$$+150 \qquad Mg(s) + \frac{1}{2}O_{2}(g)$$

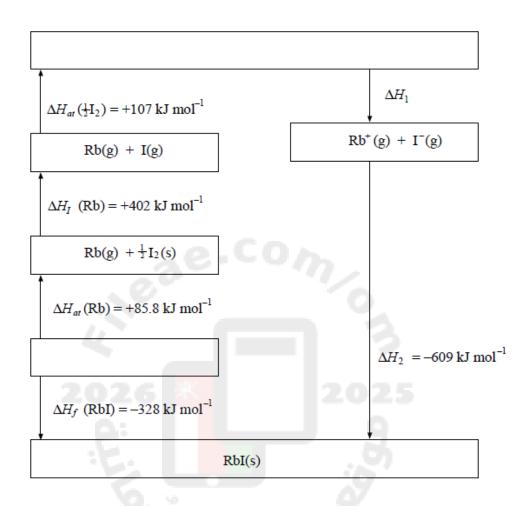
$$-602 \qquad MgO(s)$$


٣. استخدم دورة بورن- هابر في الجزئية (٣) لحساب قيمة المحتوى الحراري طاقة الشبكة البلورية لأكسيد الماغنيسيوم.

السؤال السادس: تظهر أدناه دورة بورن-هابر لتكوين كبريتيد الكالسيوم. تتضمن الدورة التغير في المحتوى الحراري لجميع الخطوات باستثناء الخطوة F. (لم يتم رسم الدورة بشكل كامل).

- 1. اكتب صيغة الجسيم X المتكون في الخطوة E
- وضح لماذا تعتبر الخطوة (F) عملية ماصة للحرارة
- (F,D,B) قم بتسمية التغير في المحتوى الحراري لكل خطوة من الخطوات (F,D,B)
- ٤. اشرح لماذا يكون التغير في المحتوى الحراري للخطوة C أكبر من التغير في الخطوة B.
- ٥. استخدم البيانات الموضحة في الدورة لحساب قيمة تغير المحتوى الحراري للخطوة F.

السؤال السابع: يظهر أدناه مخطط مستوى الطاقة (دورة بورن-هابر) لكلوريد السيزيوم.

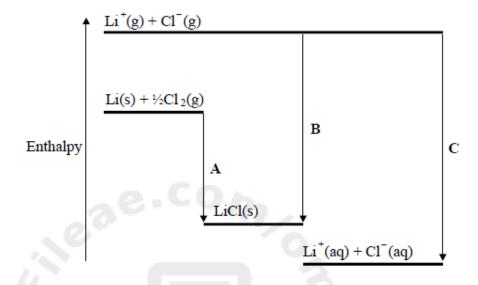


- ΔH_5 ، ΔH_2 ، ΔH_1 ، اكتب أسم التغير في المحتوى الحراري الممثل بالرموز،
 - ٢. احسب قيمة طاقة الشبكة ΔH6.
- ٣. اشرح لماذا يكون التغير في المحتوى الحراري الذي عِثله ΔH_3 أقل قيمة للسيزيوم من للصوديوم

السؤال الثامن: ارسم دورة بورن – هابر لتكوين كلوريد الباريوم الصلب $BaCl_2$ من عناصره. قم بتضمين رموز الحالة الفيزيائية لجميع المواد. ثم استخدم الدورة التي قمت برسمها وبيانات المحتوى الحراري القياسية الواردة أدناه لحسب قيمة الألفة الإلكترونية للكلور.

- $+180~{
 m kJ}~{
 m mol}^{-1}$ المحتوى الحراري لذرات الباريوم
 - $+122~{
 m kJ~mol^{-1}}$ المحتوى الحراري لذرات الكلور
- المحتوى الحراري لتكوين كلوريد الباريوم 1-859 kJ mol
 - المحتوى الحراري التأين الأول للباريوم 1-503 kJ mol+
 - المحتوى الحراري التأين الثاني للباريوم 1-965 kJ mol
- $-2056~{
 m kJ}~{
 m mol}^{-1}$ المحتوى الحراري لتكوين الشبكة من كلوريد الباريوم

السؤال التاسع: ويبين الشكل التالي مخطط مستوى الطاقة (دورة بورن-هابر) لتكوين يوديد الروبيديوم من عناصره.



- ١. أكمل الرسم التخطيطي بكتابة المعادلات الناقصة موضحا الحالة الفيزيائية لكل مادة
 - ΔH_2 و ΔH_1 و المثلة بـ ΔH_2 و عط أسماء التغيرات في المحتوى الحراري المثلة بـ ΔH_2
 - ΔH_1 الذي يمثله المحتوى الحراري الذي يمثله ΔH_1

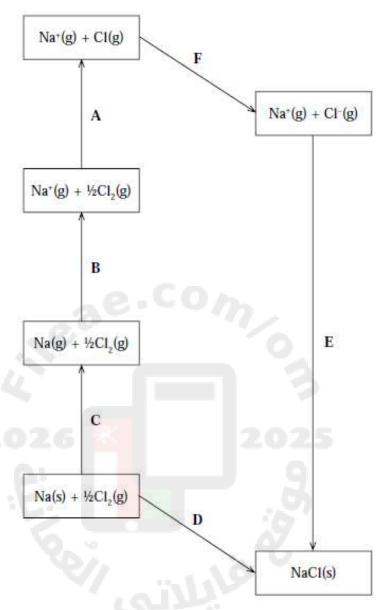
السؤال العاشر: البيانات التالية تتعلق بكلوريد الليثيوم.

 $-37.0~{
m kJ~mol^{-1}}$ التغير في المحتوى الحراري المولي القياسي للمحلول يساوي

طاقة الشبكة البلورية تساوي -846 kJ mol

- أعط اسمًا لكل من التغييرات A وB.
- احسب قيمة التغير في المحتوى الحراري الذي يمثله C واقترح اسم (اسماء) التغيير (التغيرات) في المحتوى الحراري.

السؤال الحادي عشر: أنشئ دورة بورن-هابر لتكوين كلوريد الكالسيوم $CaCl_2$ من عناصره. قم بتسمية كل خطوة في الدورة بوضع رمز المحتوى الحراري المناسب وكتابة المعادلات الكيميائية لكل خطوة موضحا رموز الحالة الفيزيائية لكل مادة .

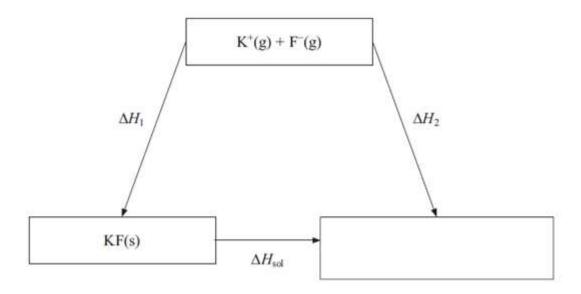

السؤال الثاني عشر: استخدم البيانات الواردة أدناه لحساب المحتوى الحراري القياسي لمحلول CaCl₂.

 $+2255 \text{ kJ mol}^{-1} = \text{CaCl}_2$ طاقة الشبكة البلورية ل

 $-1650 \; \mathrm{kJ} \; \mathrm{mol}^{-1} = \mathrm{ld}$ المحتوى الحراري لتميه أيونات الكالسيوم

 $-384 \; kJ \; mol^{-1} = المحتوى الحراري لتميه أيونات الكلوريد$

السؤال الثالث عشر : دورة بورن-هابر لتكوين كلوريد الصوديوم من الصوديوم والكلور يمكن \ddot{a} ثيلها بسلسلة من الخطوات المسماة من \ddot{A} إلى \ddot{A} كما هو موضح في الشكل التالي :



1. أكمل الجدول أدناه بإضافة الحروف من A إلى F بجانب ما يقابلها من تغيرات الطاقة:

al than thà tatt	: 1 · H ·	ΔH
التغير في المحتوى الحراري	رمز الخطوة	/kJ mol–1
طاقة الشبكة البلورية		-775
تكوين ذرات الصوديوم		+109
تكوين ذرات الكلور		+121
طاقة التأين الأولى للصوديوم		+494
طاقة الألفة الإلكترونية الأولى		
كوين كلوريد الصوديوم		-411

7. احسب الألفة الإلكترونية الأولى للكلور، بوحدة 1-kJ mol من البيانات المعطاة

السؤال الرابع عشر: انظر في دورة هيس أدناه:

- ١. أكمل الدورة عن طريق ملئ المربع الفارغ
- ΔH_2 و ΔH_1 بدلالة كلا من ΔH_{sol} . ΔH_{sol}
 - ΔH_1 اكتب اسم التغير في الطاقة المشار إليه بالرمز . ΔH_1

السؤال الخامس عشر : يمكن استخدام هيدريد الصوديوم NaH لتوليد الهيدروجين لخلايا الوقود. من أجل حساب الألفة الإلكترونية الأولى للهيدروجين، طُلب من أحد الطلاب رسم دورة بورن-هابر لهيدريد الصوديوم. الدورة بها خطأين ولكن البيانات الرقمية كانت صحيحة

- ١. حدد وصحح الخطأين في دورة بورن-هابر.
- 7. احسب الألفة الإلكترونية الأولى للهيدروجين بوحدة kJ mol-1، باستخدام القيم المعطاة في الدورة.

السؤال السادس عشر :يوضح الجدول أدناه التغيرات في المحتوى الحراري اللازمة لحساب المحتوى الحراري للشبكة أكسيد الكالسيوم، CaO.

العملية	تغير المحتوى الحراري 4 kJ mol
طاقة التأين الأولى للكالسيوم	+590
طاقة التأين الثانية للكالسيوم	+1150
الألفة الإلكترونية الأولى للأكسجين	-141
الألفة الإلكترونية الثانية للأكسجين	+ 791
تغير المحتوى الحراري لتكوين أكسيد الكالسيوم	-635
تغير المحتوى الحراري لتذرير الكالسيوم	+178
تغير المحتوى الحراري لتذرير الأكسجين	+248

- ١. وضح سبب كون الألفة الإلكترونية الثانية للأكسجين موجبة.
- 7. أكمل دورة بورن هابر لأكسيد الكالسيوم أدناه. ثم استخدم البيانات الموجودة في الجدول لحساب

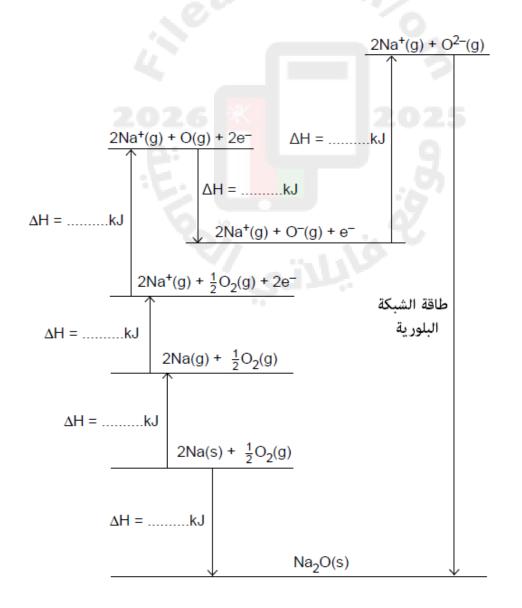
٣. تختلف طاقة الشبكة البلورية لأكسيد الكالسيوم وأكسيد المغنيسيوم، وضح سبب هذا الاختلاف.

السؤال السابع عشر: $_2$ كن تحديد طاقة الشبكة البلورية لكلوريد المغنيسيوم $_2$ $_3$ $_4$ باستخدام دورة بورن-هابر والتغيرات في المحتوى الحراري التالية.

اسم العملية	تغير المحتوى الحراري kJ mol ⁻¹
MgCl_2 التغير المحتوى الحراري لتكوين	-641
التغير المحتوى الحراري لتذرير الماغنيسيوم	+148
طاقة التأين الأولى للماغنيسيوم	+738
طاقة التأين الثانية للماغنيسيوم	+1451
التغير المحتوى الحراري لتذرير الكلور	+123
الألفة الإلكترونية للكلور	-349

- ۱. قم بإنشاء دورة بورن-هابر لـ $MgCl_2$ ، بما في ذلك رموز الحالة، وقم بحساب طاقة الشبكة البلورية لـ $MgCl_2$.
- ٢. اشرح لماذا طاقة الشبكة البلورية لـ NaBr أقل طاردا للحرارة بكثير من ذلك الخاص بـ MgCl

السؤال الثامن عشر: يوضح الجدول أدناه تغيرات المحتوى الحراري اللازمة لحساب تغير المحتوى الحراري تكوين أكسيد الكالسيوم


اسم العملية	تغير المحتوى الحراري kJ mol ⁻¹
ط <mark>اقة ا</mark> لشبكة البلورية لأكسيد الكالسيوم	-3459
طاقة التأين الأولى للكالسيوم	+590
طاقة التأين الثانية للكالسيوم	+1150
طاقة الألفة الإلكترونية للأكسجين	-141
طاقة الألفة الإلكترونية الثانية للأكسجين	+798
التغير المحتوى الحراري لتذرير للأكسجين	+249
التغير المحتوى الحراري لتذرير الكالسيوم	+178

- ١. اشرح لماذا تكون طاقة التأين الأولى للكالسيوم ماصة للحرارة.
- ٢. اشرح سبب كون الألفة الإلكترونية الأولى للأكسجين طاردًا للحرارة
- ٣. ارسم دورة بورن-هابر لأكسيد الكالسيوم (ضمن إجابتك : المعادلات الكيميائية ورموز الحالة الفيزيائية والتغيرات في المحتوى الحراري لكل خطوة)
 - استخدم دورة بورن هابر التي قمت برسمها لحساب التغير في المحتوى الحراري لتكوين أكسيد الكالسيوم .
- ٥. طاقة الشبكة البلورية لأكسيد الحديد الثنائي تساوي ($^{-1}$ 4920 kJ mol) اقترح سببًا للاختلاف في طاقة الشبكة البلورية بين أكسيد الكالسيوم وأكسيد الحديد ($^{(II)}$).

السؤال التاسع عشر : يوضح الجدول أدناه التغيرات في المحتوى الحراري اللازمة لبناء دورة بورن-هابر لأكسيد Na_2O .

اسم العملية	تغير المحتوى الحراري 4-kJ mol
طاقة التأين الأولى للصوديوم	+495
الألفة الإلكترونية الأولى للأكسجين	-141
الألفة الإلكترونية الثانية للأكسجين	+791
التغير في المحتوى الحراري للتكوين لأكسيد الصوديوم	-416
التغير في المحتوى الحراري لتذرير للصوديوم	+109
التغير في المحتوى الحراري لتذرير للأكسجين	+247

1. استخدم جدول تغيرات المحتوى الحراري لإكمال دورة بورن - هابر عن طريق لأكمال القيم العددية الصحيحة على الخط المنقط المناسب.

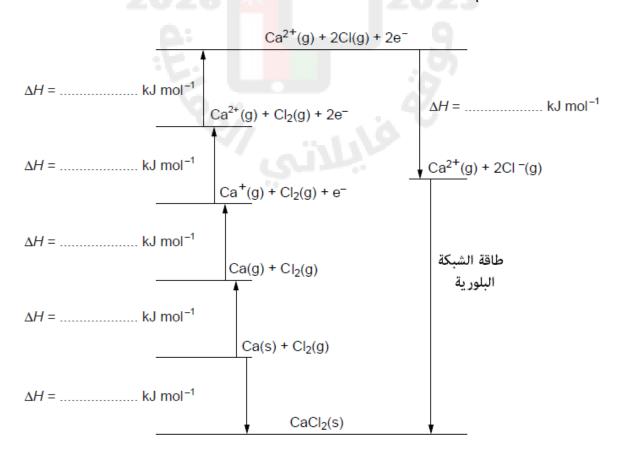
٢. استخدم دورة بورن - هابر السابقة لحساب طاقة الشبكة البلورية لأكسيد الصوديوم.

٣. أي من المركبات التالية له أكبر طاقة شبكة بلورية؟

• كلوريد الكالسيوم

• بروميد الكالسيوم

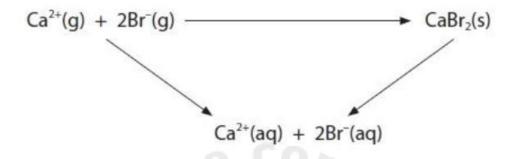
• كلوريد البوتاسيوم


• بروميد البوتاسيوم

فسر إجابتك بدلالة الأيونات الموجودة.

السؤال العشرون : يوضح الجدول أدناه التغيرات في المحتوى الحراري اللازمة لحساب المحتوى الحراري للشبكة كلوريد الكالسيوم $CaCl_2$.

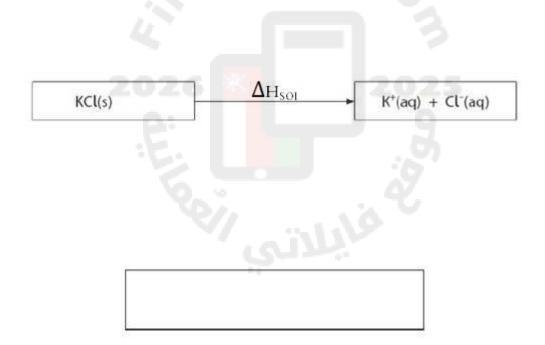
اسم العملية	تغير المحتوى الحراري 4-kJ mol
طاقة التأين الأولى الكالسيوم	+590
طاقة التأين الثانية الكالسيوم	+1150
طاقة الألفة الإلكترونية للكلور	-348
التغير في المحتوى الحراري لتكوين كلوريد الكالسيوم	-796
التغير في المحتوى الحراري لتذرير الكالسيوم	+178
التغير في المحتوى الحراري لتذرير الكلور	+122


١. استخدم جدول التغيرات في المحتوى الحراري لإكمال دورة بورن-هابر وضع القيم العددية الصحيحة على
 الخط المنقط المناسب.

٢. استخدم دورة بورن - هابر لحساب طاقة الشبكة البلورية لكلوريد الكالسيوم .

٣. وضح سبب اختلاف طاقة الشبكة البلورية لفلوريد الماغنيسيوم عن طاقة الشبكة البلورية لكلوريد الكالسيوم .

السؤال الحادي والعشرون: هذا السؤال يتعلق بالطاقات الشبكية. يمكن استخدام دورة طاقة مختلفة لحساب طاقة الشبكة.


التغير في المحتوى الحراري	القيمة 4 kJ mol ⁻¹
التغير في الم <mark>حتوى</mark> الحراري لمحلول CaBr ₂	-73
التغير في المحتوى الحراري لتميه +Ca	-1577
التغير في المحتوى الحراري لتميه ⁻ Br	-336

احسب طاقة الشبكة البلورية لبروميد الكالسيوم.

السؤال الثاني والعشرون: هذا السؤال يدور حول تغيرات المحتوى الحراري وتغيرات الطاقة. استخدم البيانات الموجودة في الجدول للإجابة عن الأسئلة التي تليه:

التغير في المحتوى الحراري	القيمة kJ mol ⁻¹
التغير في المحتوى الحراري لتميه البوتاسيوم	-322
التغير في المحتوى الحراري لتميه الكلوريد	-1650
التغير في المحتوى الحراري لمحلول كلوريد البوتاسيوم	+17.2
طاقة الشبكة البلورية لكلوريد البوتاسيوم	-711

- ١. اذكر خاصيتي الأيونات المؤثرتين في قيمة التغير في المحتوى الحراري للتميه .
- ٢. احسب التغير في المحتوى الحراري لتميه أيونات الكلوريد بعد إكمال دورة الطاقة التالية:

