تدريبات على الوحدة الثالثة طاقة الشبكة البلورية مع نموذج الإجابة

تم تحميل هذا الملف من موقع المناهج العمانية

موقع فايلاتي ← المناهج العمانية ← الصف الثاني عشر ← كيمياء ← الفصل الأول ← ملفات متنوعة ← الملف

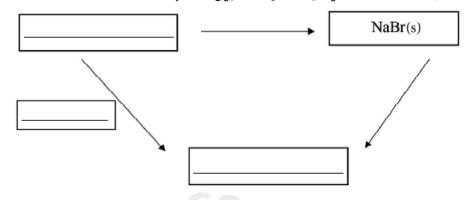
تاريخ إضافة الملف على موقع المناهج: 2921-2025 12:23:16

ملفات اكتب للمعلم اكتب للطالب ا اختبارات الكترونية ا اختبارات ا حلول ا عروض بوربوينت ا أوراق عمل منهج انجليزي ا ملخصات وتقارير ا مذكرات وبنوك ا الامتحان النهائي ا للمدرس

المزيد من مادة كيمياء:

التواصل الاجتماعي بحسب الصف الثاني عشر

صفحة المناهج العمانية على فيسببوك


المزيد من الملفات بحسب الصف الثاني عشر والمادة كيمياء في الفصل الأول	
ملخص ومراجعة الوحدة الثانية الوراثة بطريقة سؤال وجواب	1
ملخص ومراجعة الوحدة الأولى الأحماض النووية وبناء البروتينات بطريقة سؤال وجواب	2
إجابات الأسئلة وفق معايير النجاح للوحدة الثانية (المجالات الكهربائية)	3
كراسة الوحدة الثانية الكيمياء الكهربائية منهج كامبريدج	4
كراسة الوحدة الثالثة طاقة الشبكة البلورية منهج كامبريدج	5

الوحدة الثالثة: تدريبات على طاقة الشبكة البلورية

للاغنيسيوم (MgBr ₂) هي: (ظلّل الشكل () أمام الإجابة الصحيحة)	المعادلة التي تصف طاقة الشبكة البلورية لبروميد الم
(- 1	$Mg Br_2(s) \longrightarrow Mg^{2+}(g) + 2Br^{-}(g)$
	$Mg Br_2(s) \longrightarrow Mg^{2+}(aq) + 2Br^{-}(aq)$
	$Mg^{2+}(g) + 2Br^{-}(g) \longrightarrow Mg Br_2(s)$
[1]	$Mg^{2+}(aq) + 2Br^{-}(aq) \longrightarrow Mg Br_2(s)$
	COM
كالسيوم (CaO) عن تلك التي لكبريتيد	صف كيف تختلف طاقة الشبكة البلورية لأكسيد ال
	السترونشيوم (SrS). ثم اشرح السبب.
2026	2025
p :	9
: [:	.,51
[2]	47.
% // US	

aكن حساب التغير في المحتوى الحراري لذوبان بروميد الصوديوم (NaBr) من خلال معرفة طاقة الشبكة البلورية والتغير في المحتوى الحراري لتميّه كل من أيونات البروميد (Br^-) وأيونات الصوديوم (Na^+) .

أكمل حلقة الطاقة الآتية واضعًا لها العناوين المناسبة.

[3]

باستخدام القيم الواردة في الجدول(-7-1). القيمة التي تمثل الألفة الإلكترونية الثانية للكبريت $EA_2[S]$ بوحدة (K_2 mol) في مركب كبريتيد البوتاسيوم (K_2 S) هي:

(ظلّل الشكل (□) أمام الإجابة الصحيحة)

قيمة التغير (KJ/mol)	نوع التغير في المحتوى الحراري
-381	التغير في المحتوى الحراري لتكوين كبريتيد البوتاسيوم
-2116	طاقة الشبكة البلورية لكبريتيد البوتاسيوم
+419	طاقة التأين الأولى للبوتاسيوم
-200	الألفة الالكترونية الأولى للكبريت
+89	التغير في المحتوى الحراري لتذرير البوتاسيوم
+279	التغير في المحتوى الحراري لتذرير الكبريت

الجدول (۲۰-۱)

> تجميع الاستاذة: ايمان الهدابية معلم أول كيمياء مدرسة أم قيس الأسدية (١٠١٠)

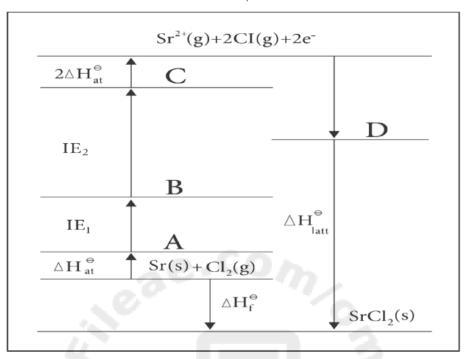
يوضح الجدول (٢١-١) التغيرات في المحتوى الحراري اللازمة لحساب طاقة الشبكة البلورية لأكسيد الماغنيسوم.

ارسم مخطط مستوى طاقة بورن – هابر واضعًا له العناوين المناسبة.

قيمة التغير (KJ/mol)	نوع التغير في المحتوى الحراري
-3842	$\Delta H_{latt}^{\theta}[MgO(s)]$
+148	$\Delta H^{\theta}_{at}[Mg(s)]$
+249	$\Delta H^{\theta}_{at}[\frac{1}{2}O_2(g)]$
+736	$IE_1[Mg(g)]$
+1450	$IE_2[Mg(g)]$
-141	$\mathrm{EA}_1[\mathrm{O}(g)]$
+798	$EA_2[O(g)]$

لجدول (۲۱–۱)

	7
2026	2025
6:	9
9 . •	. 47.
~//	1119
لي	31.
[5]	


يوضّح الجدول (١٦-١) قيم الألفة الإلكترونية الأولى لبعض عناصر المجموعة (16) في الجدول الدوري.

قيمة الألفة الإلكترونية الأولى (kJ/mol)	العنصر
-141.1	О
-200	S
-195	Se
-190	Те

الجدول (١٦١)

[1]	ي قمثل الألفة الإلكترونية الأولى للسيلينيوم (Se).	أ. اكتب المعادلة التو
الأكسجين (O) عن بقية	في غط تدرج قيمة الألفة الإلكترونية الأولى لعنصر له في الجدول (١٦-١١).	
[1]		

يوضِّح الشكل (١-١٧) مخطط مستوى طاقة بورن – هابر غير مكتمل والمستخدم لحساب قيمة طاقة الشبكة البلورية لكلوريد السترونشيوم ($SrCl_2$).

الشكل (۱۰۱۷)

أ. اذكر المقصود مصطلح طاقة الشبكة البلورية.

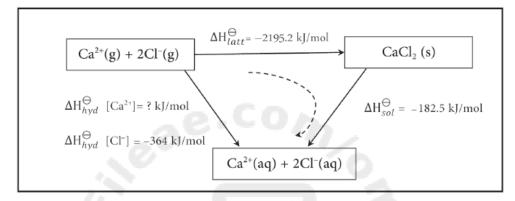
[2]

ب. اكتب المعادلات التي تمثلها الرموز (A, B, C, D).

[4] _____

تجميع الاستاذة: ايمان الهدابية معلم أول كيمياء مدرسة أم قيس الأسدية (١٠-١٢)

Na⁺


Li⁺ □

Rb⁺ □

K⁺ □

[1]

يوضّح الشكل (١-١٩) حلقة طاقة بسيطة للتغيرات في المحتوى الحراري لإذابة (CaCl₂) في الماء.

الشكل (١٩-١)

 ΔH^{\ominus}_{hyd} $[Ca^{2+}]$ احسب قيمة التغير في المحتوى الحراري لتميّه أيون الكالسيوم

ما الترتيب الصحيح للمركبات الآتية في ضوء تناقص قيم طاقة الشبكة البلورية؟ (ظلّل الشكل () أمام الإجابة الصحيحة)

SrO > CaO > MgO

MgO > CaO > SrO

CaO > MgO > SrO

CaO > SrO > MgO

[1]

[2]_

تجميع الاستاذة: ايمان الهدابية معلم أول كيمياء مدرسة أم قيس الأسدية (١٠-١٠)

فسّر ذلك.

	لبلورية أقل استقرارًا من بين الأملاح الآتية هو:	الملح الذي تكون شبكته اا
بة الصحيحة)	(ظلّل الشكل () أمام الإجا	
	LiCl(s)	NaCl(s)
	KCl(s)	CsCl(s)
[1]		
الجدول الدوري:	م الألفة الإلكترونية الأولى لبعض عناصر المجموعة (17) في	عِتِّل الجدول (١٧-١) قيد
	قيمة الألفة الإلكترونية الأولى (EA ₁) (kJ/mol)	العنصر
	-328.0	F
	-348.0	Cl
	-324.6	Br
	-295.4) I
,	الجدول (۱-۱۷)	2.5
	ى تمثل الألفة الإلكترونية الأ <mark>ولى لل</mark> بروم (Br).	أ. اكتب المعادلة التـ
	(55, 65 2.5	
[1]	6/,	
نصر اليود (I).	إلكترونية الأولى عندما ننتقل من عنصر الكلور (Cl) الى ع	ب. تقل قيمة الألفة ال

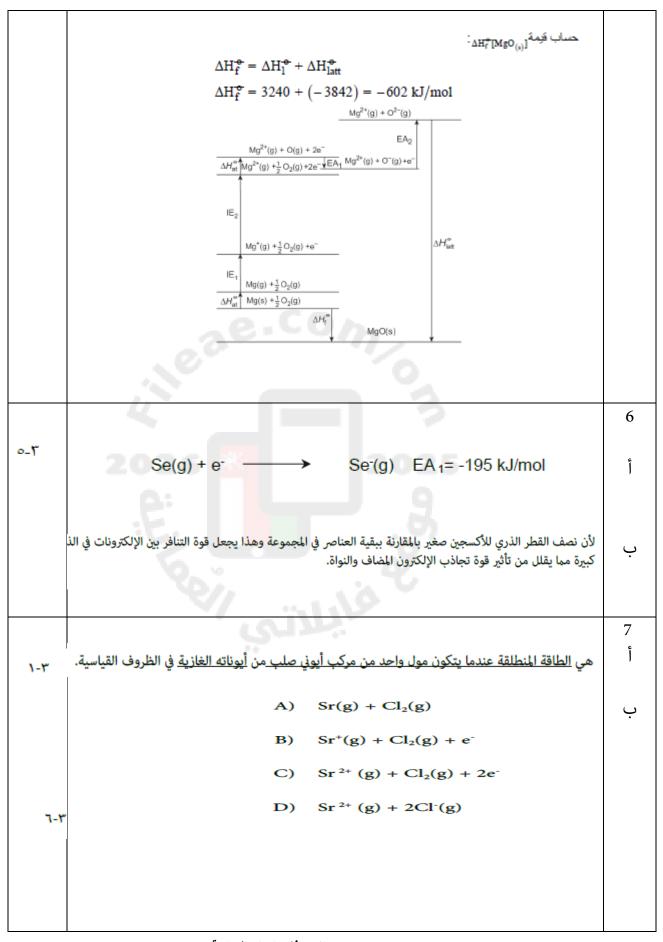
تجميع الاستاذة: ايمان الهدابية معلم أول كيمياء مدرسة أم قيس الأسدية (١٠-١٢)

[1]___

يوضِّح الجدول (١-١٨) قيم التغيرات في المحتوى الحراري المستخدمة لحساب قيمة طاقة الشبكة البلورية لكلوريد السترنشيوم ($SrCl_2$):

قيمة التغير في المحتوى الحراري (kJ/mol)	نوع التغير في المحتوى الحراري
+549	طاقة التأين الأولى للسترنشيوم (IE_1)
+1064	طاقة التأين الثانية للسترنشيوم (IE_2)
-349	الألفة الإلكترونية الأولى للكلور (EA ₁)
-827	$(\Delta \mathrm{H}_{\mathrm{f}}^{\ominus})$ التغير في المحتوى الحراري لتكوين كلوريد السترنشيوم
+164	التغير في المحتوى الحراري لتذرير السترنشيوم (ΔH_{at}^{\ominus})
+122	التغير في المحتوى الحراري لتذرير الكلور (ΔH_{at}^{Θ})

الجدول (۱۸-۱)


	استخدم القيم الموجودة في الجدول لحساب قيمة طاقة الشبكة البلورية ($\Delta H_{latt}^{\ominus}$) لكلوريد المرتبد ا
	لسترنشيوم (SrCl_2)، موضّحًا خطوات الحل.
	:E
	2
	6/1 1/2
	میلانی)
3]	

	سم حلقة طاقة بسيطة واستخدمها لحساب قيمة التغير في المحتوى الحراري لذوبان بروميد ليثيوم (ΔH_{sol}^{Θ}).
	: [,]
	6 . 4
	6/1 1/9
	CILL
	**
[5]	

غوذج الإجابة (تدريبات على الوحدة ٣)

الهدف	الإجابة	رقم
		المفرد
		ö
1 - 5	$Mg_{(g)}^{2+} + 2Br_{(g)}^{-} \longrightarrow MgBr_{2(s)}$	1
۸ – ۳	تكون طاقة الشبكة البلورية لأكسيد الكالسيوم أكثر طرداً للحرارة . يمثلك أيون الكالسيوم حجما أصنغر وتكون كثافة الشحنة عليه أكبر مقارنة بأيون السنرونشيوم، ويمثلك أيون الأكسيد حجما أصنغر وكثافة الشحنة عليه أكبر مقارنة بأيون الكبرينيد وبالتالي تكون طاقة الشبكة البلورية أكثر طردا كلما الأيون أصنغر أو كثافة الشحنة أكبر على الأيونات.	2
1 5	ΔH_{hyd}^{\bullet} $Na_{(aq)}^{+} + Br_{(aq)}^{-}$ $Na_{(aq)}^{+} + Br_{(aq)}^{-}$	3
٧ – ٣	+640	4
7 - 4	$\Delta H_{latt}^{\bullet\bullet} = \Delta H_{f}^{\bullet} - \Delta H_{l}^{\bullet}$ $\Delta H_{latt}^{\bullet} = \Delta H_{at}^{\bullet}[Mg_{(s)}] + IE_{l}[Mg_{(g)}] + IE_{2}[Mg_{(g)}]$ $+ \Delta H_{at}^{\bullet}[\frac{1}{2}O_{2(g)}] + EA_{l}[O_{(g)}] + EA_{2}[O_{(g)}]$ $\Delta H_{l}^{\bullet} = 148 + 736 + 1450 + 249 + (-141) + 798$ $\Delta H_{l}^{\bullet} = + 3240 \text{ kJ/mol}$	5

تجميع الاستاذة: ايمان الهدابية معلم أول كيمياء مدرسة أم قيس الأسدية (١٠-١٢)

تجميع الاستاذة: ايمان الهدابية معلم أول كيمياء مدرسة أم قيس الأسدية (١٠-١٢)

9-8	Rb⁺	8
11-7	$\Delta H_{hyd}^{\Theta}[Ca^{2+}] = (\Delta H_{latt}^{\Theta} + \Delta H_{sol}^{\Theta}) - (2\Delta H_{hyd}^{\Theta}[Cl^{-}])$ $\Delta H_{hyd}^{\Theta}[Ca^{2+}] = [(-2195.2) + (-182.5)] - (2 \times -364)$ $= -1649.7 \text{ kJ/mol}$	9
۱-۳ ب	MgO > CaO > SrO	10
۳-۱ب	CsCl(s)	11
٤-٣	$Br(g)+e^- \rightarrow Br^-(g)$ $EA_1 = -324.6 \text{ kJ/mol}$	12 j
0-4	- بسبب زيادة عدد الإلكترونات في المجموعة فكلما انتقالنا من الأعلى إلى الأسفل فيزداد نصف القطر الذري ونصف القطر الأيوني فتكون الإلكترونات الخارجية أبعد عن الشحنة النووية فتقل قوى التجاذب بين النواة والإلكترونات. أو أو بسبب زيادة عدد مستويات الطاقة فتكون الإلكترونات الخارجية أبعد عن النواة وبالتالي تقل قوى التجاذب بين الإلكترون المضاف والنواة .	ب
٧-٣	$ \Delta H_{latt}^{\theta} = \Delta H_{f}^{\theta} - \left[\Delta H_{at}^{\theta} [Sr] + IE_{1}[Sr] + IE_{2}[Sr] + 2\Delta H_{at}^{\theta} [Cl] \right] + 2EA_{1}[Cl] $ بالتعویض $ \Delta H_{latt}^{\theta} = (-827) - \left[(+164) + (+549) + (+1064) + 2(+122) + 2(-349) \right] $ $ \Delta H_{latt}^{\theta} = -2150 \text{ kJ/mol} $	13
(19-4)	$Li^+ > Na^+ > K^+$	14
(10-17)	نرسم حلقة طاقة بسيطة $\Delta H_{latt}^{\theta} = -807kJ/mol$ $\Delta H_{hyd}^{\theta}[Li^{+}] = -519kJ/mol$ $\Delta H_{hyd}^{\theta}[Br^{-}] = -337kJ/mol$ $\Delta H_{sol}^{\theta} = \Delta H_{hyd}^{\theta} - \Delta H_{latt}^{\theta}$ غرصي قيمة $\Delta H_{sol}^{\theta} = \Delta H_{hyd}^{\theta} - \Delta H_{latt}^{\theta}$ غرصي قيمة المعادلة	15

تجميع الاستاذة: ايمان الهدابية معلم أول كيمياء مدرسة أم قيس الأسدية (١٠-١٢)