

مدرسة التميز النموذجية

الملف أوراق عمل تقويمية للمفاهيم الجبرية والتحليلية

موقع المناهج ← ملفات الكويت التعليمية ← الصف التاسع ← رياضيات ← الفصل الأول

المزيد من الملفات بحسب الصف التاسع والمادة رياضيات في الفصل الأول				
حل كراسة التمارين في مادة الرياضيات	1			
كتاب الطالب لعام 2018	2			
مراجعة عامة مهمة في مادة الرياضيات	3			
نماذج اختبارات قصيرة 2016في مادة الرياضيات	4			
حلول واجابات كراسة التمارين في مادة الرياضيات	5			

مدرسة التميز النموذجية قسم الرياضيات المرحلة المتوسطة

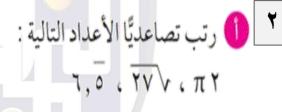
أوراق عمل الامتحان التقويمي الأول

للصف الناسخ العام الدراسي ٢٠٠٦/٢٠٦٥ العام الدراسي الأول

خمسة وعشرون عاما من التميز

العام الدراسي : ٢٠٢٥ / ٢٠٢٦ المجال الدراسي رياضيات الفصل الدراسي الأول الاختبار التقويمي الأول

وزارة التربية الإدارة العامة للتعليم الخاص مدرسة التميز النموذجية قسم الرياضيات – المرحلة المتوسطة


اوراق عمل للصف التاسع

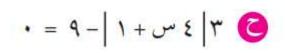
أولا (الاسئلة المقالية):

السوال الأول

ا قارِن بين العددَين: π ، ۳,۱٤ (أ

7,.,7

السؤال الثاني


$$7 = m = 7$$

أوجِد مجموعة حلّ كلّ من المعادلات الآتية في ح



خمسة وعشرون عاماً من التمير

- ١ حلِّل كلًّا ممّا يلي تحليلًا تامًّا:
 - آ س^۳ ۲۷

- ا مان
- ك ٥٤ ص ٢ص

- ٠,٠٠٨ ه

السؤال الرابع

- حدًّد ما إذا كانت الحدودية الثلاثية الآتية مربِّعًا كاملًا أم لا ? ثمّ حلًل الحدودية إذا كانت مربِّعًا كاملًا . w'+10 + 10
 - ٢ حلِّل تحليلًا تامًّا: ٢٠ س ٢٠ س + ٥

الله أوجِد قيمة جـ التي تجعل الحدودية الثلاثية الآتية مربعًا كاملًا:

٩ س + جـ س ص + ٤٩ ص

حلًا الحدودية الآتية بطريقة إكمال المربّع : خمسة وعشرون عاماً من التمين $\mathbf{w}^{\mathsf{Y}} = \mathbf{v}$ س + \mathbf{v}

ثانيا (الاسئلة الموضوعية):

ظلل (أ) إذا كانت الإجابة صحيحة وظلل (ب) إذا كانت الإجابة غير صحيحة.

÷	Í	الأعداد : $\sqrt{}$ ، π ، π ، π ، π مرتَّبة ترتيبًا تنازليًّا .	1
(i	Í	مجموعة حلّ المعادلة س = -٣ في ح ، هي { ٣ ، -٣ }	
(1)	1	إذا كانت س = ٤ ، فإنّ قيمة س - ٤ + ٧ هي ٧	٣
(i		$\left(\frac{1}{q} + \omega + \frac{1}{r} + \frac{1}{r}\right) \left(\frac{1}{r} - \omega\right) = \frac{1}{r} - \frac{r}{r}$	٤
(i	Î	المقدار الثلاثي $m^7 + m + \frac{1}{3}$ مربّع كامل	٥

لكل بند من البنود التالية أربعة اختيارات واحد فقط منها صحيح ، ظلل الدائرة الداله علي الاجابة الصحيحة .

الفترة الممثّلة على خطَ الأعداد \leftarrow هي: $\frac{1}{7}$ (∞) \Rightarrow ($-\infty$, $\frac{1}{7}$) د ($-\infty$, $\frac{1}{7}$)	_ 0
إذا كان ٢ = ١٠، ب ٢ = ٢، فإنّ (١ + ب) (٢ - أب + ب) =	٦
أ -٨ ب ٨ فسة في ١٠ من التميود ٢٠	
$=1+^{r}(1-\omega)$	٧
آ س (س ^۲ - ۳س + ۳)	
ب س (س۲ + ۳ س + ۳) د س (س۲ - ۳ س - ۳)	
قيمة جـ التي تجعل الحدودية الثلاثية س٢ - ٦ س + جـ مربّعًا كاملًا هي:	٨
اً -٩ ب ب ۳ ع ٩	

وزارة التربية الإدارة العامة للتعليم الخاص مدرسة التميز النموذجية قسم الرياضيات ـ المرحلة المتوسطة

العام الدراسي : ٢٠٢٥ / ٢٠٢٦ المجال الدراسي رياضيات الفصل الدراسي الأول الاختبار التقويمي الأول

اوراق عمل للصف التاسع (نموذج الإجابة)

أولا (الاسئلة المقالية):

السؤال الأول

قارِن بين العددَين:

π. ٣, ١٤ (1)

الحلّ :

ب ۲٫۰، ٥ الحلّ :

 $.,177 \approx .,\overline{7}$ $.,7 = \frac{r}{0}$.,7 < .,777 $\frac{r}{0} < .,\overline{7} :$

🚺 رتب تصاعديًّا الأعداد التالية:

7,0 , ΥΥ ν , πΥ

 $7, Y \land Y \approx \pi Y$

0,197 = YV V

7,007≈7,0

إذًا الترتيب التصاعدي : ٧ ٢٧ ، ٣ ، ٥ , ٣

$$\overline{\Lambda}$$
 \vee \wedge π $\overline{\pi}$ $\overline{\pi}$ $\overline{\pi}$ $\overline{\pi}$ $\overline{\pi}$ $\overline{\pi}$

$$\pi$$
 - ، π - ، π

السؤال الثاني

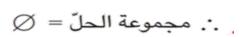
$$- = m$$
 إذا كانت $m = -7$

الحل:

أوجِد مجموعة حلّ كلّ من المعادلات الآتية في ح:

۲ = | ۲ س ۲ |

الحلّ :


$$7 + 1 = 7$$
 $7 + 1 = 7$
 $7 + 1 = 7 = 7$
 $7 + 1 = 7 = 7$
 $7 + 1 + 1 = 7 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$
 $7 + 1 + 1 = 7$

∴ مجموعة الحلّ = { ١ ، -٢ }

۱ = ۷ + | ۱ + ۷ = ۱

الحلّ :

$$1 = V + | 1 + w$$
 $\xi |$
 $V-1 = V-V+| 1+w$ $\xi |$
 $3 = | 1 + w$ $\xi |$

الحلّ :

$$9 = 9 + | Y - \omega \circ 0 |$$

 $9 - 9 = 9 - 9 + | Y - \omega \circ 0 |$
 $0 - | Y - \omega \circ 0 |$

$$\frac{Y}{0} = \infty$$

$$\therefore \text{ apage and lead} = \left\{ \frac{7}{6} \right\}$$

الحلّ :

فمسة وعشرون عاماً من التمير

m = m = m

 $m = \cot$

m + m = m + m = m + mس

$$7 = \left| w - r \right|$$

$$7 \times \frac{1}{r} = \left| w - r \right|$$

$$7 \times \frac{1}{r} = \left| w - r \right|$$

$$\Upsilon + \Upsilon = \Upsilon + \Upsilon = \Psi$$

الحل:

فمسة وعشرون عاماً من التمير

السؤال الثالث

١ حلِّل كلًّا ممّا يلي تحليلًا تامًّا:

الحلّ

$$(9 + m^{2} + 7m) (m - 7) = 77$$

الحلّ :

الحلّ :

$$(1 - a^{7} \dot{0}^{7} + a^{7} \dot{0}^{7}) (1 + a^{7} \dot{0}^{7})$$

ك ٥٤ ص - ٢ص

الحلّ :

۰,۰۰۸ 🛦

خمسة وعشرون عاماً من التميز

الحل:

$$(^{\mathsf{Y}}\mathsf{u} + \mathsf{u}^{\mathsf{Y}} + \mathsf{v}, \mathsf{v} + \mathsf{v}, \mathsf{v})$$
 $(^{\mathsf{Y}}\mathsf{u} + \mathsf{u}^{\mathsf{Y}}) = (^{\mathsf{Y}}\mathsf{u} + \mathsf{v}, \mathsf{v}) + (^{\mathsf{Y}}\mathsf{u} + \mathsf{u}^{\mathsf{Y}})$

الحلّ :

$$\left(\begin{array}{cc} 1 & 1 & 1 \\ 1 & 1 \end{array}\right) \left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array}\right) \left(\begin{array}{ccc} 1 & 1 \end{array}\right) \left(\begin{array}{ccc} 1 & 1 \\ 1 & 1 \end{array}\right) \left(\begin{array}{ccc} 1 & 1 \end{array}\right) \left(\begin{array}$$

$$(3^{7} - 1) = 7 (3^{7} - ...)$$

$$= 7 (3 - ...) (... 3^{7} + 73 + ...)$$

السؤال الرابع

حدًّد ما إذا كانت الحدودية الثلاثية الآتية مربّعًا كاملًا أم لا ? ثمّ حلّل الحدودية إذا كانت مربّعًا كاملًا . w'+1 س w'+1

الحل:

- هل س' مربّع كامل ؟ الإجابة: نعم
 - هل ٢٥ مربّع كامل ؟ الإجابة: نعم
- هل الحدّ الأوسط ضعف حاصل ضرب س×٥

حلِّل تحليلًا تامًّا : ٢٠ س * - ٢٠ س + ٥

الحل 🛭

أوجِد قيمة جا التي تجعل الحدودية الثلاثية الآتية مربعًا كاملًا:

٩ س + ٩ ص س + ٤٩ ص

الحلّ :

حلِّل الحدودية الأتية بطريقة إكمال المربِّع :خمسة وعشرون عاماً من التمين

س^۲ – ٦ س + ۸

الحلّ :

٤

 $\frac{w' - \Gamma w + \Lambda}{e^{2}}$ لیست مربّعٔ اکاملًا $\frac{v' - \Gamma w}{e^{2}}$ یصبح $\frac{v' - \Gamma w}{e^{2}}$ مربّع نصف معامل $\frac{v' - \Gamma w}{e^{2}}$ مربّع نصف معامل $\frac{v' - \Gamma w}{e^{2}}$ الحدودية المطلوب تحليلها يلزم طرح $\frac{v' - \Gamma w}{e^{2}}$ $\frac{v' - \Gamma w}{e^$

ثانيا (الاسئلة الموضوعية):

ظلل (أ) إذا كانت الإجابة صحيحة وظلل (ب) إذا كانت الإجابة غير صحيحة.

	Í	الأعداد : $\sqrt{}$ ، $\sqrt{}$ ، π - ، π ، $\sqrt{}$ ، $\sqrt{}$ الأعداد : $\sqrt{}$ ، $\sqrt{}$ ، $\sqrt{}$ ، $\sqrt{}$ ، $\sqrt{}$ ، $\sqrt{}$	١
	Î	مجموعة حلّ المعادلة $\mid m \mid = -7$ في ح ، هي $\{ 7 , -7 \}$	
(j.)		إذا كانت س = ٤ ، فإنّ قيمة س - ٤ + ٧ هي ٧	٣
(\mathbf{f})		$\left(\frac{1}{q} + \frac{1}{m} + \frac{1}{r} + \frac{1}{m}\right) \left(\frac{1}{m} - \frac{1}{r}\right) = \frac{1}{r} - \frac{1}{r}$	٤
(t)		المقدار الثلاثي $m^7 + m + \frac{1}{3}$ مربّع كامل	٥

لكل بند من البنود التالية أربعة اختيارات واحد فقط منها صحيح ، ظلل الدائرة الداله علي الاجابة الصحيحة .

الفترة الممثّلة على خطَ الأعداد $\leftarrow \odot$ هي: $\frac{1}{\gamma}(\frac{1}{\gamma}, \infty)$ ب $(-\infty, \frac{1}{\gamma})$ ج $(-\infty, \frac{1}{\gamma})$	0
$= (^{7} + ^{7} - ^{7}) (^{7} + ^{7}) = ^{7}$ إذا كان $^{7} = ^{7}$ ، $^{7} = ^{7}$ ، فإنّ $^{7} = ^{7}$	٦
أ -٨ باماً من التميين د ٢٠	-
(س - ۱ + ^۳ (۱ – س)	٧
س (س ۲ - ۳ س + ۳) ح س (س ۲ + ۳ س - ۳)	
ب س (س۲ + ۳ س + ۳) د س (س۲ - ۳ س - ۳)	
قيمة جـ التي تجعل الحدودية الثلاثية س٢ - ٦ س + جـ مربّعًا كاملًا هي:	٨
اً -٩ پ ۳ پ ۹ ا	

