تم تحميل هذا الملف من موقع ملفات الكويت التعليمية

com.kwedufiles.www//:https

*للحصول على أوراق عمل لجميع الصفوف وجميع المواد اضغط هنا

* للحصول على أوراق عمل لجميع مواد الصف الثاني عشر العلمي اضغط هنا

https://kwedufiles.com/14

* للحصول على جميع أوراق الصف الثاني عشر العلمي في مادة رياضيات ولجميع الفصول, اضغط هنا

https://kwedufiles.com/14math

* للحصول على أوراق عمل لجميع مواد الصف الثاني عشر العلمي في مادة رياضيات الخاصة بـ الفصل الثاني اضغط هنا https://www.kwedufiles.com/14math2

* لتحميل كتب جميع المواد في جميع الفصول للـ الصف الثاني عشر العلمي اضغط هنا

https://www.kwedufiles.com/grade14

* لتحميل جميع ملفات المدرس تقارير للطلبة اضغط هنا

للحصول على جميع روابط الصفوف على تلغرام وفيسبوك من قنوات وصفحات: اضغط هنا bot_kwlinks/me.t//:https

الروابط التالية هي روابط الصف الثاني عشر العلمي على مواقع التواصل الاجتماعي

مجموعة الفيسبوك

صفحة الفيسبوك

مجموعة التلغرام

بوت التلغرام

قناة التلغرام

رياضيات على التلغرام

وزارة التربية

الإدارة العامة لمنطقة انقر أو اضغط هنا لإدخال نص.التعليمية

مدرسة : انقر أو اضغط هنا لإدخال نص.

الاسم : انقر أو اضغط هنا لإدخال نص. الصف : انقر أو اضغط هنا لإدخال نص. اسم المعلم : انقر أو اضغط هنا لإدخال نص.

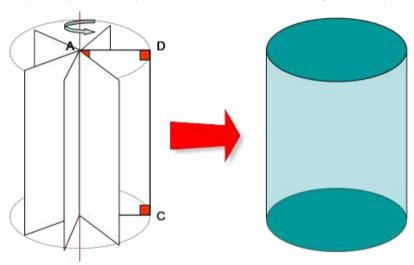
تقرير الرياضيات : حجوم الأجسام الدورانية

تطبيق(1) : حاول أن تحـ 2ــل صفحـ 78ـــة :

باستخدام التكامل المحدد أوجد حجم المجسم الناتج من دوران المنطقة المستوية دورة كاملة حول محور السينات و المحددة بمنحنى الدالة: $f(x)=r,r\neq 0$ في الفترة $f(x)=r,r\neq 0$

الحل : الحجم هو :

$$V = \pi \int_{0}^{h} (f(x))^{2} dx$$


$$\therefore V = \pi \int_{0}^{h} (r)^{2} dx$$

$$\frac{1}{6}\pi[r^2x]_0^h$$

$$i\pi[(r^2(h))-(r^2(0))]=\pi r^2.h$$

$$V = \pi r^2.h$$

وهو يمثل قانون حجم أسطوانة حيث r نصف قطرها h ارتفاعها

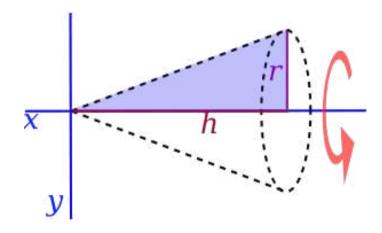
تطبيق(2) : تمريــ 9ـــن صفحـ 30ـــة :

باستخدام التكامل المحدد استنتجالصيغة التي تعطي حجم مخروط دائري قائم ارتفاعه h و طول نصف قطر قاعدته r من دوران منطقة مستوية دورة كاملة حول محور السينات

[0,h]" في الفترة $f(x) = \frac{r}{h}x$ إرشاد استخدم الدالة $f(x) = \frac{r}{h}$

الحل : الحجم هو :

$$V = \pi \int_{0}^{h} (f(x))^{2} dx$$


$$\therefore V = \pi \int_{0}^{h} \left(\frac{r}{h}x\right)^{2} dx$$

$$\frac{1}{h^2} \left[\frac{1}{3} x^3 \right]_0^h$$

$$\left[\frac{\pi r^2}{h^2} \left[\frac{1}{3} h^3 - \frac{1}{3} (0) \right]_0^h \right]$$

$$\frac{1}{3}\pi r^2.h$$

وهو يمثل قانون حجم مخروط دائري قائم حيث r نصف قطرقاعدته h ارتفاعه

