تم تحميل هذا الملف من موقع المناهج الكويتية

الملف إجابة نموذج اختبار قصير في حركة المقذوفات والديناميكا الدائرية

موقع المناهج ← ملفات الكويت التعليمية ← الصف الحادي عشر العلمي ← فيزياء ← الفصل الأول

روابط مواقع التواصل الاجتماعي بحسب الصف الحادي عشر العلمي

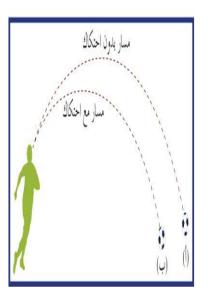
روابط مواد الصف الحادي عشر العلمي على تلغرام

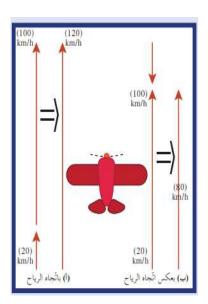
<u>الرياضيات</u>

اللغة الانجليزية

اللغة العربية

التربية الاسلامية


المزيد من الملفات بحسب الصف الحادي عشر العلمي والمادة فيزياء في الفصل الأول		
اجابة بنك اسئلة الوحدة الاولى في مادة الفيزياء	1	
بنك اسئلة الوحدة الاولى في مادة الفيزياء	2	
القوة الجاذبة المركزية في مادة الفيزياء	3	
وصف الحركة الدائرية في مادة الفيزياء	4	
نموذج اختبار عملي في مادة الفيزياء	5	


فيزياء الصف الحادي غشر

ربه فقط للتدريب على أنماط الاختبار فقط للتدريب

موقع المناهج الكويتية almanahj.com/kw

قصير (ثاني) حادي عشر الوقت = الحياة لا تضيع وقتك
$$\sqrt{1}$$
 السؤال الأول (أ):اختر الإجابة الصحيحة علميا لكل من العبارات التالية بوضع علامة ($\sqrt{1}$) في المربع المقابل لها:_

- ا) قذف جسم بزاوية (45^{0}) مع الأفق وكانت مركبة سرعته الأفقية (20) شكون قيمة هذه السرعة على ارتفاع (20) بوحدة (m/s) تساوي:
 - $(20\sqrt{2}) \quad \Box \qquad (40) \quad \Box \qquad (20) \quad \blacksquare \qquad (10) \quad \Box$
- ك) يجلس طفلان على نفس البعد من محور الدوران في لعبة دوارة الخيل التي تدور بسرعة زاوية ثابتة كتلة الطفل الأول (V_1) وكتلة الثانى (30) فإذا كانت السرعة الخطية للأول (V_1) وللثانى (V_2) فإن:

 $V_1=3V_2$

 $V_1=2V_2$

 $V_1=V_2$

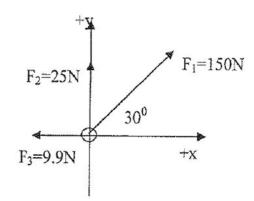
 $V_1 = \frac{1}{2} V_2 \square$

(ب) أكمل العبارات التالية بما تراه مناسبا علميا:

- ۱) إذا قذف جسم بزاوية (°20)، سوف يصل إلى المدى نفسه الذى يصل إليه إذا تم إطلاقه بالسرعة نفسها لكن بزاوية ... 70...
 - ز الزاوية مقدارها ($30^{\rm O}$)، فإن مقدار هذه الزاوية على مسار دائري، ومسح نصف قطره زاوية مقدارها ($\frac{\pi}{6}$...

السؤال الثاني (أ) (علل لما يأتي):

١ - السرعة التي تفقدها القذيفة أثناء الصعود هي نفسها التي تكتسبها أثناء الهبوط (عند اهمال الاحتكاك)؟


لأن القذيفة تتحرك أثناء الصعود والهبوط تحت تأثير عجلة ثابته ومنتظمة هي عجلة الجاذبية الأرضية.

Y = 1 العجلة المماسية في الحركة الدائرية المنتظمة تساوي صفراً V = 1 لأن السرعة المماسية ثابتة المقدار فيكون V = 1 فتنعدم العجلة .

(ب) حل المسالة التالية

تؤثر القوى المبينة في الشكل المقابل على الحلقة والمطلوب حساب:

١. مقدار محصلة القوى المؤثرة مستخدماً تحليل المتجهات.

F _y	F _X	F
150 sin (30) = 75	$150\cos(30) = 129.9$	F ₁
25	0	F ₂
0	-9.9	F ₃
100	120	F _R

 $F_R = \sqrt{F_x^2 + F_y^2} = \sqrt{120^2 + 100^2} = 156.2N..$

٢. اتجاه المحصلة.

$$\tan(\theta) = \frac{F_{y}}{F_{x}}$$

$$\tan^{-1}\left(\frac{100}{120}\right)$$

$$\theta = 39.8$$

**** تمنياتي لكم بدوام التوفيق ****

لا تضيع وقتك	الوقت = الحياة		حادي عشر	قصير (ثاني)
$(\ \ \sqrt{\ \)}$ بوضع علامة $(\ \ \sqrt{\ \)}$	ميا لكل من العبارات التالية	الإجابة الصحيحة عل	إل الأول (أ):اختر	فوذج رقم (۲) السؤ
K				في المربع المقابل لها:_
) مع المحور	ح مائل بزاوية ($30^{ m o})$	ه (2)kg على سط	۱. يستقر جسم كتلت
				الأفقي فإن المركبة
30 W	1.733 🗖	10 🗖	17.32	1 🗖
فإن الزمن الذي تحتاجه π	(m/s)عة خطية مقدارها	ف قطره m(1) بسر	<u>،</u> ار دائري أفقي نص	۲. تدور كتلة على مس
		يساوي:	ة كاملة بوحدة (S)	لتقوم بدورة واحدة

. عندما يكون شكل مسار القذيفة نصف قطع مكافئ تكون زاوية الإطلاق مساوية .. صفر almanahj.com

لمركزية العجلة المركزية (5)m/s بسرعة (5)m/s بسرعة (1000)kg بسرعة (50)m بسرعة (50)m. ينعطف سيارة كتلتها (1000)kg بسرعة (1000) بسرعة (1000)kg بسرعة (1000) بسرعة (1000)

السؤال الثاني (أ) (علل لما يأتي):

- ١- عند دحرجة كرة على سطح أفقي عديم الاحتكاك تبقي سرعتها ثابتة ؟
 لانعدام القوة الأفقية المؤثرة عليها
- ٢- السرعة المماسية للحصان القريب من الطرف الخارجي في لعبة دوارة الخيل تكون أكبر منها للحصان القريب من المحور ؟ $V=w\cdot r$ لأن السرعة المماسية تتناسب طرديا مع نصف القطر حيث $V=w\cdot r$

(ب) حل المسالة التالية

أطلقت قذيفة بزاوية (30°) مع المحور الأفقي من النقطة (0, 0) بسرعة ابتدائية تساوي (30°) . احسب:

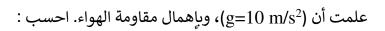
١. الزمن الذي تحتاجه القذيفة للوصول لأقصى ارتفاع.

$$t = \frac{v_0 \sin(\theta)}{g} = \frac{20 \sin(30)}{10} = (1)s$$

مقدار أقصى ارتفاع (h_{max}) تبلغه القذيفة.

$$h_{max} = \frac{V_o^2 \sin(\theta)^2}{2q} = \frac{20^2 \sin(30)^2}{2 \times 10} = (5)m$$

**** تمنياتي لكم بدوام التوفيق


	لا تضيع وقتك	الوقت = الحياة		ادي عشر	قصير (ثاني) ح
	﴿ √ ﴾ في المربع المقابل لها:_	بارات التالية بوضع علامة ا	علميا لكل من الع):اختر الإجابة الصحيحة	نموذج رقم (٣) السؤال الأول (أ
	1) وبإهمال مقاومة الهواء	y = 0	فقي، وبسرعة ا $0.1x^2 - x \square$	قذيفة: <i>y</i>	ا أطلقت قذيفة بزاوي فتكون معادلة مسار ال $x = x - 0.1x^2$ $x^2 = x^2 - 0.1x$
ساوي	، فإذا كانت إزاحته الزاوية ت) نصف قطرها m(5)	ب المدرسة التي	، دائرة منتصف ملعب	۲) يتحرك طالب حول
			ىتر) يساوي:	لول المسار بوحدة (الم	هان ر $(0.3\pi)rad$
	موقع ن اهج الكويتية almanahj.com/kv	Li	□ 1.5 حركة منتظمة		□ 0.18 □ 0.18 □ (ب) أكمل العبارات التالية (ب) حركة القذيفة على
	ة السرعة الرأسية للقذيفة	ور الأفقي فتكون مركبا	، 30 ⁰ مع المح	رعة m/s (30) وبزاوية	۲) أطلقت قذيفة بس
				ماوي صفر	عند أقصي ارتفاع تس
			الية:	، في كل من الحالات الت	السؤال الثاني (أ) ماذا يحدث
	ين (15 ⁰) و(75 ⁰) بالنسبة	, نقطة الإطلاق وبزاوي	نفسها من نفس	يفتين أطلقتا بالسرعة ا	١ – للمدى الأفقي لقذ
			اء ؟	ض اهمال مقاومة الهوا	للمحور الأفقي بفر
	sin(2	$2x15) = \sin(2x75)$	المتفسير : لأن (س المدي الأفقي	الحدث: يصلان لنف
	لي ما كان عليه ؟	ع دة عن المحور الي مث	بت عند زیادة ب	سم يدور حول محور ثار	٢ – للسرعة الخطية لجم
	لرديا مع نصف القطر	سرعة الخطية تتناسب ص	تفسير : لأن الم	الد	الحدث: تزداد للمثلين
	m (100). احسب:	ائري أفقي نصف قطره	2) على مسار د		ب) حل المسالة التالية سيارة كتلتها kg (1000) تن
					١. السرعة الزاوية للسيارة.
		$w = \frac{V}{r} = \frac{1}{2}$	$\frac{20}{100} = 0.2$ ra	ad / <i>S</i>	
					٢ . العجلة المركزية .

 $a_c = \frac{v^2}{r} = \frac{20^2}{100} = 4m / s^2$

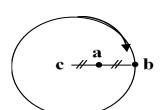
**** تمنياتي لكم بدوام التوفيق

لا تضيع وقتك	(٤)الوقت = الحياة	نموذج رقم	حادي عشر	قصير (ثاني)
$_{-}$ في المربع المقابل لها: $_{-}$	رات التالية بوضع علامة (نة علميا لكل من العبا	بتر الإجابة الصحيح	السؤال الأول (أ):اخ
في غياب مقاومة $\left(20\sqrt{2}\right)$ m/s	بسرعة ابتدائية مقدارها) مع المحور الأفقي و	،يفة بزاوية (° 45)	١) أطلقت قذ
:/m) تساوي :	$\mathbf s$) بسطح الأرض بوحدة	فة لحظة اصطدامها	مقدار سرعة القذية	الهواء فإن
20	□ 56.56 □	28.28	1 2	4.14
مة بسرعة مماسيه m/s) فإن				
	-		n/s^2 رکزیة بوحدة	·
1000	500 🗖			
				(ب) أكمل العبارات
) ، وبإهمال مقاومة الهواء موتح المناهج الكويتية almanahj.com/kw وية مقدارها (0.6 rad/s)	11.25	القذيفة بوحدة (m)	، ارتفاع تصل إليه	يكون أقصى
		m/s) تساوي 6	المماسية بوحدة (فإن سرعتها
		<u> اِتى) :</u>	(أ) (علل لما ب	السؤال الثاني
ر ؟ به حساب محصلة متجهين فقط	صلة عن جمع المتجهات بينما جمع المتجهات يمكن			
	صفر ؟	رية المنتظمة تساوي	وية في الحركة الدائـ	٢ - العجلة الزاو
$\theta^{=}=\frac{\Delta W}{\Delta t}$	فتنعدم العجلة الزاوية ح			

ب) حل المسالة التالية أطلقت قذيفة بزاوية (60^{0}) مع المحور الأفقي بسرعة m/s). فإذا

١ – الزمن المستغرق لوصول القذيفة الى سطح الأرض.

$$t = \frac{2V_0 \sin(\theta)}{g} = \frac{2x20 \sin(60)}{10} = (3.46)s$$


٢ المدي الأفقي للقذيفة .

$$R = \frac{V_o^2 \sin(2\theta)}{g} = \frac{20^2 \sin(2X60)}{10} = (34.64)m$$

**** تمنياتي لكم بدوام التوفيق

السؤال الأول (أ): اختر الإجابة الصحيحة علميا لكل من العبارات التالية بوضع علامة ($\sqrt{}$) في المربع المقابل لها:

(s) عند اسقاط كرة من ارتفاع (20)m عن سطح الأرض فإن الزمن المستغرق للوصول لسطح الأرض بوحدة $(g=10 \, \text{m/s}^2)$:

- 20 🗆 10 🖵 2 💻 1
 - (b) والسرعة الخطية للجسم (a) والسرعة الخطية للجسم ($^{\rm t}$
 - $\mathbf{v}_a:\mathbf{v}_b$ في الشكل المقابل $\{\mathbf{v}_a:\mathbf{v}_b\}$ تساوي
 - 4:1 □ 1:2 2:1 □
 - (ب) أكمل العبارات التالية بما تراه مناسبا علميا :
- ٢) متجه العجلة المركزية في الحركة الدائرية يكون دائماً .. عمودي علي متجه السرعة المماسية...almanah

السؤال الثاني (أ) قارن بين كل مما يأتي:

الزاوية تساوي °40	الزاوية تساوي صفر	وجه المقارنة
قطع مكافئ	نصف قطع مكافئ	شكل مسار قذيفة عندما تطلق بزاوية مع المحور الأفقى
الحركة المدارية	الحركة الدائرية المحورية	وجه المقارنة
خارجي	داخلي	محور الدوران بالنسبة للجسم

ب) حل المسالة التالية

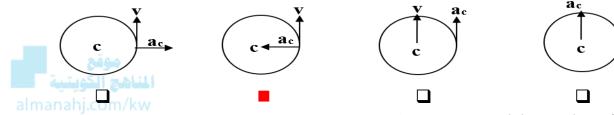
أطلقت قذيفة بزاوية (45⁰) مع المحور الأفقي بسرعة m/sm/s). فإذا علمت أن ($g=10~m/s^2$)، وبإهمال مقاومة

الهواء. احسب:

١. أقصى ارتفاع تبلغه القذيفة.

$$h_{max} = \frac{V_o^2 \sin(\theta)^2}{2g} = \frac{50\sqrt{2^2 \sin(45)^2}}{2 \times 10} = (125)m$$

٢. المدى الأفقى الذى تبلغه القذيفة (علماً إنها اصطدمت بالأرض عند نقطة تقع على الخط المار بنقطة القذف).


$$R = \frac{V_o^2 \sin(2\theta)}{g} = \frac{50\sqrt{2^2 \sin(2X45)}}{10} = (500)m$$

**** تمنياتي لكم بدوام التوفيق

قصير (ثاني) حادي عشر الوقت = الحياة لا تضيع وقتك غوذج رقم (
$$\mathbf{7}$$
) السؤال الأول (أ):اختر الإجابة الصحيحة علميا لكل من العبارات التالية بوضع علامة ($\sqrt{}$) في المربع المقابل لها:__ السؤال الأول (أ):اختر الإجابة الصحيحة علميا لكل من العبارات التالية بوضع علامة ($\sqrt{}$) في المربع المقابل لها:__ $\sqrt{}$) قذف حجر من ارتفاع $\sqrt{}$ ($\sqrt{}$) عن سطح الأرض وكانت إزاحة الجسم الأفقية تساوي $\sqrt{}$ ($\sqrt{}$) تساوى :

٢) أفضل مخطط يوضح العلاقة بين متجه السرعة الخطية ومتجه العجلة في الحركة الدائرية المنتظمة هو:

(ب) أكمل العبارات التالية بما تراه مناسبا علميا :

ا) أطلقت قذيفتان كتلتهما (${f m}$) ، (${f m}$) بالسرعة الابتدائية نفسها وبزاوية (${f \theta}$) بالنسبة إلى

المحور الأفقي نفسه فيكون المدي الأفقي للقذيفة (**2m**) ... نفس أو يساوي... المدي الأفقي للقذيفة (**m**).

 θ عندما تقذف قذيفة بزاوية θ مع المحور الأفقي وعندما تصل الي أقصي ارتفاع تكون قد قطعت θ ... المدى الأفقى θ

السؤال الثاني (أ) وضح بالرسم على المحاور التالية العلاقات البيانية التي تربط بين كل من:

السرعة الخطية لجسم يتحرك حركة دائرية	مركبة السرعة الأفقية ($ m V_X$) لجسم مقذوف بزاوية
منتظمة (v) والمسافة نصف القطرية (r)	والزمن (t)
(r)	Vx → t

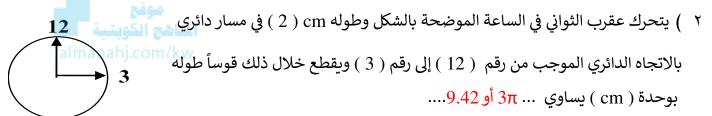
ب) حل المسالة التالية

يدور جسم بسرعة منتظمة على محيط دائرة نصف قطرها cm (100) ويعمل (90) دورة في الدقيقة .احسب : أ) السرعة الخطية :

$$V=2\pi rf=rac{2\pi rN}{t}=rac{2\pi \times 1 imes 90}{60}=9.4 ext{ m/s} \dots$$
 ب العجلة المركزية : $a_C=rac{v^2}{r}=rac{9.4^2}{1}=88.3m\ /\ s^2$ تنياتي لكم بدوام التوفيق *****

وقتك	تضيع	¥
_ ,	(** '	_

حادي عش	(ثاني)	قصير
**	\ \ \ \	_

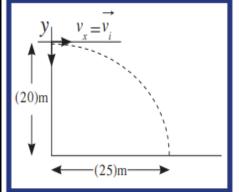

السؤال الأول (أ):اختر الإجابة الصحيحة علميا لكل من العبارات التالية بوضع علامة ($\sqrt{}$) في المربع المقابل لها:_

ا يكون شكل مسار قذيفة أطلقت بزاوية مع المحور الأفقي على شكل مسار نصف قطع مكافئ
 عندما تكون الزاوية بالدرجات مساوية :

c # b

- 90 🗖 60 🗖
- 30
- 0
- (b) والسرعة الزاوية للجسم (a) والسرعة الزاوية للجسم (t
 - في الشكل المقابل $\{ oldsymbol{W}_a: oldsymbol{W}_b \}$ تساوي :
 - 2:1
- 1:1

- **4**:1 □
- $1:2 \square$
- (ب) أكمل العبارات التالية بما تراه مناسبا علميا:
- ١) يكون مسار القذيفة التي تنطلق بزاوية في مجال الجاذبية الأرضية في حال وجود مقاومة الهواء على شكل قطع مكافئ غير حقيقي


السؤال الثاني (أ) قارن بين كل مما يأتي:

المحور الأفقي	المحور الرأسي	وجه المقارنة
حركة بسرعة منتظمة	حركة بعجلة منتظمة	نوع الحركة لجسم مقذوف بزاوية (θ)
الحركة الدائرية المدارية	الحركة الدائرية المحورية	وجه المقارنة
حركة جسم يدور حول محور خارجي	حركة جسم يدور حول محور داخلي	التعريف

ب) حل المسالة التالية

رمي جسم من ارتفاع m 20 عن سطح الأرض وبسرعة أفقية v فاذا كانت الازاحة الافقية للكرة لحظة وصولها لسطح الأرض تساوى m 25 وبإهمال مقاومة الهواء أحسب :

أ) الزمن الذي يحتاجه الجسم للوصول للأرض:

$$t = \sqrt{\frac{2y}{g}} = \sqrt{\frac{2 \times 20}{10}} = (2)S$$

ب) السرعة الابتدائية للجسم لحظة انطلاقة مبتعدا عن سطح الطاولة:

$$V_x = \frac{X}{t} = \frac{25}{2} = 12.5 m / s$$

**** تمنياتي لكم بدوام التوفيق ****