

مذكرات السراج

الملف مراجعة الاختبار التقويمي الثاني

موقع المناهج ← ملفات الكويت التعليمية ← الصف الحادي عشر العلمي ← رياضيات ← الفصل الأول

المزيد من الملفات بحسب الصف الحادي عشر العلمي والمادة رياضيات في الفصل الأول				
دليل المعلم في مادة اللغة الرياضيات	1			
اختبار محلول في مادة الرياضيات لثانوية سعاد محمد الصباح	2			
نموذج اختبار محلول في مادة الرياضيات منطقة مبارك الكبير التعليمية	3			
حل الجذور التعبيرات الجذرية في مادة الرياضيات	4			
نموذج اختبار محلول لثانوية مارية القبطية في مادة الرياضيات	5			

مراجعة الاختبار التقويمي الثاني للصف 11ع بنود الاختبار (2-5) (3-4) (3-5) للعام الدراسي 2024-2025

السؤال الأول $x^2 + 4x + 3 \leq 0$ أوجد مجموعة حل المتباينة: a

 $-2x^2 + 5x - 3 > 0$ أوجد مجموعة قيم x التي تحقق المتباينة: (b

$a) f(x) = \sqrt{x^2 - x}$

السؤال الثاني أوجد مجال كل دالة مما يلي:

$$b) q(x) = \sqrt{9 - x^2}$$

السؤال الثالث

$$\frac{3x-5}{-2x+3} \ge 0$$
 أوجد مجموعة حل المتباينة: (a

$$\frac{x^2+5x}{x+3} > -2$$
 أوجد مجموعة حل المتباينة: (b

السؤال الرابع

$$y=5x^3$$
 :اوجد معكوس الدالة (a

$$f(x) = \sqrt{x-4}$$
 :اوجد معكوس الدالة (b

السؤال الخامس

$$(x+2)$$
 على x^3-2x^2-5x+6 على (a) استخدم القسمة التركيبية لقسمة a لتحليل a التحدم الإجابة في a لتحليل a لتحليل a التحدم الإجابة في a التحدم الإجابة في a التحديم التحدي

$$(x+4)$$
 على $f(x) = x^4 - 5x^2 + 4x + 12$ على استخدم نظرية الباقي أوجد باقي قسمة $f(x) = x^4 - 5x^2 + 4x + 12$ على (c

السؤال السادس $2x^3 = 3x - 5x^2$ أوجد مجموعة حل المعادلة: a

$$x^3 + 2x^2 - 4x = 8$$
 أوجد مجموعة حل المعادلة: (b

السؤال السادس السؤال المعادلة: $x^3 - 4x^2 + 3 = 0$ أوجد مجموعة حل المعادلة: (c

حل المتباينات 6-2

تمارين موضوعية

في التمارين (5-1)، ظلل (a) إذا كانت العبارة صحيحة و (b) إذا كانت العبارة خاطئة:

$$\mathbb{R}$$
 هي $(x+3)^2 > 0$ هي (1) مجموعة حل المتباينة

$$\frac{x-1}{x^2-x} \ge 0$$
 كل x ينتمي للفترة $(0, \infty)$ هو حل للمتباينة (2)

$$\phi$$
 as liaming as $(x+3)^2+2<1$ of liaming ϕ as ϕ as ϕ

$$(-1,\infty)$$
 هي $\frac{x+2}{x+1} \ge 1$ هي (4)

(5) مجموعة حل المتباينة
$$(-x-3)^2 < 0$$
 هي

في التمارين (13-6)، ظلل رمز الدائرة الدالة على الإجابة الصحيحة.

$$\left(-\frac{4}{5},\frac{1}{2}\right)$$

$$\left(-\infty,-\frac{1}{2}\right)\cup\left(\frac{4}{5},\infty\right)$$

(7) إن مجموعة حل المتباينة
$$(1-2x)(4+5x) < 0$$
 هي:

(8) إن مجموعة حل المتباينة
$$0 > \frac{(x^2+1)(x-3)}{x-3} > 0$$
 هي:

©
$$\mathbb{R} - \{3\}$$
 d $\mathbb{R} - \{0,3\}$

(a)
$$x^2 - x - 6 < 0$$
 (b) $x^2 - x - 6 \le 0$ (c) $x^2 - x - 6 > 0$ (d) $x^2 - x - 6 \ge 0$

b
$$x^2 - x - 6 \le 0$$

$$(c)$$
 $x^2 - x - 6 > 0$

d
$$x^2 - x - 6 \ge 0$$

(11) إذا كانت
$$f(x) = \frac{x(x+1)}{(2x-3)(3x+2)}$$
 فإن قيم $f(x) = \frac{x(x+1)}{(2x-3)(3x+2)}$

(a)
$$\left\{\frac{2}{3}, -\frac{3}{2}\right\}$$

$$\left\{\frac{-2}{3}, \frac{3}{2}\right\}$$

$$\left(\frac{2}{3}, \frac{3}{2}\right)$$

(b)
$$\left\{\frac{-2}{3}, \frac{3}{2}\right\}$$
 (c) $\left\{\frac{2}{3}, \frac{3}{2}\right\}$ (d) $\left\{\frac{-2}{3}, -\frac{3}{2}\right\}$

دوال القوى ومعكوساتها

تمارين موضوعية

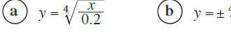
في التمارين (5-1)، ظلّل (a) إذا كانت العبارة صحيحة، و(b) إذا كانت العبارة خاطئة.

دالة قوى $y = \sqrt{x^4}$ (1)

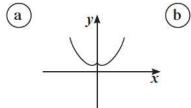
دية $f:[-3,3] \longrightarrow \mathbb{R}, f(x) = x^5$ (2)

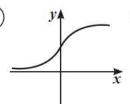
دالة زوجية $y = x\sqrt{x}$ (3)

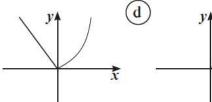
دالة زوجية $v = (x+4)^2$ (4)



(5) المستقيم الذي معادلته y = x هو خط تناظر بين النقاط التي تمثل العلاقة r والنقاط التي تمثل معكوسها.


في التمارين (10-6)، ظلّل دائرة الرمز الدال على الإجابة الصحيحة.


(6) معكوس دالة القوى $y = 0.2x^4$ هو:


- (b) $y = \pm \sqrt[4]{\frac{x}{0.2}}$
- $\mathbf{d} \quad y = -\sqrt[4]{5x}$

(7) أي مما يلى تمثل دالة زوجية.

- x
- (8) الدالة $y = 4.9t^2$ دالة زوجية إذا كان مجالها.

- (a) [-4,4)
- (b) [-4,2)
- (c) [-2,2]
- (\mathbf{d}) $[0,\infty)$

في التمرينين (12-11)، لديك قائمتان اختر من القائمة (2) ما يناسب السؤال في القائمة (1) لتحصل على إجابة صحيحة.

القائمة (2)	القائمة (1)
x = 0 المستقيم الذي معادلته (a)	(11) بيان دالة زوجية متماثل حول:
y = 0 المستقيم الذي معادلته (b)	(12) بيان دالة فردية متماثل حول:
$y = x$ المستقيم الذي معادلته \mathbf{c}	
(d) نقطة الأصل	

قسمة كثيرات الحدود 4-3

تمارين موضوعية

في التمارين (5-1)، ظلّل الدائرة (a) إذا كانت الإجابة صحيحة و (b) إذا كانت العبارة خاطئة.

lpha أي صفرًا فإن	على (x + α) يساو	f(x)	قسمة كثيرة	إذا كان باقي	(1)
			f la	عامل من عوا	

(2) الدالة
$$f(x) = (x-2)^2 - 1$$
 تقبل القسمة على $f(x) = (x-2)^2 - 1$

$$(x^3 + a^3)$$
 على $(x - a)$ هو $(x^3 + a^3)$ على على (3)

(4) ناتج قسمة حدودية من الدرجة
$$n$$
 حيث $2 \le n$ على حدودية من الدرجة الثانية تكون حدودية من الدرجة $(n-2)$

(5) ناتج قسمة حدودية من الدرجة السادسة على حدودية من الدرجة الثالثة تكون حدودية من الدرجة الثانية.

في التمارين من (11-6)، ظلَّل دائرة الرمز الدال على الإجابة الصحيحة.

(6) باقی قسمهٔ
$$f(x)$$
 علی $g(x) = x - k$ هو:

$$(c)$$
 $f(-k)$ (d) $-k$

(7) باقى قسمة
$$(x^4+2)$$
 على $(x-3)$ هو:

(8) ناتج قسمة (x+2) على (x+2) يساوي:

b
$$2x^3 - 8x^2$$
 c $x^3 - 4x^2$ **d** $2x^3 - 4x^2 + 2x$

(9) إذا كان 0 هو باقى قسمة $1 - 4x^2 + kx - 1$ على (x+1) غان 0 هو باقى قسمة (x+1)

(b)
$$-7$$
 (c) -3 (d) 3

(10) إذا كان باقي قسمة
$$f(x) = x^4 - kx^2 + x - k$$
 هو 3 فإن k تساوي: $f(x) = x^4 - kx^2 + x - k$ قسمة $f(x) = x^4 - kx^2 + x - k$ (10)

(11) اِذَا كَانَ
$$f(x)$$
 اِذَا كَانَ $f(x) = f(0) = f(0) = f(3) = -2$ اِنْ تَكُونَ؛

.ن تكون أن تكون
$$f(x)$$
 فإن $f(-1) = f(0) = f(3) = -2$ إذا كان كان تكون.

b
$$x^3 - 2x^2 - 3x$$

d
$$2x^3 - 4x^2 - 6x - 2$$

(a)

(a) g(k)

(a) $2x^3 - 4x^2$

(a) $x^3 - x^2 + 3x - 2$

(c) $2x^3 - 2x^2 - 3x - 2$

(a) 7

(b) f(k)

(b) 27

حل معادلات كثيرات الحدود 5-3

تمارين موضوعية

في التمارين (5-1)، ظلّل (a) إذا كانت العبارة صحيحة و (b) إذا كانت العبارة خاطئة.

$$\left\{-\frac{4}{3}, \frac{4}{3}\right\}$$
 هي $9x^2 + 16 = 0$ المعادلة 0 مجموعة حل المعادلة (1)

(2) مجموعة حل المعادلة
$$x \in \mathbb{R}$$
, $2x^3 + 2 = 0$ هي مجموعة أحادية.

$$(4x^2+1)(\frac{x^2}{4}-1)=0$$
 إذا كانت $2k$ تنتمي إلى مجموعة حل المعادلة (3)

$$k \in \{-1,1\}$$
 فإن

$$3x^4 + 12x^2 - 15 = 0$$
 إن {1} هي مجموعة حل المعادلة 0 = 15 هي مجموعة حل

في التمارين (8-6)، ظلَّل دائرة الرمز الدال على الإجابة الصحيحة.

ره) قيمكن أن يكون صفرًا من أصفار الحدودية f(x) تساوى:

(a)
$$ax^3 + x^4 + 5$$

(b)
$$x^5 - 1$$

$$(c)$$
 $5x^3 + 6x - 1$

(c)
$$5x^3 + 6x - 1$$
 (d) $(x+5)(x^2+25)$

$$(b)$$
 -3

$$\overline{(d)}$$
 2

ون: تكون أن تكون f(m) = f(n) = f(-1) = 0 فإن أن تكون (8)

(a)
$$f(x) = (x-1)(x+m)(x+n)$$

(b)
$$f(x) = (x-1)(x-m)^2(x-n)$$

(c)
$$f(x) = (x+1)(x-m)(x-n)^2$$

$$(\mathbf{d}) f(x) = (x+1)(x-mn)$$

