

أحمد نصار

الملف نماذج أسئلة موضوعية مع الحلول

موقع المناهج ← ملفات الكويت التعليمية ← الصف الحادي عشر العلمي ← رياضيات ← الفصل الأول

المزيد من الملفات بحسب الصف الحادي عشر العلمي والمادة رياضيات في الفصل الأول	
دليل المعلم في مادة اللغة الرياضيات	1
اختبار محلول في مادة الرياضيات لثانوية سعاد محمد الصباح	2
نموذج اختبار محلول في مادة الرياضيات منطقة مبارك الكبير التعليمية	3
حل الجذور التعبيرات الجذرية في مادة الرياضيات	4
نموذج اختبار محلول لثانوية مارية القبطية في مادة الرياضيات	5

نماذج أسئلة موضوعي تقييمي ثاني

2024 / 2025 فصل أول

عمل / أ . أحمد نصار

في التمارين (5-1)، ظلل (a) إذا كانت العبارة صحيحة و (b) إذا كانت العبارة خاطئة:

$$\mathbb{R}$$
 هي $(x+3)^2 > 0$ مجموعة حل المتباينة

$$\frac{x-1}{x^2-x} \ge 0$$
 هو حل للمتباينة $0, \infty$ ها کل x ينتمي للفترة x

φ المجموعة حل المتباينة
$$(x+3)^2+2<1$$
 هي المجموعة الخالية φ

$$(-1,\infty)$$
 هي $\frac{x+2}{x+1} \ge 1$ هي (4)

(5) مجموعة حل المتباينة
$$(-x-3)^2 < 0$$
 هي

في التمارين (13-6)، ظلل رمز الدائرة الدالة على الإجابة اله

(7) إن مجموعة حل المتباينة
$$(7 - 2x)(4 + 5x) < 0$$

$$\left(-\frac{4}{5},\frac{1}{2}\right)$$

$$\bigcirc \quad \left(-\infty,-\frac{1}{2}\right) \cup \left(\frac{4}{5},\infty\right)$$

(8) إن مجموعة حل المتباينة
$$0 > \frac{(x^2+1)(x-3)}{x-3} > 0$$

(c)
$$\mathbb{R} - \{3\}$$
 (d) $\mathbb{R} - \{0,3\}$

(9) المتباينة التي مجموعة حلها [-2, 3] هي:

(a)
$$x^2 - x - 6 < 0$$
 (b) $x^2 - x - 6 \le 0$ (c) $x^2 - x - 6 > 0$ (d) $x^2 - x - 6 \ge 0$

(c)
$$x^2 - x - 6 > 0$$
 (d) x^2

(11) إذا كانت
$$f(x) = \frac{x(x+1)}{(2x-3)(3x+2)}$$
 فإن قيم x التي تجعل f غير معرّفة هي:

(a)
$$\left\{\frac{2}{3}, -\frac{3}{2}\right\}$$

$$\left(\frac{2}{3}, \frac{3}{2}\right)$$

(b)
$$\left\{\frac{-2}{3}, \frac{3}{2}\right\}$$
 (c) $\left\{\frac{2}{3}, \frac{3}{2}\right\}$ (d) $\left\{\frac{-2}{3}, -\frac{3}{2}\right\}$

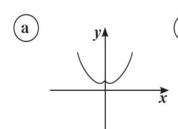
في التمارين (1-5)، ظلّل (a) إذا كانت العبارة صحيحة، و (b) إذا كانت العبارة خاطئة.

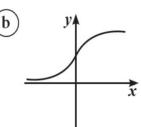
دالة قوى $y = \sqrt{x^4}$ (1)

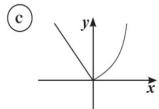
دية فردية $f:[-3,3] \longrightarrow \mathbb{R}, f(x) = x^5$ (2)

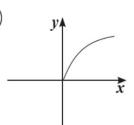
دالة زوجية $y = x\sqrt{x}$ (3)

 $y = (x+4)^2$ (4)


لتي تمثل المستقيم الذي معادلته y = x هو خط تناظر بين النقاط التي تمثل (5) العلاقة r والنقاط التي تمثل معكوسها.


في التمارين (10-6)، ظلّل دائرة الرمز الدال على الإجابة الصحيحة.


(6) معكوس دالة القوى $y = 0.2x^4$ هو:


- (a) $y = \sqrt[4]{\frac{x}{0.2}}$
- (b) $y = \pm \sqrt[4]{\frac{x}{0.2}}$ (c) $y = \pm \sqrt[4]{\frac{x}{2}}$ (d) $y = -\sqrt[4]{5x}$

- (7) أي مما يلي تمثل دالة زوجية.

(8) الدالة $y = 4.9t^2$ دالة زوجية إذا كان مجالها.

- (a) [-4,4)
- (b) [-4,2)
- (c) [-2,2]
- (\mathbf{d}) $[0,\infty)$

في التمرينين (12-11)، لديك قائمتان اختر من القائمة (2) ما يناسب السؤال في القائمة (1) لتحصل على إجابة صحيحة.

القائمة (2)	القائمة (1)
$x = 0$ المستقيم الذي معادلته \mathbf{a}	(11) بيان دالة زوجية متماثل حول:
y = 0 المستقيم الذي معادلته $y = x$ المستقيم الذي معادلته $x = x$	(12) بيان دالة فردية متماثل حول:
(d) نقطة الأصل	

في التمارين (5-1)، ظلّل الدائرة (a) إذا كانت الإجابة صحيحة و (b) إذا كانت العبارة خاطئة.

- α فإن باقى قسمة كثيرة الحدود f(x) على على يساوي صفرًا فإن (1) f عامل من عوامل
 - (x-1) الدالة $f(x) = (x-2)^2 1$ تقبل القسمة على (2)
 - (3) على (x-a) هو (x^3+a^3) على (3)
 - ناتج قسمة حدو دية من الدرجة $n \ge 2$ على حدو دية من (4) (n-2) الدرجة الثانية تكون حدودية من الدرجة
 - (5) ناتج قسمة حدودية من الدرجة السادسة على حدودية من الدرجة الثالثة تكون حدودية من الدرجة الثانية.

في التمارين من (11-6)، ظلّل دائرة الرمز الدال على الإجابة الصحيحة.

- . هو: g(x) = x k على على g(x) = x k هو:
- $(\mathbf{d})_{-k}$ (c) f(-k)
 - (7) باقى قسمة (x^4+2) على (3 4) هو:
- (c) 81
 - (8) ناتج قسمة $(2x^4 8x^2)$ على (x+2) يساوى:
- (c) $x^3 4x^2$ (d) $2x^3 4x^2 + 2x$
- (9) إذا كان 0 هو باقى قسمة $4x^2 + kx 1$ على $f(x) = 2x^3 4x^2 + kx 1$ فإن k تساوي:
 - (c) -3
- (10) إذا كان باقى قسمة $f(x) = x^4 kx^2 + x k$ هو 3 فإن k تساوى:
 - (c) $-\frac{1}{2}$ (d) $\frac{5}{2}$
 - (11) إذا كان f(x) الإنا f(-1) = f(0) = f(3) = -2 يمكن أن تكون.
 - (b) $x^3 2x^2 3x$
 - (\mathbf{d}) $2x^3 4x^2 6x 2$

(b)

(b)

(a) g(k)

(b) f(k)

(b) $2x^3 - 8x^2$

(a) **b**) 27

(a) $2x^3 - 4x^2$

(a) 7

 $\left(\mathbf{a}\right) \frac{1}{2}$

(a) $x^3 - x^2 + 3x - 2$

(c) $2x^3 - 2x^2 - 3x - 2$

في التمارين (5-1)، ظلّل (a) إذا كانت العبارة صحيحة و (b) إذا كانت العبارة خاطئة.

 $\left\{-\frac{4}{3}, \frac{4}{3}\right\}$ هي $9x^2 + 16 = 0$ المعادلة 0 = $9x^2 + 16 = 0$

- (2) مجموعة حل المعادلة $x \in \mathbb{R}$ ، $2x^3 + 2 = 0$ هي مجموعة أحادية.
- $(4x^2+1)(\frac{x^2}{4}-1)=0$ إذا كانت 2k تنتمى إلى مجموعة حل المعادلة (3)
 - $k \in \{-1,1\}$ فإن

(a) $ax^3 + x^4 + 5$

 $3x^4 + 12x^2 - 15 = 0$ إن {1} هي مجموعة حل المعادلة $\{1\}$

في التمارين (8-6)، ظلّل دائرة الرمز الدال على الإجابة الصحيحة. ره) 5 يمكن أن يكون صفرًا من أصفار الحدودية f(x) تساوي:

- (b) $x^5 1$
- (c) $5x^3 + 6x 1$ (d) $(x+5)(x^2+25)$

- $x^4 10x^2 + 9 = 0$ | أي قيمة مما يلي ليست حلًا للمعادلة: (7)

وز. کان کون f(m) = f(n) = f(-1) = 0 فإن f(n) = f(-1) = 0

f(x) = (x-1)(x+m)(x+n)

(b) $f(x) = (x-1)(x-m)^2(x-n)$

c) $f(x) = (x+1)(x-m)(x-n)^2$

(d) f(x) = (x+1)(x-mn)

الأجابة

في التمارين (5-1)، ظلل (a) إذا كانت العبارة صحيحة و (b) إذا كانت العبارة خاطئة:

- **b**
- b

- \mathbb{R} هي $(x+3)^2 > 0$ هي (1)
- $\frac{x-1}{r^2-r} \ge 0$ كل x ينتمي للفترة $(0, \infty)$ هو حل للمتباينة (2)
- ϕ مجموعة حل المتباينة 1 < 2 < 1 هي المجموعة الخالية ϕ
 - $(-1,\infty)$ هي $\frac{x+2}{x+1} \ge 1$ هي (4)
 - (5) مجموعة حل المتباينة $(-x-3)^2 < 0$ هي

في التمارين (13-6)، ظلل رمز الدائرة الدالة على الإجابة الصحيحة.

(7) إن مجموعة حل المتباينة (1-2x)(4+5x) < 0

- $\left(-\frac{4}{5},\frac{1}{2}\right)$
- $\left(\begin{array}{c} \left(-\infty,-\frac{1}{2}\right)\cup\left(\frac{4}{5},\infty\right) \end{array}\right)$
- (a)

(b) ℝ*

- **b** $\left(-\infty, -\frac{4}{5}\right) \cup \left(\frac{1}{2}, \infty\right)$
- $\left(\mathbf{d}\right)\left(-\infty,-\frac{4}{5}\right)\cup\left(-\frac{1}{2},\infty\right)$
- (8) إن مجموعة حل المتباينة $0 < \frac{(x^2+1)(x-3)}{x-3} > 0$ هي:

 - $\mathbb{C} \mathbb{R} \{3\}$ **d** $\mathbb{R} \{0,3\}$
 - (9) المتباينة التي مجموعة حلها [-2, 3] هي:
- (a) $x^2 x 6 < 0$ (b) $x^2 x 6 \le 0$
- (c) $x^2 x 6 > 0$ (d) $x^2 x 6 \ge 0$
- (11) إذا كانت $f(x) = \frac{x(x+1)}{(2x-3)(3x+2)}$ فإن قيم $f(x) = \frac{x(x+1)}{(2x-3)(3x+2)}$
- (a) $\left\{\frac{2}{3}, -\frac{3}{2}\right\}$

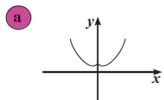
- **b** $\left\{\frac{-2}{3}, \frac{3}{2}\right\}$ **c** $\left\{\frac{2}{3}, \frac{3}{2}\right\}$ **d** $\left\{\frac{-2}{3}, -\frac{3}{2}\right\}$

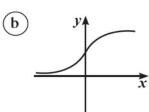
في التمارين (5-1)، ظلّل (a) إذا كانت العبارة صحيحة، و (b) إذا كانت العبارة خاطئة.

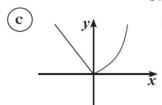
دالة قو ى $y = \sqrt{x^4}$ (1)

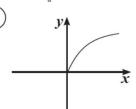
دلة فر دية $f:[-3,3] \longrightarrow \mathbb{R}, f(x) = x^5$ (2)

دالة زوجية $v = x\sqrt{x}$ (3)


- دالة زوجية $v = (x+4)^2$ (4)
- لتى تمثل الذي معادلته y = x هو خط تناظر بين النقاط التى تمثل (5) العلاقة r والنقاط التي تمثل معكوسها.


في التمارين (10-6)، ظلّل دائرة الرمز الدال على الإجابة الصحيحة.


(6) معكوس دالة القوى $y = 0.2x^4$ هو:


- (a) $y = \sqrt[4]{\frac{x}{0.2}}$
- **b** $y = \pm \sqrt[4]{\frac{x}{0.2}}$
- (c) $y = \pm \sqrt[4]{\frac{x}{2}}$ (d) $y = -\sqrt[4]{5x}$

 - (7) أي مما يلي تمثل دالة زوجية.

(8) الدالة $v = 4.9t^2$ دالة زوجية إذا كان مجالها.

- (a) [-4,4)
- (b) [-4,2)
- [-2,2]
- (\mathbf{d}) $[0,\infty)$

في التمرينين (12-11)، لديك قائمتان اختر من القائمة (2) ما يناسب السؤال في القائمة (1) لتحصل على إجابة صحيحة.

القائمة (2)	القائمة (1)
x = 0 المستقيم الذي معادلته $y = 0$ المستقيم الذي معادلته $y = 0$ المستقيم الذي معادلته $y = x$	(11) بيان دالة زوجية متماثل حول: (12) بيان دالة فردية متماثل حول:
d نقطة الأصل	

أ/ أحمد نصار انصار نماذج موضوعي أختبار تقييمي ثاني صف 11 علمي

في التمارين (5-1)، ظلّل الدائرة (a) إذا كانت الإجابة صحيحة و (b) إذا كانت العبارة خاطئة.

- α فإن الحدود α على α يساوي صفرًا فإن α أذا كان باقى قسمة كثيرة الحدود α b f عامل من عوامل
 - (x-1) الدالة $f(x) = (x-2)^2 1$ تقبل القسمة على (2)
 - $2a^3$ هو (x-a) على (x^3+a^3) هو (3)
 - ناتج قسمة حدودية من الدرجة n = 2 على حدودية من (4) (n-2) الدرجة الثانية تكون حدو دية من الدرجة
 - (5) ناتج قسمة حدودية من الدرجة السادسة على حدودية من الدرجة الثالثة تكون حدودية من الدرجة الثانية.

في التمارين من (11-6)، ظلّل دائرة الرمز الدال على الإجابة الصحيحة.

(a) g(k)

- . و باقی قسمهٔ g(x) = x k علی g(x) = x k هو:
- (c) f(-k) (d) -k

 - (7) باقى قسمة (x^4+2) على (x-3) هو:

- (a) 3 (b) 27
- (c) 81

(8) ناتج قسمة (x+2) على (x+2) يساوى:

(a) $2x^3 - 4x^2$

- (b) $2x^3 8x^2$ (c) $x^3 4x^2$ (d) $2x^3 4x^2 + 2x$

(9) إذا كان 0 هو باقى قسمة $4x^2 + kx - 1 = 2x^3 - 4x^2 + kx - 1$ فإن k تساوي:

- (a) 7
- **(b)** -7

b f(k)

- (c) -3

(10) إذا كان باقى قسمة x - k على $f(x) = x^4 - kx^2 + x - k$ هو 3 فإن x - k إذا كان باقى

- $\left(\mathbf{a}\right) \frac{1}{2}$
- (b) 3
- $\frac{1}{2}$ $\frac{1}{2}$ $\frac{5}{2}$

(11) إذا كان f(x) إذا كان f(x) = f(0) = f(0) = f(3) = -2 أن تكون.

(a) $x^3 - x^2 + 3x - 2$

(b) $x^3 - 2x^2 - 3x$

(c) $2x^3 - 2x^2 - 3x - 2$

 $2x^3-4x^2-6x-2$

في التمارين (5-1)، ظلّل (a) إذا كانت العبارة صحيحة و (b) إذا كانت العبارة خاطئة.

 $\left\{-\frac{4}{3}, \frac{4}{3}\right\}$ هي $9x^2 + 16 = 0$ المعادلة 0 = $9x^2 + 16 = 0$

(2) مجموعة حل المعادلة $x \in \mathbb{R}$ ، $2x^3 + 2 = 0$ هي مجموعة أحادية.

- $(4x^2+1)(\frac{x^2}{4}-1)=0$ إذا كانت 2k تنتمى إلى مجموعة حل المعادلة (3) $k \in \{-1,1\}$ فإن

 $3x^4 + 12x^2 - 15 = 0$ إن $\{1\}$ هي مجموعة حل المعادلة $\{1\}$

في التمارين (8-6)، ظلَّل دائرة الرمز الدال على الإجابة الصحيحة.

يمكن أن يكون صفرًا من أصفار الحدودية f(x) تساوى:

(a) $ax^3 + x^4 + 5$

- (c) $5x^3 + 6x 1$ (d) $(x+5)(x^2+25)$

(8) إذا كان f(m) = f(n) = f(-1) = 0 فإن f(n) = f(-1) = 0

(b) $x^5 - 1$

(a) f(x) = (x-1)(x+m)(x+n)

(b) $f(x) = (x-1)(x-m)^2(x-n)$

 $f(x) = (x+1)(x-m)(x-n)^2$

(d) f(x) = (x+1)(x-mn)