

مدرسة التميز النموذجية

الملف نماذج اختبارات قصيرة حول قياس الكميات وتحليل الحركة

موقع المناهج ← ملفات الكويت التعليمية ← الصف العاشر ← فيزياء ← الفصل الأول

المزيد من الملفات بحسب الصف العاشر والمادة فيزياء في الفصل الأول		
مذكرات للوحدة الثانية في مادة الفيزياء	1	
تلخيص للاستاذ احمد نبيه في مادة الفيزياء	2	
دفتر المتابعة في مادة الفيزياء	3	
مراجعة شاملة في مادة الفيزياء	4	
اجابة دفتر المتابعة في مادة الفيزياء	5	

المتعاثات

المالية

القصير الاول

2026- 2025م

إنصف: العاشر

مدر المادة : الفيزياء حدة

الصف العاشر نموذج (1)

السؤال الأول : (أ) ضع علامة ($\sqrt{}$) في المربع المقابل لأنسب إجابة في العبارات التالية : ($\sqrt{}$) في المربع المقابل لأنسب إجابة في العبارات التالية : (أ) ضع علامة ($\sqrt{}$) في المربع المقابل الأنسب إجابة في العبارات التالية : (أ)

1) إذا كان ميل المنحنى البياني (السرعة - الزمن) با	النسبة لمحور الزمن يساوي افر فإن الجسم يكون :
متحركاً بعجلة تسارع منتظمة	□ متحركاً بعجلة تباطؤ منتظمة
🗖 متحركاً بسرعة منتظمة	ساكناً
2) تكون الحركة بعجلة منتظمة إذا:	
🗖 تغيرت السرعة بمعدل ثابت	 تغيرت المسافة بمعدل ثابت
□ كانت السرعة منتظمة	 كانت السرعة النهائية تساوي السرعة الابتدائية
3) يتساوى مقدار السرعة العددية مع مقدار السرعة المن	تجهة عندما تكون:
الحركة في مسار منحني	🗖 الحركة في مسار دائري مغلق
 السرعة المتجهة متغيرة المقدار والاتجاه 	 الحركة في خط مستقيم وفي اتجاه ثابت
السؤال الثاني: (أ) علل لما يلي تعليلاً علمياً حد	<u>(2 x ¾ = 1½) :</u> أ
1- تعتبر المسافة كمية عددية.	
2- يتحرك جسمك في اتجاه معاكس لاتجاه انحناء الطريق	، عندما تكون داخل سيارة تسير بسرعة ثابتة.

(ب) حل المسألة التالية : (1 = ½ 2 x)

سيارة تتحرك متسارعة بانتظام من السكون في خط مستقيم فأصبحت سرعتها m/s (30) بعد مرور دقيقة واحدة على بدء الحركة . احسب :

- أ) عجلة التسارع للسيارة:
- ب) المسافة التي قطعتها السيارة خلال هذه الفترة الزمنية:

الصف العاشر نموذج (²)

اختبار القصير الأول (فيزياء)

السؤال الأول : (أ) ضع علامة ($\sqrt{}$) في المربع المقابل لأنسب إجابة في العبارات التالية : ($\sqrt{}$) في المربع المقابل الأنسب إجابة في العبارات التالية : (أ) ضع علامة ($\sqrt{}$) في المربع المقابل الأنسب إجابة في العبارات التالية : (أ)

1) سيارة تتحرك بسرعة (m/s) فإن سرعتها بوحدة (km/h) تساوي:

7200 \Box

V m/s 40 72 🗖

20

10 🗆

2) المنحنى البياني يمثل منحنى (السرعة - الزمن) لسيارة متحركة

20 🗆

فان قيمة العجلة التي تتحرك بها السيارة بوحدة (m/s²) تساوي :

🗖 الدقيقة

80 🗆 60 🗅

40 □

3) يقدر الزمن في النظام الدولي بوحدة:

□ الساعة□ اليوم

الثانية

السؤال الثانى : (أ) قارن بين كل مما يلي حسب وجه المقارنة في الجدول التالي : ($1\frac{1}{2}$ × 2)

الكميات المتجهة	الكميات العددية	وجه المقارنة
		مثال
الحركة الدورية	الحركة الانتقالية	وجه المقارنة
		مثال

(ب) حل المسألة التالية : (1 = 2 x ½)

سيارة تسير بسرعة ثابتة قطعت مسافة (km) قدرها خلال (10) دقائق . احسب :

أ) السرعة التي تتحرك بها السيارة:

ب) المسافة التي تقطعها السيارة إذا تحركت بنفس السرعة لمدة ن ف ساعة:

الصف العاشر نموذج (³)

اختبار القصير الأول (فيزياء)

السؤال الأول : (أ) ضع علامة ($\sqrt{}$) في المربع المقابل لأنسب إجابة في العبارات التالية : ($\sqrt{}$) في المربع المقابل الأنسب إجابة في العبارات التالية : (أ)

1) حقيبة أمتعة كتلتها Kg (25) فتكون كتلتها بوحدة (g) تساوي :

25 🗆 25000 🗆

0.025 🗆 250 🗅

2) المنحنى البياني يمثل منحنى (السرعة - الزمن) لسيارة متحركة

فان العجلة التي تتحرك بها السيارة بوحدة (m/s²) تساوي :

20 🗆 40 🗆 - 20 🗆 - 40 🗅

3) يقدر الطول في النظام الدولي بوحدة:

□ المتر
 □ الكيلو متر
 □ السنتيمتر

السؤال الثانى : (أ) قارن بين كل مما يلي حسب وجه المقارنة في الجدول التالي : ($1\frac{1}{2}$ × 2)

الكميات المشتقة	الكميات الاساسية	وجه المقارنة
		مثال
حركة البندول البسيط	الحركة في خط مستقيم	وجه المقارنة
		نوع الحركة

$(2 \times \frac{1}{2} = 1)$: على المسألة التالية (ب)

قطار قطع مسافة (4) km خلال s (120) ثم قطع (8) خلال s (360). احسب:

أ) المسافة الكلية المقطوعة بالوحدة الدولية:

ب) السرعة المتوسطة للقطار:

V_A m/s

40

(فدياء	لأول (القصير ا	اختيار
(7 7 7.2	, 0, -	، کست	، حبب ر

الصف العاشر نموذج (1)

السؤال الأول : (أ) ضع علامة ($\sqrt{}$) في المربع المقابل لأنسب إجابة في العبارات التالية : ($\sqrt{}$) في المربع المقابل الأنسب إجابة في العبارات التالية : (أ

1) إذا كان ميل المنحنى البياني (السرعة ۔ الزمن) ب	النسبة لمحور الزمن يساوي افر فإن الجسم يكون :
 متحركاً بعجلة تسارع منتظمة 	□ متحركاً بعجلة تباطؤ منتظمة
🗖 متحركاً بسرعة منتظمة	ساكناً
2) تكون الحركة بعجلة منتظمة إذا:	
🗖 تغيرت السرعة بمعدل ثابت	 تغيرت المسافة بمعدل ثابت
□ كانت السرعة منتظمة	 كانت السرعة النهائية تساوي السرعة الابتدائية
3) يتساوى مقدار السرعة العددية مع مقدار السرعة الم	تجهة عندما تكون:
□ الحركة في مسار منحني	 الحركة في مسار دائري مغلق
□ السرعة المتجهة متغيرة المقدار والاتجاه	🗖 الحركة في خط مستقيم وفي اتجاه ثابت

$(2 \times \frac{3}{4} = 1\frac{1}{2})$: [1] علل لما يلي تعليلاً علمياً عديداً (1) علل الثاني الما يلي تعليلاً علمياً

1- تعتبر المسافة كمية عددية

لأن المسافة يلزم لتحديدها المقدار ووحدة القياس

2- يتحرك جسمك في اتجاه معاكس لاتجاه انحناء الطريق عندما تكون داخل سيارة تسير بسرعة ثابتة.

لان اتجاه السرعة يتغير أو التحرك في مسار منحني يؤدي إلى تغير السرعة المتجهة

$(2 \times \frac{1}{2} = 1)$: المسألة التالية (ب) حل المسألة التالية

سيارة تتحرك متسارعة بانتظام من السكون في خط مستقيم فأصبحت سرعتها m/s (30) بعد مرور دقيقة واحدة على بدء الحركة . احسب :

أ) عجلة التسارع للسيارة:

$$a = \frac{V - V_0}{t} = \frac{0 - 30}{60} = -0.5 \text{ m/s}^2$$

ب) المسافة التي قطعتها السيارة خلال هذه الفترة الزمنية:

$$d = \frac{V^2 - V_0^2}{2a} = \frac{(30)^2 - 0}{2x - 0.5} = 900 \text{ m}$$

الصف العاشر

اختبار القصير الأول (فيزياء)

السؤال الأول : (أ) ضع علامة ($\sqrt{}$) في المربع المقابل لأنسب إجابة في العبارات التالية : ($\sqrt{}$ علامة ($\sqrt{}$ علامة المربع المقابل الأنسب إجابة في العبارات التالية : (أ) ضع علامة ($\sqrt{}$ علامة المربع المقابل الأنسب إجابة في العبارات التالية : (أ) ضع علامة ($\sqrt{}$ علامة ($\sqrt{}$ علامة المربع المقابل الأنسب إجابة في العبارات التالية : (أ) ضع علامة ($\sqrt{}$ علامة ($\sqrt{}$ علامة المربع المقابل المربع المقابل الأنسب إجابة في العبارات التالية : (أ) ضع علامة ($\sqrt{}$ على المربع المقابل الأنسب إجابة في العبارات التالية : (أ) ضع علامة ($\sqrt{}$ على المربع المقابل الأنسب إجابة في العبارات التالية : (أ) ضع علامة ($\sqrt{}$ على المربع المقابل الأنسب إجابة في العبارات التالية : (أ) ضع علامة ($\sqrt{}$ على المربع المقابل الأنسب إجابة في المربع المقابل المربع المربع المربع المقابل المربع المربع

- 1) سيارة تتحرك بسرعة (m/s) فإن سرعتها بوحدة (km/h) تساوي:
- **7200** \Box
- V M/S **40**
- 72
- 20 🗆

- 10 🗆
- 2) المنحنى البياني يمثل منحنى (السرعة الزمن) لسيارة متحركة
- فان قيمة العجلة التي تتحرك بها السيارة بوحدة (m/s²) تساوي :
- 80 □ 60 □

🗖 الساعة

- 20 **40** \square
- 3) يقدر الزمن في النظام الدولي بوحدة:

🗖 اليوم

- 🔲 الدقيقة
- 🗖 الثانية

السؤال الثاني : (أ) قارن بين كل مما يلي حسب وجه المقارنة في الجدول التالي : ($\frac{11}{2}$ = $\frac{3}{4}$ = 2)

الكميات المتجهة	الكميات العددية	وجه المقارنة
الإزاحة _ العجلة	المسافة _ الكتلة	مثال
الحركة الدورية	الحركة الانتقالية	وجه المقارنة
الحركة الاهتزازية	حركة المقذوفات	مثال

(2 x ½ = 1) : حل المسألة التالية (4 = 2 x ½

سيارة تسير بسرعة ثابتة قطعت مسافة (km) قدرها خلال (10) دقائق . احسب :

أ) السرعة التي تتحرك بها السيارة:

$$V = \frac{d}{t} = \frac{6 \times 1000}{10 \times 60} = 10 \text{ m/s}$$

ب) المسافة التي تقطعها السيارة إذا تحركت بنفس السرعة لمدة ن ف ساعة:

$$d = V x t = 10 x (\frac{1}{2} x 3600) = 18000 m$$

الصف العاشر

اختبار القصير الأول (فيزياء)

السؤال الأول : (أ) ضع علامة ($\sqrt{}$) في المربع المقابل لأنسب إجابة في العبارات التالية : ($\sqrt{}$ علامة ($\sqrt{}$ علامة رأول على المربع المقابل الأنسب إجابة في العبارات التالية : (أ

1) حقيبة أمتعة كتلتها Kg (25) فتكون كتلتها بوحدة (g) تساوي :

25

- 25000
- 0.025
- 250

2) المنحنى البياني يمثل منحنى (السرعة - الزمن) لسيارة متحركة

فان العجلة التي تتحرك بها السيارة بوحدة (m/s²) تساوي :

20 🗆

- 20
- 40 🗆

3) يقدر الطول في النظام الدولي بوحدة:

□ السنتيمتر

V M/S

40

🗖 الملي متر

🗖 الكيلو متر

🔲 المتر

السؤال الثاني : (أ) قارن بين كل مما يلي حسب وجه المقارنة في الجدول التالي : ($\frac{11}{2}$ = $\frac{3}{4}$ = 2)

40 □

الكميات المشتقة	الكميات الاساسية	وجه المقارنة
المساحة _ الحجم _ السرعة	الطول ـ الكتلة ـ الزمن	مثال
حركة البندول البسيط	الحركة في خط مستقيم	وجه المقارنة
حركة دورية	حركة انتقالية	نوع الحركة

$(2 \times \frac{1}{2} = 1)$: (ب) حل المسألة التالية

قطار قطع مسافة km (4) خلال s (120) ثم قطع km (8) خلال s (360). احسب:

أ) المسافة الكلية المقطوعة بالوحدة الدولية:

$$d_t = (4+8) \, \times \, 1000 = 12000 \ m$$

ب) السرعة المتوسطة للقطار:

$$\bar{V} = \frac{d_t}{t_t} = \frac{12000}{120 + 360} = 25 \text{ m/s}$$

