

أحمد نصار

الملف نموذج اختبار تقييمي ثاني مجاب

موقع المناهج \Rightarrow ملفات الكويت التعليمية \Rightarrow الصف العاشر \Rightarrow رياضيات \Rightarrow الفصل الأول

المزيد من الملفات بحسب الصف العاشر والمادة رياضيات في الفصل الأول	
مذكرة ممتازة في مادة الرياضيات	1
<u>اوراق عمل للكورس الاول في مادة الرياضيات</u>	2
حل كراسة التطبيقات في مادة الرياضيات	3
اسئلة اخابارات واجابتها النموذجية في مادة الرياضيات	4
مذكرة ممتازة في مادة الرياضيات	5

نماذج أجابة أمتحان تقييمي ثاني 2024 / 2025 فصل أول

عمل / أ . أحمد نصار النموذج الأول

$$\frac{Y - \omega_{m}}{W^{*}} = \frac{1}{W}$$

$$W^{*} \times 1 = (Y - \omega_{m})W$$

$$W^{*} = Y - \omega_{m}W$$

$$Y + W^{*} = \omega_{m}W$$

$$W^{*} = \omega_{m}W$$

قطاع دائري طول قطر دائرته ١٠ سم ومساحته ١٥ سم فإن طول قوسه يساوي:

- 🕲 ۱۲سم 🖸 ٤ سم

- ٦ سم

إذا كانت ٦ ، ١٢ ، س ، ٤٨ في تناسب متسلسل فإن س =

- 77 ©
- 11 0 7. 0

النموذج الثاني

<u>1-</u>

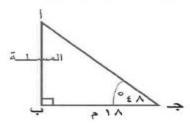
 $\frac{1}{2}$ ، الأعداد : ٤ ، س - ۲ ، ۱ ، $\frac{1}{2}$ في تناسب متسلسل أوجد قيمة س .

الأعداد في تناسب متسلسل الحل:

$$\frac{1}{\frac{1}{Y}} = \frac{Y - \omega_{0}}{1} = \frac{\xi}{Y - \omega_{0}} :$$

$$\frac{Y}{1} = \frac{\xi}{Y - \omega_{0}} :$$

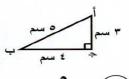
- إذا كانت الأعداد ٢ ، ٣ ، ٤ ، س متناسبة ، فإن س تساوي ٦ 🕕
- $\frac{1}{2}$ إذا كان $\frac{1}{2}$ = $\frac{7}{2}$ فإن أ ب = 7 \$


النموذج الثالث

<u>1-</u>

لقياس طول احدى المسلات قام مرشد سياحي برصد قمة المسلة من خلال جهاز للرصد . فوجد أن قياس زاوية الارتفاع ٤٨ °. إذا كان الجهاز يبعد عن قاعدة المسلة مسافة ١٨م. فاحسب ارتفاع المسلة.

الحل:



باعتبار أن أب هو ارتفاع المسلة ب ج هو بعد الجهاز عن القاعدة المسلة

اب≈۰۲م

· ارتفاع المسلة يساوى ٢٠ م تقريبا

في الشكل المقابل ظتا ب =

 $\frac{\circ}{t}$ (1) $\frac{t}{\circ}$ (2) $\frac{t}{r}$ (1)

إذا كانت الأعداد ٦، ٩، س، ١٥ متناسبة فإن قيمة س =

Yo (__)

النموذج الرابع

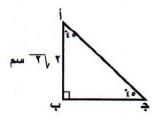
<u>1-</u>

تحلق مروحية فوق محمية طبيعية على ارتفاع ٢٥٠ مترًا وتواكبها على الأرض سيارة حرس المحمية. شاهد ربان المروحية قطيعًا من الفيلة بزاوية انخفاض قياسها ٤٨°. ما المسافة بين المروحية والقطيع في تلك اللحظة علمًا بأن السيارة مباشرة تحت المروحية؟

الحل:

لتكن أموقع المروحية، ب موقع السيارة، ج موقع القطيع.

اج
$$\simeq 3,777 مترًا$$


يبعد قطيع الفيلة حوالي ٣٣٦ مترًا عن المروحية.

ټ ۳۰ سې

في الشكل المقابل: طول أج يساوي:

النموذج الخامس

<u>1-</u>

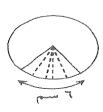
حل المثلث س ص ع قائم الزاوية في ع حيث س ع = ٥,٨ سم ، ص ع = ٥,١ سم

الحل: (س ص) ۲ = (س ع) ۲ + (ع ص) د ۱٤,٥ (س ص) = (۸,٥) + (۸,٥) (س ص) = ۲۸۲,۵ (س س ص = / ۲۸۲٫۰ سم $\frac{18,0}{\Lambda o} \simeq \frac{900}{100} = 0$ ق(ش) م ۲۲,۹۰° ق (ص) = ۱۸۰ - (۹۰ + ۲۲,۹۰°) م ۳۰,۳۸ م

قطاع دائري طول قطر دائرته ٢٠ سم ومساحتة ٣٠ سم فإن طول قوسه يساوي :

في المثلث س مي ع القائم في مي فإن جاس = جتاع

النموذج السادس


<u>1-</u>

من الشكل المقابل :أوجد مساحة القطاع الدائري الأصغر الذي طول نصف قطردائرته ٦ سم وزاويته المركزية 🎹

الحل:

مساحة القطاع الدائري =
$$\frac{1}{Y}$$
 هـ $\frac{1}{Y}$ هـ $\frac{1}{Y}$ (٦) $\times \frac{\pi}{Y} \times \frac{1}{Y} = \pi$ $= \pi$ $= \pi$ (٦) $= \pi$

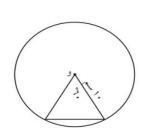
في الشكل المقابل دائرة طول نصف قطرها ٥ سم فإن مساحة القطاع الاصغر المظلل الذي طول قوسه اسم يساوي

النموذج السابع

1-

احسب مساحة قطعة دائرية زاويتها المركزية ٢٠٠ وطول نصف قطر دائرتها ١٠ سم .

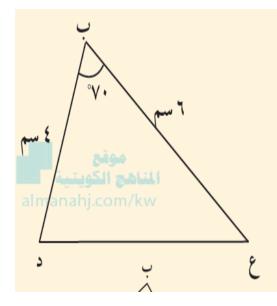
$$\frac{\pi}{1 \wedge 1} \times 1 \cdot 1 = \Delta$$


$$a = \frac{1}{r} \times i \bar{b}^{7} \times (a^{c} - \lambda a^{c})$$

$$[\cdot, \wedge \forall \cdot \cdot - \cdot \cdot, \cdot \cdot \vee \cdot \cdot] \times 1 \cdot \cdot \times \frac{1}{\tau} = \beta$$

اب جـ مثلث قائم في بُ فإن اجـ تساوي:

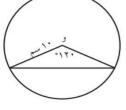
في الشكل المقابل، مساحة القطاع الأصغر تساوي:


$$\frac{\pi \cdots \pi}{\pi}$$
 (ب)

(c)
$$\frac{1 \cdot \cdot}{7}$$
 mg

$$\frac{7}{7}$$
سم $\frac{\pi \circ \cdot \cdot}{7}$ سم $\frac{\pi \circ \cdot \cdot}{7}$ سم $\frac{\pi \circ \cdot \cdot}{7}$ سم $\frac{\pi \circ \cdot \cdot}{7}$

النموذج الثامن


1-

بع د مثلث فیه بع = ۲ سم، ب د = ۶ سم، ن(ب) = ۷۰ أوجد مساحة هذا المثلث.

مساحة المثلث بع د =
$$\frac{1}{7}$$
 بع × ب د × جا(بٛ)
= $\frac{1}{7}$ × 7 × $\frac{1}{7}$ × بجا($^{\circ}$ ۷ ·) $^{\circ}$ × 7 · , ۲۷ ، ۱۱ مساحة المثلث بع د هی حوالی ۲۷۲ ، ۱۱ سم .

في الشكل المقابل مساحة القطعة الدائرية الصغرى (بوحدات المساحة) تساوى:

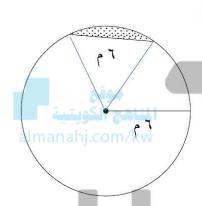
$$\left(\frac{\overline{\psi}}{\gamma} - \frac{\pi \, \mathsf{V} \, \mathsf{V}}{\mathsf{V} \, \mathsf{V}}\right) \circ \bullet \bigcirc$$

$$(1) \cdot \circ \left(\cdot \gamma \cdot - \frac{\sqrt{13}}{\gamma} \right)$$

$$\left(\frac{\lambda}{2\sqrt{\lambda}} - 1\lambda \cdot \right) \cdots (7)$$

$$\left(\frac{\pi}{4} - \frac{\pi}{4} \cdot \frac{\pi}{4} \cdot \frac{\pi}{4}\right) \cdot \cdot \cdot (\Rightarrow)$$

قطاع دائري طول نصف قطر دائرته ٤٠ سم، ومساحته ٠٠٥ سم٢، فإن طول قوس القطاع (بالسنتيمترات)


(د) ۲٥

(ج) ۱۰۰

النموذج التاسع

<u>1-</u>

حوض زهور دائری نصف قطره ٦ متر , فیه وتر طوله ٦ متر ,احسب مساحة القطعة الدائرية الصغرى

مساحة القطعة الدائرية
$$=\frac{1}{7}$$
نق $^{7}(a^{-1}-a)$ جا هـ $^{-1}$

$$\frac{\pi}{r} = \frac{\pi}{1 \wedge \cdot} \times 1 \cdot = 2 \Delta$$

$$(-) \qquad \frac{\xi + \pi}{\xi} = \frac{+}{\xi}$$

$$\frac{1}{\xi} = \frac{\eta}{\xi} = \frac{\eta + \eta}{\xi} = \frac{\eta + \eta}{\xi} = \frac{\eta + \eta}{\xi} = \frac{\eta}{\xi}$$

إذا كان
$$\frac{\omega}{1 \cdot 1} = \frac{0}{1}$$
 . فإن قيمة س هي:

$$\frac{\xi\xi}{\tau}$$
 ($\dot{\varphi}$)

$$\frac{11}{V0}$$
 (2)

النموذج العاشر

<u>1-</u>

أثبت أن ٤ ، ١,٥ ، ٨ ، ٣ أعداد متناسبة.

 $\frac{\Lambda}{m}$ ، $\frac{\xi}{1.0}$ المناسبة عندما تتساوى النسبتان $\frac{\xi}{0.0}$ ، $\frac{1}{0.0}$ ، $\frac{1}{0.0}$

موقع المناهج الكويتيية

$$\frac{\Lambda}{m} = \frac{\xi}{10} = \frac{\xi}{10} = \frac{\xi}{10}$$
 وحيث أن

$$\frac{\Lambda}{m} = \frac{\xi}{1,0}$$
 is in the state of th

ن. الأعداد متناسبة.

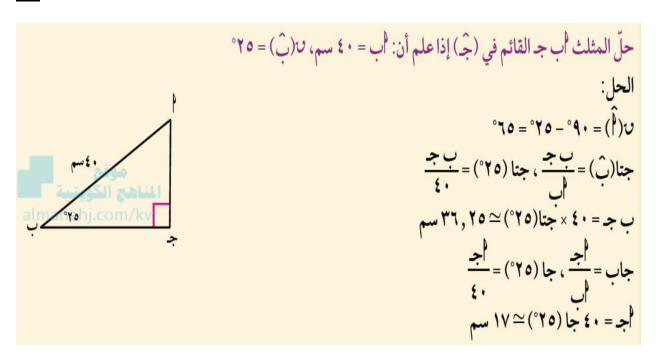
الموضوع*ي*

قطاع دائري طول نصف قطر دائرته ٤٠ سم، ومساحته ٥٠٠ سم، فإن طول قوس القطاع (بالسنتيمترات)

VO(2)

(ح) ۱۰۰

0.(1)


إذا كان $\frac{m}{m} = \frac{10}{77}$. فإن قيمة س هي:

 $\frac{11}{V0}$ (2)

 $\frac{4}{55}$ (ج)

 $\frac{\xi \xi}{\psi}$ (ψ)

النموذج الحادى عشر

الموضوعي

إذا كان $\frac{m}{m}$ = ۷ فإن m + N

(د) ليس أيًّا مما سبق صحيحًا

(أ) ٧ س (ب) ٨س 😞 ٢ س

إذا كانت $\frac{m}{\Lambda} = \frac{1}{2}$ فإن إحدى الإجابات الصحيحة هي:

$$\frac{1}{2} = \omega + \frac{1}{2} = \omega$$
 (1)

حالة خاصة

إذا كانت أ، ب، ج أعدادًا متناسبة مع الأعداد ٢، ٥، ٧. فأوجد القيمة العددية للمقدار $\frac{7+7}{7}$.

معلومة رياضية:

إذا كانت أ، ب، ج أعدادًا متناسبة مع الأعداد د، ه، و، فإن: $\frac{1}{c} = \frac{v}{a} = \frac{z}{e} = 0$

الحل:

$$\frac{1}{\sqrt{1-\frac{h}{h}}} = \frac{h}{h} = \frac{h}{h} = \frac{h}{h} = \frac{h}{h} \therefore$$

$$1 = \frac{1 + 7 \cdot \frac{1}{2}}{1 \cdot \frac{1}{2}} = \frac{1 \cdot \frac{1}{2} \cdot \frac{1}{2}}{1 \cdot \frac{1}{2}} = \frac{1 \cdot \frac{1}{2}}{1 \cdot \frac{1}{2}} = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2} = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2} \cdot \frac{1}{2} = \frac{1$$