مراجعة الوقفة التقويمية ميكانيكا الكم 803 المستوى الثاني الثانوي الصناعي

تم تحميل هذا الملف من موقع مناهج مملكة البحرين

موقع المناهج ← مناهج مملكة البحرين ← الصف الثاني الثانوي ← فيزياء ← الفصل الثاني ← ملفات متنوعة ← الملف

تاريخ إضافة الملف على موقع المناهج: 17-10-2025 14:58:09

ملفات اكتب للمعلم اكتب للطالب ا اختبارات الكترونية ا اختبارات ا حلول ا عروض بوربوينت ا أوراق عمل منهج انجليزي ا ملخصات وتقارير ا مذكرات وبنوك ا الامتحان النهائي ا للمدرس

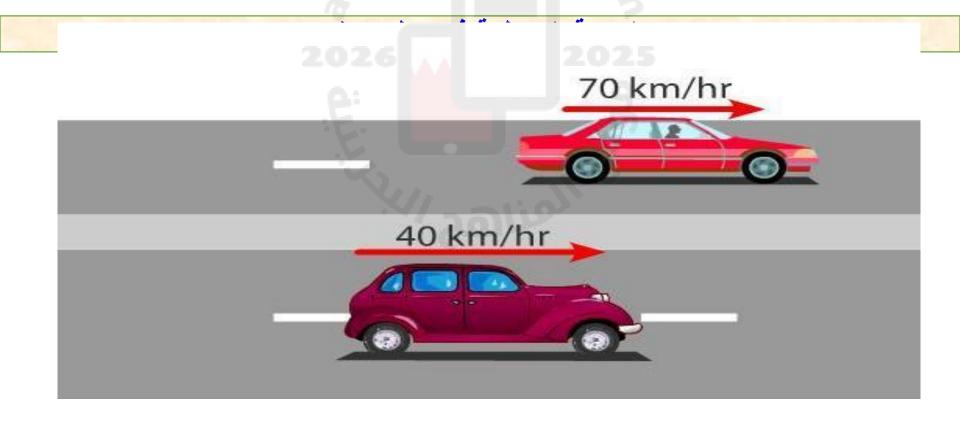
المزيد من مادة فيزياء:

التواصل الاجتماعي بحسب الصف الثاني الثانوي

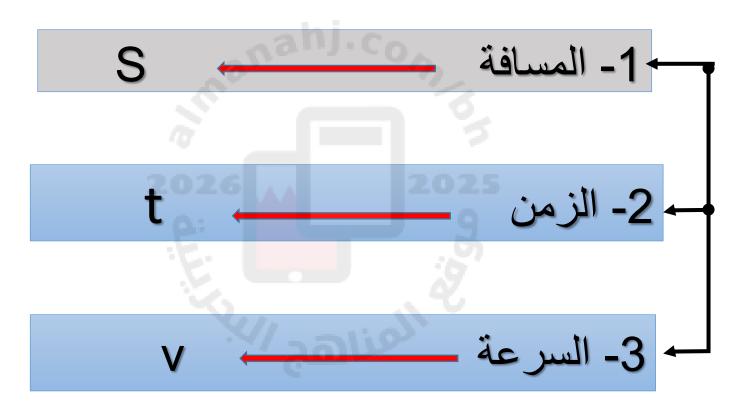
صفحة مناهج مملكة البحرين على فيسببوك

الرياضيات

اللغة الانجليزية


اللغة العربية

التربية الاسلامية


المواد على تلغرام

المزيد من الملفات بحسب الصف الثاني الثانوي والمادة فيزياء في الفصل الثاني	
حل مذكرة مراجعة مقرر فيز 218	1
مراجعة مقرر فيز 218	2
ملخص التعريفات	3
مذكرة مراجعة فيز 218 أهم المصطلحات	4
مذكرة فيز 218	5

مدرسة الشيخ عبد الله بن عيسى الثانوية الصناعية قسم الميكانيكا التطبيقية مراجعة للوقفة التقويمية الأولى – مقرر: الميكانيكا التطبيقية 1 (ميك808) للمستوى الثاني الفصل الدراسي الأول 2025/2026م

♦ عناصر الحركة:

الحركة المنتظمة في خط مستقيم

تعريف:الحركة:

هي انتقال الجسم من موضع إلى موضع آخر خلال فترة زمنية

تعريف: السرعة: هي معدل التغير في المسافة بالنسبة للزمن.

تعريف: السرعة المنتظمة: هي أن يقطع الجسم مسافات متساوية خلال أزمنة متساوية

وحدة قياس السرعة m/s

(قانون السرعة)

$$V = \frac{S}{t}$$
 المسافة $= 3$ المسافة $= 3$

وحدة القياس الدولية	المصطلح	الرمز
m	المسافة	S
sec	الزمن هج	t
m/sec	السرعة	V

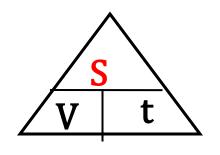
الوحدة الدولية للقياس	المعنى	الرمز
m	المسافة	S
sec	الزمن	t
m/sec	السرعة	V

$$V = \frac{S}{t}$$

<u>س 1:</u>

تحرك جسم في خط مستقيم بسرعة منتظمة فقطع مسافة مقدارها 300 m خلال زمن قدره 5 sec

الحل:

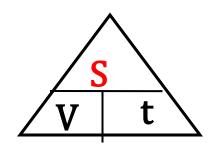

$$V = \frac{S}{t} = \frac{300}{5}$$

$$t = 5 sec$$

$$S = 300 \text{ m}$$

$$\Lambda = 33$$

الوحدة الدولية	المعنى	الرمز
m	المسافة	S
sec	الزمن	t
m/sec	السرعة	V

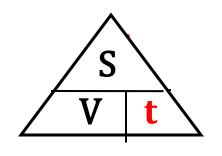

س2: جسم يتحرك في خط مستقيم بسرعة منتظمة مقدارها 30 m/sec أحسب المسافة التي يقطعها الجسم خلال زمن قدره 10 sec

الحل:

المسافة
$$S = V \times t$$
 المسافة $S = 30 \times 10$ المسافة $S = 300 \text{ m}$

$$V = 30 \text{ m/sec}$$
 $t = 10 \text{ sec}$
 $S = ??$

الوحدة الدولية	المعنى	الرمز
m	المسافة	S
sec	الزمن	t
m/sec	السرعة	V

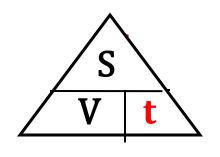

س3: تتحرك سيارة في خط مستقيم بسرعة منتظمة مقدارها 20 m/sec أحسب المسافة التي يقطعها الجسم خلال زمن قدره 5 sec

الحل:

المسافة
$$S = V \times t$$
 المسافة $S = 20 \times 5$ المسافة $S = 100 \text{ m}$

$$V = 20 \text{ m/sec}$$
 $t = 5 \text{ sec}$
 $S = 22$

الوحدة الدولية	المعنى	الرمز
m	المسافة	S
sec	الزمن	t
m/sec	السرعة	V


س4: إذا كانت المسافة بين البحرين ومشهد 1720 km فما مقدار الزمن اللازم لرحلة طيران بين البلدين إذا علمت أن سرعة طيران الطائرة 860 km/h

الحل :

$$t = \frac{S}{v} = \frac{1720}{860}$$
 الزمن t = 2 h

$$V = 860 \text{ km/h}$$
 $t = ??$
 $S = 1720 \text{ km}$

الوحدة الدولية	المعنى	الرمز
m	المسافة	S
sec	الزمن	t
m/sec	السرعة	V

س5: تتحرك سيارة بسرعة منتظمة مقدارها 120 km/h من مملكة البحرين متجهة إلى الرياض ، ما مقدار الزمن اللازم للوصول إلى الرياض إذا علمت أن المسافة من البحرين إلى الرياض 500 km

$$t = \frac{S}{V} = \frac{500}{120}$$
 الزمن t = 4.16 h

$$V = 120 \text{ km/h}$$
 $t = ??$
 $S = 500 \text{ km}$

تقويم

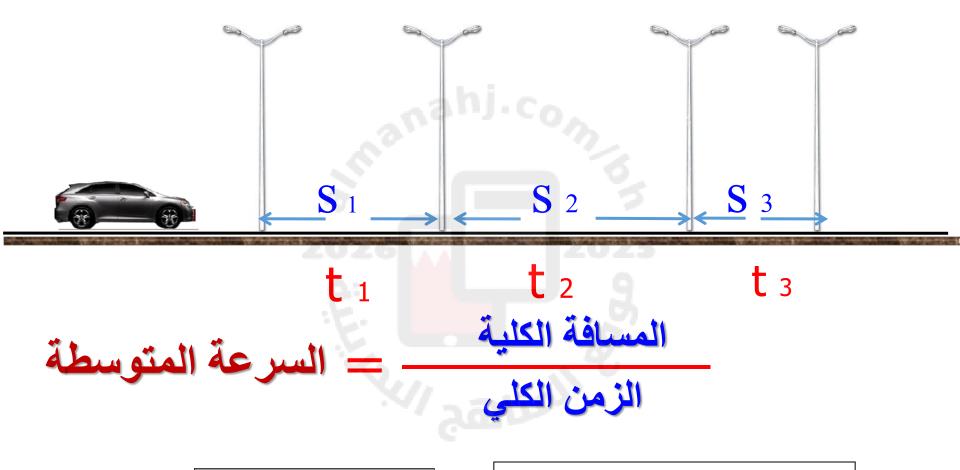
(A) الرجل

(A) العداء

- 1- ماذا نُعني عندما نقول أن سرعة الجسم 5 m/s ؟
 - (A) يقطع الجسم m 5 كل 5 n

(D) الجسم يقطع 5 m/s كل 5 s

(B) الجسم يقطع m كل 5 m.


- (c) الجسم يقطع 1 m كل 5 s
- $\frac{2}{2}$ الم سيارة تقطع $\frac{8}{m}$ خلال $\frac{8}{2}$ $\frac{8}{m}$ أم سيارة تقطع $\frac{8}{m}$ خلال $\frac{2}{2}$ ؟
 - (B) السيارة
 - (D) معلومات السؤال غير كافية.

- (C) يتحركان بالسرعة نفسها.
- 3- أي الجسمين يتحرك بسرعة أكبر: شخص يتحرك بسرعة $5 \, \mathrm{m/s}$ ، أم سيارة تقطع $6 \, \mathrm{m}$ خلال $1 \, \mathrm{s}$
 - (B) لسيارة
 - (D) معلومات السؤال غير كافية.

(C) يتحركان بالسرعة نفسها.

السرعة المتوسطة: هي حاصل قسمة المسافة الكلية على الزمن الكلي

$$\overline{\mathbf{V}} = \frac{S_{\mathsf{T}}}{t_{\mathsf{T}}}$$

$$\overline{V} = \frac{S_1 + S_2 + S_3}{t_1 + t_2 + t_3}$$

 $\overline{V} = \frac{S_1 + S_2 + S_3}{t_1 + t_2 + t_3}$

= السرعة المتوسطة للسيارة

أحسب السرعة المتوسطة للسيارة ؟

$$\overline{V} = \frac{20 + 30 + 10}{4 + 6 + 2} = \frac{60}{12} = 5 \text{ m/sec}$$

الوحدة الدولية	المعنى	الرمز
m	المسافة	S
sec	الزمن	t
m/sec	السرعة	V
m/sec	السرعة المتوسطة	$ar{V}$

$$\bar{V} = \frac{S_T}{t_T}$$

<u>س 1:</u>

المعطيات

قطع جسم مسافة m 10 في زمن قدره 3 sec ثم قطع مسافة m 25 في زمن قدره 4 sec احسب السرعة المتوسطة

الحل

 $\overline{V} = \frac{S_T}{t_T} = \frac{10 + 25}{3 + 4} = \frac{35}{7}$ = 5 m/sec

$$S_1 = 10 \text{ m}$$
 $t_1 = 3 \text{ sec}$
 $S_2 = 25 \text{ m}$
 $t_2 = 4 \text{ sec}$
 $\overline{V} = ??$

الوحدة الدولية	المعنى	الرمز
m	المسافة	S
sec	الزمن	t
m/sec	السرعة	V
m/sec	السرعة المتوسطة	$ar{V}$

$$\overline{V} = \frac{S_T}{t_T}$$

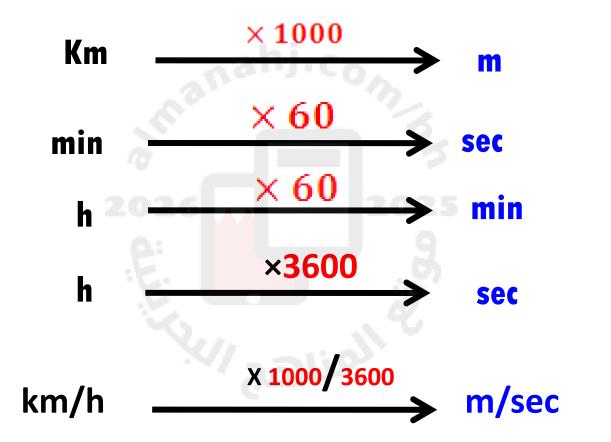
المعطبات

قطع شخص مسافة 20 m في زمن قدره 4 sec ثم قطع مسافة زمن قدره sec 6 احسب السرعة المتوسطة

الحل

$$\bar{V} = \frac{S_T}{t_T} = \frac{20 + 30}{4 + 6} = \frac{50}{10}$$
= 5 m/sec

 $S_1 = 20 \text{ m}$ $S_2 = 30 \text{ m}$


تحرك طالب من منزله نحو البقالة واستغرق sec 400 sec ، ثم تحرّك نحو منزل جده واستغرق زمنًا مقداره sec . كم تكون سرعته المتوسطة؟

$$\frac{300+700}{400+100}$$
 = السرعة المتوسطة

$$v = \frac{1000}{500} = 2 \, m/s$$

العلاقة بين وحدات القياس (التحويلات)

تحويل وحدات القياس:

$$\frac{\times \frac{5}{18}}{\text{m/sec}}$$

حول السرعة 40 km/h إلى ما يساويها بالوحدة الدولية للسرعة .

90 km/h = 90
$$X = \frac{5}{18} = 25$$
 m/sec

الوحدة الدولية	المعنى	الرمز
m	المسافة	S
sec	الزمن	t
m/sec	السرعة	V
m/sec	السرعة المتوسطة	$ar{V}$

$$\frac{\overline{V}}{V} = \frac{S_1 + S_2 + S_3}{t_1 + t_2 + t_3}$$

 $\times \frac{5}{18}$

 $\min \xrightarrow{\times 60} \sec$ Km × 1000 m

س 4: قطعت سيارة مسافة 80 km في الساعة الأولى ثم مسافة 60 km في الساعة التالية ثم مسافة 76 km

في الساعة الثالثة احسب سرعتها المتوسطة بالوحدة الدولية.

$$\overline{V} = \frac{S_T}{t_T} = \frac{80 + 60 + 76}{1 + 1 + 1} = \frac{216}{3}$$

$$= 72 \text{ km/h} = 72 \times \frac{5}{18} = 20 \text{ m/sec}$$

$$S_1 = 80 \text{ km}$$
 $t_1 = 1 \text{ h}$
 $S_2 = 60 \text{ km}$
 $t_2 = 1 \text{ h}$
 $S_3 = 76 \text{ km}$
 $t_3 = 1 \text{ h}$
 $V = 22$

المعطيات

الحركة بعجلة منتظمة في خط مستقيم

"acceleration"(التسارع)

تعريف العجلة (التسارع): العجلة هي معدل التغير في السرعة بالنسبة إلى الزمن

التسارع (العجلة) acceleration

$$a = \frac{V - V_o}{t}$$

العجلة: هي معدل تغير السرعة بالنسبة للزمن

« وحدة قياس العجلة
 « وحدة قياس العجلة
 « وحدة قياس العجلة
 »
 »
 »
 « وحدة قياس العجلة
 »
 »
 »
 »
 »
 « وحدة قياس العجلة
 »
 »
 »

 »
 »
 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

 »

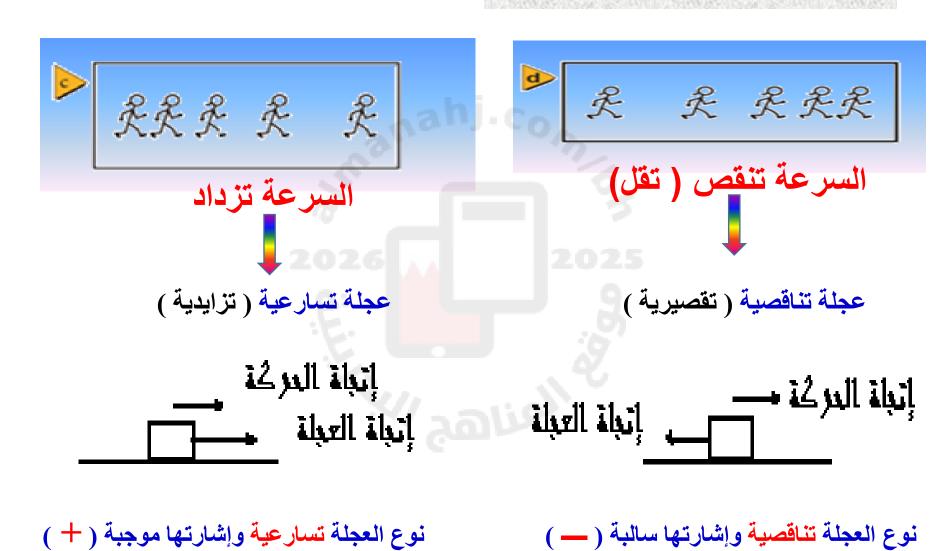
 »

 »

 »

 »

 »


< عندما يتحرك الجسم بسرعة منتظمة تكون العجلة تساوي صفر < عندما تزداد سرعة الجسم تكون العجلة تسارعية (+)

عندما تقل (تنقص) سرعة الجسم تكون العجلة تناقصية (_)

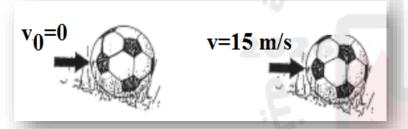
 $a=rac{V-V_o}{}$ قانون حساب التسارع (العجلة) ما

الوحدة الدولية	المعنى	الرمز
m/sec	السرعة الابتدائية	V
m/sec	السرعة النهائية	V
sec	الزمن	t
m/sec²	العجلة	a

أنواع التسارع (العجلة):

- الوحدة الدولية لقياس العجلة (التسارع) : o الوحدة الدولية لقياس العجلة (التسارع)
- إشارة العجلة التسارعية (التزايدية) المنتظمة: تكون موجبة (+) واتجاهها مع اتجاه حركة الجسم
- إشارة العجلة التناقصية (التقصيرية) المنتظمة: تكون سالبة (-) واتجاهها عكس اتجاهها حركة الجسم

مفاهيم اساسية في درس حركة جسم بعجلة منتظمة:


- العجلة هي معدل تغير السرعة بالنسبة للزمن
 - شاس العجلة m/sec² *
- العجلة تساوي صفر عندما يكون الجسم ساكنا أو متحركا بسرعة منتظمة
 - «عندما تزداد سرعة الجسم تكون العجلة تسارعية (+)
 - «عندما تقل (تنقص) سرعة الجسم تكون العجلة تناقصية (_)
 - السيارة بعجلة (accelerator) تتحرك السيارة بعجلة تسارعية
- عند الضغط علي دواسة الفرامل (break) تتحرك السيارة بعجلة تقصيرية
 عندما تزداد سرعة الجسم فإن عجلة الحركة تكون عجلة تسارعية
 عندما تقل سرعة الجسم فإن عجلة الحركة تكون عجلة تقصيرية

الوحدة الدولية	المعنى	الرمز
m/sec	السرعة الابتدائية	V _o
m/sec	السرعة النهائية	V
sec	الزمن	t
m/sec ²	العجلة	а

$$a = \frac{V - V_o}{t}$$

<u> تال-1:</u>

عندما ركل لاعب قدم الكرة تغيرت سرعتها من الصفر إلي 15 m/s خلال مدة 3 sec أوجد العجلة (التسارع) التي تحركت بها الكرة.

$$a = \frac{V - V_o}{t} = \frac{\frac{15 - 0}{3}}{\frac{3}{3}} = \frac{\frac{15}{3}}{\frac{3}{3}}$$

$$=$$
 5 m/sec²

$$V_o = 0$$
 $V = 15 \text{ m/sec}$
 $t = 3 \text{ sec}$
 $a = ??$

ملاحظة هامة :إذا ذكر في المسألة أن الجسم يتحرك من السكون : فهذا يعني أن سرعة الجسم الابتدائية = صفر
$$V_0 = 0$$

$$a = \frac{V - V_o}{t}$$

تدريب -1:

بدأت سيارة حركتها من السكون وبعد مرور sec 10 أصبحت سرعتها 20 m/sec احسب مقدار العجلة واذكر نوعها.

$$a = \frac{V - V_0}{t} = \frac{20 - 0}{10} = \frac{20}{10}$$

$$= 2 \text{ m/sec}^2$$
ie 3 it is in the content of the content of

$$V_o = 0$$
 m/sec
 $V = 20$ m/sec
 $t = 10$ sec
 $a = 22$

الوحدة الدولية	المعنى	الرمز
m/sec	السرعة الابتدائية	V _o
m/sec	السرعة النهائية	V
sec	الزمن	t
m/sec ²	العجلة	a

$$a = \frac{V - V_o}{t}$$

تدريب 2: بدأ جسم حركته بسرعة ابتدائية قدرها 10 m/sec ثم زادت سرعته حتى وصلت إلى 34 m/sec خلال زمن قدره 6 sec . احسب مقدار العجلة.

$$a = \frac{V - V_0}{t} = \frac{34 - 10}{6} = \frac{24}{6}$$

$$= \frac{4 \text{ m/sec}^2}{6}$$
ie 3 lequility in the second second

$$V_o = 10 \text{ m/sec}$$
 $V = 34 \text{ m/sec}$
 $t = 6 \text{ sec}$
 $c = 22$