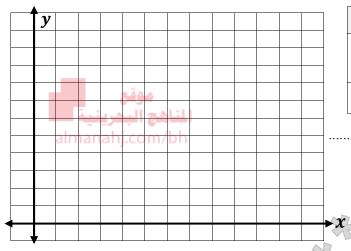
تم تحميل هذا الملف من موقع المناهج البحرينية

الملف شرح درس البرمجة الخطية إيجاد الحل الأمثل مع أوراق عمل مقرر ريض 102

موقع المناهج ← ← الصف الأول الثانوي ← رياضيات ← الفصل الأول



المزيد من الملفات بحسب الصف الأول الثانوي والمادة رياضيات في الفصل الأول				
أوراق عمل شاملة في مقرر ريض 151	1			
دليل المعلم مقرر ريض 151	2			
مراجعة المنتصف في مقرر ريض 151	3			
مذكرة مراجعة المنتصف في مقرر ريض 151	4			
بطاقات مراجعة في مقرر ريض 151	5			

التاريخ: /	<u>15</u> اليوم:	بطاقة (18) ريض 52	مدرسة النعيم الثانوية المرسي
الصف: ١ م	الاسم:		قسم الرياضيات
	<u>جاد الحل الأمثل</u>	البرمجة الخطية (إيـ	7/9
اعداد أ./ عابدين حامد	قة الحل .	ات بيانياً ، ويحدد رؤوس منطة برمجة الخطية لإيجاد الحل الأما	الأهداف: 1 أن يمثل نظام المتباين
	ثل لمسائل حياتية .	برمجة الخطية لإيجاد الحل الأما	و أن يستعمل الطالب ال

البرمجة الخطية: هي أفضل طريقة لإيجاد القيمة العظمى أو الصغرى لدالة ما (دالة الهدف) تحت قيود (شروط) معينة . إيجاد الحل الأمثل: نستخدم البرمجة الخطية للحصول على أفضل سعر أو الكمية الأفضل (الحل الأمثل) لتقليل التكلفة أو زيادة الربح .

 $\frac{\text{rc}(\mu)}{\text{rc}}$ مصنع أجهزة كهربائية ينتج ما بين 20 إلى 30 جهازاً من النوع A ، وما بين 20 إلى 45 جهازاً من النوع BD 5 ، A أسبوعياً . ويخطط لبيع 55 جهازاً من النوعين على الأكثر . إذا كان المصنع يربح BD 5 ، A في الجهاز من النوع B ، فكم جهازاً من كل نوع عليه أن يبيع ليكون ربحه أكبر ما يمكن ؟ وأوجد قيمته .

الشروط (القيود)	В	A	نوع الإنتاج
3.			العدد
= \{\bar{3}\}			دالة الربح

<u>رؤوس منطقة الحل :</u>

x + y = 55				
x	0			
у	7	0		
1				

(x,y)	7x + 5y	f(x,y)

أكبر ربح للمصنع 335 BD ويتحقق عند إنتاج جهازاً من النوع الأول A و جهازاً من النوع الأول B أسبوعياً.

تدريب (٢): ينتج مصنع نوعين من الكراسي بحيث يحتاج إنتاج الكرسي من النوع الأول مدة ساعتين ، وإنتاج الكرسي من النوع الثاني مدة 3 ساعات ، فإذا كانت ساعات العمل بالمصنع لا تزيد عن 18 ساعة يومياً ، والمصنع ملتزم بإنتاج 3 كراسي على الأقل من النوع الأقل من النوع الثاني يومياً ، ويبلغ ربح المصنع BD 10 من بيع الكرسي الواحد من النوع الأول ، و 30 BD من بيع الكرسي الواحد من النوع الأول ، و 30 BD من بيع الكرسي الواحد من النوع الثاني ، أوجد عدد الكراسي التي يجب على المصنع إنتاجها من كل نوع يومياً حتى يكون ربحه أكبر ما يمكن ؟ وأوجد قيمته .

y'						7			
					1		P	>	
				-	8	7	7		
				00	1	16			
					1				
		,		71		>			
		1		75/	/				
		\bigvee		10					
		1	>						\boldsymbol{x}
,	,		29						

الشروط (القيود)	الثاني	الأول	نوع الإنتاج
			العدد
			الزمن
			دالة الربح

رؤوس منطقة الحل:

2x + 3y = 18				
x	0			
у		0		

(x, y)	10x + 30y	f(x, y)
	_	· · · · · · · · · · · · · · · · · · ·

أكبر ربح للمصنع BD 150 ويتحقق عند إنتاج كراسي من النوع الأول و كراسي من النوع الثاني يومياً .

تدريب (٣): يصوغ فهد من 10 إلى 25 عقداً ، ومن 15 إلى 40 سواراً شهرياً. إذا كانت أجرة صياغة العقد 50 BD ، وأجرة صياغة السوار 30 BD ، وصاغ في أحد الأشهر على الأقل 30 قطعة من العقود والأساور ، فكم قطعة من كلا النوعين عليه صياغتها ، ليحصل على أكبر أجر ؟ وأوجد قيمة هذا الأجر .

<u>الجواب :</u> (25,40), (25,15), (25,15), (10,40), (10,20) ، أكبر أجرة = 2450 BD عند صياغة 25 عقداً ، 40 سواراً