ملزمة تجميعة أسئلة وفق الهيكل الوزاري منهج بريدج بدون الحل

تم تحميل هذا الملف من موقع المناهج الإماراتية

موقع المناهج ← المناهج الإماراتية ← الصف التاسع العام ← رياضيات ← الفصل الأول ← ملفات متنوعة ← الملف

تاريخ إضافة الملف على موقع المناهج: 21-10-22 2025:39

ملفات اكتب للمعلم اكتب للطالب ا اختبارات الكترونية ا اختبارات ا حلول ا عروض بوربوينت ا أوراق عمل منهج انجليزي ا ملخصات وتقارير ا مذكرات وبنوك ا الامتحان النهائي ا للمدرس

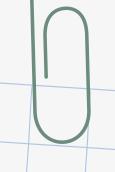
المزيد من مادة رياضيات:

التواصل الاجتماعي بحسب الصف التاسع العام

صفحة المناهج الإماراتية على فيسببوك

الرياضيات

اللغة الانجليزية


اللغة العربية

التربية الاسلامية

المواد على تلغرام

المزيد من الملفات بحسب الصف التاسع العام والمادة رياضيات في الفصل الأول	
تجميعة أسئلة وفق الهيكل الوزاري الجديد منهج ريفيل	1
نموذج إجابة تجميعة شاملة وفق كامل الهيكل الوزاري منهج بريدج	2
تجميعة شاملة وفق كامل الهيكل الوزاري منهج بريدج بدون الحل	3
الخطة الفصلية للدروس المقررة في الفصل الأول منهج ريفيل	4
الدروس التي تم تحويلها إلى دروس إثرائية للعام 2026-2025	5

REVEAL

First semester

Year 2025-2026

عمل مشترك بين معلمات من مدارس مختلفة لتبادل الخبرات

AD	School Name	<u>City</u>
AD.2.1	Al Dana <mark>t Sc</mark> hool	Al Ain
AD.2.11	Al Resalah Common School	Al Ain
AD.1.4	Salama Bint Bitti School	Abu Dahbi
AD.1.7	Al Khatem school	Abu Dahbi
AD.2.6	Al Mubazarah school	Al Ain
AD.2.9	Al Tomooh School	Al Ain

البرمجة الزمنية للفصل الدّراسيّ الأول 2025-2026

تدلسك
وتعلك

الفصل الدراسي	الشهر	Мо	Tu	We	Th	Fr	Sa	Su
	أغسطس أ	18	19	20	21	22	23	24
	2025	25	26	27	28	29	30	31
		1	2	3	4	5	6	7
	سبتمبر	8	9	10	11	12	13	14
	2025	15	16	17	18	19	20	21
		22	23	24	25	26	27	28
		29	30					
				1	2	3	4	5
	أكتوبر 2025	6	7	8	9	10	-11	12
		13	14	15	16	17	18	19
		20	21	22	23	24	25	26
الفصل الدراسي الأول		27	28	29	30	31		
الأول	نوفمبر 2025						1	2
		3	4	5	6	7	8	9
		10	11	12	13	14	15	16
		17	18	19	20	21	22	23
		24	25	26	27	28	29	30
		1	2	3	4	5	6	7
	ديسمبر	8	9	10	11	12	13	14
	2025	15	16	17	18	19	20	21
		22	23	24	25	26	27	28
		29	30	31				
	يناير 2026					2	3	4

مواعيد الأجندة الأكاديمية

بداية العام للكادر الإداري و التعليمي بداية العام الدراسي للطلبة

اختبارات نهاية الفصل الدراسي

عطل وإجازات رسمية

رأس السنة الميلادية

التاريخ	بيان الإجراء
18 أغسطس 2025	بداية دوام للكادر الإداري والتعليمي
2025 أغسطس 2025	التدريب التخصصي للكادر الإداري والتعليمي 1
2025 أغسطس 2025	بداية العام الدراسي للطلبة
4 سېتمېر 2025	إجازة المولد النبوي
15 - 19 سبتمبر 2025	الاختبار التشخيصي
13 - 19 أكتوبر 2025	اجازة منتصف الفصل للطلبة
13- 15 أكتوبر 2025	التدريب التخصصي للكادر الإداري والتعليمي 2
16 - 19 أكتوبر 2025	اجازة منتصف الفصل للكادر الإداري والتعليمي
17 - 19 نوفمبر 2025	الاختبار التجريبي
2025 - 28 نوفمبر 2025	اختبارات نهاية الفصل الدراسي
2 - 3 ديسمبر 2025	إجازة اليوم الوطني
4 - 5 دیسمبر 2025	استئناف اختبارات نهاية الفصل الدراسي
8 دیسمبر – 4 ینایر 2026	إجازة الشتاء للطلبة
8 – 12 ديسمبر 2026	التدريب التخصصي للكادر الإداري والتعليمي 3
8 – 12 دیسمبر 2026	الاختبارات التعويضية للفصل الدراسي الأول
15 دیسمبر – 4 ینایر 2026	إجازة الشتاء للكادر الإداري والتعليمي

Academic

Calendar

Term 1

It is prohibited	to photocopy or droubte					
Analomic Year						
	anyana					
,,,,,						
ten						
440	•					
Cubigan	Methodicals florest					
ш	T FA CHINES					
94						
Grown	Great					
د ستر	, ini					
Number of 1950s Springer House con-						
4,444						
Hab dum						
in paintable triage	p.q					
Manager of Big Mind States are						
Made per FRQ Mind Made objects	purity.					
000000000000000000000000000000000000000						
Type of Military State Other put	MICH SPANISHED TO					
TOTAL PARTY	und rightern a					
Waters Cord State						
from Section 2 (Sec. 19 Sec.	El minutes					
خربة الشرق مناهجه شيعاك شماة	Saidth ann à Papadousi					
Coloniano	(Barri					
Special DO	Special Control					

ocumen	t . Legal	غانونية الكرمة هند من وخاف ذات.	لدول هذه فوثيقة، وسيتم الحق لإجراءات ف	يُحظر تصوير أوا				
$\overline{}$		iamber*	A distribution for the Section State (
-	-	in the contract of the contrac	طريو ن كاب شاب وال. ماالادولون)					
-		ىكى كىنىزېرىغىۋالەر» اسىرادىنى **	fumphylar da	Page Selected				
			2.42					
		Cultur requiritions, by using satisficion and satisface tions	(see					
	2	Native report term invalving more than one operation	(sea)	-				
		Use the Shiritative Property in simplifyroprosites.	Careal					
	•	Prace that equals mare blenth learn have no solution	(25/88)	-				
			(164)					
	•	Evaluat a numer had expressions by who gi he and or of operations.	,					
	_	I modie lie nur equal izen in singen inter orp i for m	(14)	286				
	•							
		Construct or Man rate any same or	(60)	266				
	,	<u></u>						
			(144)	288				
	Ŀ.	Carolination (Manufacture)						
		If cauge in the up super time of equality and identity	(146)					
	Ė							
	_		(mil)	· ·				
1 3	•	lake properties						
dia tepapat dia		Phil						
ğ	-	Cultur report lam, with the ser hidde an each dall or	(548)	60				
	10	Trunds to sen tensorain to equal time.	(404	71				
	10		(464)	114				
	246	Cough and interpret Broar to not law.	(1000)	216				
		- At						
	18	i pply translations to literar functions.	(14)	30				
		Will a cortail caper silens? or algain als cape entires.	(2549)					
			(2000)	•				
	10	Use the Chit Statut Fragor by in evaluate expression m.	(Alleg					
		- 2 2	(1149)	236				
	-	Calculate a and before proteins par	,					
		then tily and graph it up have been	4-4	265				
	-	Salan report larm. By using my Highly role is and dicitie in	Lessed	-				
	_	and the second of the place of the second						
	26	Evaluat a algebrate expression rate; using the order of appeal torus	(comp					
	<u> </u>							
	20	Calve report term for specific contribites, (CO)	(1960)	126				
1								
1	29	Calmo request laters. By applying the Citis Maria in Prop. rely.	(2004)	-				
i								
	24	Cough Sincer has distance by using the an east print excepts.	(see	216				
	28	Calculation and letter procinate and changes.	(144)	205				
	-	night appear in a off instant antice into house and a come, are not become departure.						
•			بارخرورة الدعم	د کار النا از ایده دار کا عمار الم				
**	**	sia do tod body od 105.						
				الطوط أركاب اطلبتها الد				

Calendar

Term 1

11-	15
	_

Solve the following equation:
$1)_{11} 0 - 14$

c)
$$v = 23$$

Solution:

	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	

d)
$$v = 22$$

b) v = 16

Solve the following equation: 2)
$$44 = t - 72$$

c)
$$t = 11$$

b)
$$t = 116$$

d)
$$t = 16$$

(1-15)

81

Solve the following equation:

3)
$$-61 = d + (-18)$$

a)
$$d = -43$$

c)
$$d = -79$$

Solution:

b) d = 46

d)
$$d = 22$$

Solution:

Solve the following equation: 4) 18 + z = 40

a)
$$t = -22$$

d)
$$t = 16$$

b) z = 22

c) t = 58

Solve the following equation:

5)
$$-4a = 48$$

a)
$$a = -12$$

c)
$$a = 183$$

d)
$$a = 22$$

b) a = 12

6)
$$12t = -132$$

a)
$$t = 110$$

c)
$$t = -110$$

b)
$$t = 11$$

d)
$$t = -11$$

(1-15)

81

7)
$$18 - (-f) = 91$$

a)
$$f = 109$$

c)
$$f = -109$$

b)
$$f = 73$$

d)
$$f = -73$$

Solve the following equation:
8)
$$-16 - (-t) = -45$$

a)
$$t = 61$$

c)
$$t = -61$$

b) t = 29

d)
$$t = -29$$

Solve the following equation:

9)
$$\frac{1}{3}v = -5$$

a)
$$v = 5$$

c)
$$v = -15$$

Solution:

									_	

d)
$$v = 22$$

b) v = 16

Solve the following equation:

10)
$$\frac{u}{8} = -4$$

a)
$$u = 32$$

c)
$$u = 2$$

Solution:

b) u = -32

d)
$$u = -2$$

_			
г	7	1	٠,
u	٠	•	•

81

Solve the following equation:

13)
$$\frac{3}{4} = w + \frac{2}{5}$$

a)
$$w = \frac{7}{20}$$

c)
$$w = 23$$

b)
$$w = -\frac{7}{20}$$

d)
$$w = \frac{20}{7}$$

Solution:

Solve the following equation:

14)
$$-\frac{1}{2} + a = \frac{5}{8}$$

a)
$$a = -1\frac{1}{8}$$

c)
$$a = \frac{1}{8}$$

b)
$$a = 1\frac{1}{8}$$

d)
$$a = 8$$

				۰
г	٩.	۰	4	ı
ı	٠	г		

81

Solve the following equation:

15)
$$-\frac{t}{7} = \frac{1}{15}$$

a)
$$t = -\frac{7}{15}$$

c)
$$t = \frac{7}{15}$$

Solution:

d)
$$t = -15$$

b)

	400			40
Solve on	III Minnes	III OAN BAILD O	more than	one operation

(1-12)

88

1) 3t + 7 = -8

a) t = -5

c) t = 5

on Bedaganom

b) $t = \frac{1}{3}$

d) $t = -\frac{1}{3}$

Solution:

.....

Use property of equality to solve the following equation:

2) 8 = 16 + 8n

a) n = 1

c) n = -1

b) n = 3

d) n = -3

Use property of equality to solve the following	g equation:
---	-------------

3)
$$-34 = 6m - 4$$

a)
$$m = 5$$

c)
$$m = 13$$

addioii.

b)
$$m = -5$$

d)
$$m = 25$$

Solution:

Solution:

Use property of equality to solve the following equation: 4) 9x + 27 = -72

a)
$$x = 11$$

c)
$$x = -11$$

1

b) x = 5

d)
$$x = -5$$

$$5)\frac{y}{5} - 6 = 8$$

a)
$$v = 5$$

c)
$$v = 23$$

b)
$$v = 16$$

d)
$$y = 70$$

	 			 	•

Use property of equality to solve the following equation:

6)
$$\frac{f}{-7} - 8 = 2$$

a)
$$f = -70$$

c)
$$f = 70$$

b) f = 10

d)
$$f = -10$$

7)
$$1 + \frac{r}{9} = 4$$

a)
$$r = -27$$

c)
$$r = 20$$

d)
$$r = 45$$

b) r = 27

Use property of equality to solve the following equation:

$$8)\frac{k}{3} + 4 = -16$$

a)
$$k = 36$$

c)
$$k = -36$$

b)
$$k = 60$$

d)
$$k = -60$$

Use prope	rty of equality	y to solve the f	following equation:
-----------	-----------------	------------------	---------------------

9)
$$\frac{n-2}{7} = 2$$

a)
$$n = 12$$

c)
$$n = 16$$

d)
$$n = 22$$

b) n = 14

Use property of equality to solve the following equation:

10)
$$14 = \frac{6+z}{-2}$$

a)
$$z = 20$$

c)
$$z = 34$$

b) z = -34

d)
$$z = -22$$

Solution:

Use property of equality to solve the following equation
--

11)
$$-11 = \frac{a-5}{6}$$

a)
$$a = -61$$

c)
$$a = -71$$

b) a = 16

d) a = 71

Use property of equality to solve the following equation:

$$12) \frac{22 - w}{3} = -7$$

a)
$$w = -1$$

c)
$$w = -43$$

b)
$$w = 1$$

d)
$$w = 43$$

Simplify the following	a avaraccion if not	possible choose simplified:
Simplify the following	g expression, ii not	possible choose simplified.

39) 13r + 5r

- a) $18r^2$
- c) 18r

•

b) 18 <i>r</i>	+	1
----------------	---	---

d) Simplified

Solution:	

Simplify the	following expression,	if not possible choos	se simplified:
_	0		

40) $3x^3 - 2x^2$

a) $5x^5$

b) x

c) x^{5}

d) Simplified

41)
$$7m + 7 - 5m$$

a)
$$-2m + 7$$

555.2.C 0...655C 5....p....cu.

b)
$$2m + 7$$

d)
$$2m^2 + 7$$

Solution:

_	_	_	_	_	_	_	_	_	_	_				_		_	_	
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Simplify the following expression, if not possible choose simplified:

42)
$$5z^2 + 3z + 8z^2$$

a)
$$13z^2 + 3z$$

c)
$$-13z^5 + 3z$$

b) $13z^5 + 3z$

Use the Distributive Pro	perty to:	simplify ex	pressions
--------------------------	-----------	-------------	-----------

(39-53)

3

43) 7m + 2m + 5p + 4m

a)
$$12m + 5p$$

b) 13m + 5p

d)
$$13m^2 + 5p^2$$

Solution:

Simplify the following expression, if not possible choose simplified:

44) 6x + 4y + 5x

a)
$$11x^2 + y^2$$

b)
$$11x^2 + 4y^2$$

$$d) \quad 11x + 4y$$

	١,			
_		•	۰,	м.
	•		•	-

3

Simplify the following expression, if not possible choose simplified:

45)
$$3m + 5g + 6g + 11m$$

a)
$$14m + 8g$$

$$14m^2 + 8g$$

b)
$$14m + 8g^2$$

d) Simplified

Solution:

46) $4a + 5a^2 + 2a^2 + a^2$ a) $12a^3$ b) 12ac) $8a^2 + 4a$ d) Simplified

Simplify the following	expression, if not possible	choose simplified:
------------------------	-----------------------------	--------------------

47)
$$5k + 3k^3 + 7k + 9k^3$$

a)
$$24k^5$$

b)
$$12k^3 + 12k$$

d)
$$12k^5 + 12k$$

Solution:

Simplify the following expression, if not possible choose simplified:

48)
$$6x^2 + 14x - 9x$$

a)
$$6x^2 + 5x$$

c)
$$6x^4$$

b)
$$6x^2 - 5x$$

	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_		_	_	_	_		_	_	_	_		_	_	_	_	_

	mplify the following expression, if not pose $3017g+g$	Solution:		
a)	18g	b)	17 <i>gg</i>	
c)	$18g^2$	d)	Simplified	

Simplify the following expressio 50) $2x^2 + 6x^2$	Solution:	
a) $8x^4$	b) 8x ²	
c) 12x ⁴	d) Simplified	

Simplify	the	following	expression,	if not	possible	choose	simplified:	
_		_						

51) $7a^2 - 2a^2$

- a) $-5a^2$
- c) $5a^2$

 $5a^4$ b)

d) Simplified

Solution:

Solution:

Simplify the following expression, if not possible choose simplified: 52) $3y^2 - 2y + 9$

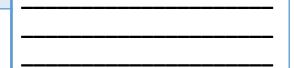
a)
$$5y^3 + 9$$

$$y + 9$$
 b) $y + 9$

d) $14y^3$

				_
•	A	•	-	•
٠	ч	٠,	м	•
	•	•	×	•

43


53)
$$3q^2 + q - q^2$$

a)
$$2q^2 + q$$

b) 5
$$q^5$$

d)
$$5q^5 - q$$

_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-

Solve the following equation and choose to 25) $-6y - 3 = 3 - 6y$	Solution:	
a) It has One Solution, $y = 3$	b) No solution	
c) It has One Solution, $y = -3$	d) It has an Identity	

	ve the following equation and choose the $\frac{1}{2}(x+6) = \frac{1}{2}x - 9$	rect answer:	Solution:	
a)	It has One Solution, $x = 3$	b)	No solution	
c)	It has One Solution, $x = -9$	d)	It has an Identity	

Solve the following equat	ion and choose the correct answer:
(27) 8a + 12 = 4(3 + 2a)	

	 •			.,		
a)	It has	One S	Soluti	ion, q	= 0	

c) It has One Solution,
$$q = 12$$

nswer: Solution:

) It has an Identity

Solve the following equation and choose the correct answer:

28)
$$21(x + 1) - 6x = 15x + 21$$

a) It has One Solution,
$$x = 0$$

c) It has One Solution,
$$x = -6$$

answer: Solution:

No solution

b)

l) It has an Identity

Solve the following equation and choose to 29) $12y + 48 - 4y = 8(y - 6)$	Solution:	
a) It has One Solution, $y = 48$	b) No solution	
c) It has One Solution, $y = -48$	d) It has an Identity	

Solve the following equation and choose the correct answer: 30) $8(z+6) = 4(2z+12)$		Solution:
a) It has One Solution, $z = 0$	b) No solution	
c) It has One Solution, $z = 24$	d) It has an Identity	

Evaluate each expression 30. 7 ²		Solution:
a) 14	b) 42	
c) 49	d) 21	
20	2025	

Evaluate each expression 31. 14 3		Solution:
a) 14196	b) 2744	
c) 420	d) 343	

Evaluate each expression 32. 2 6		Solution:
a) 12	b) 24	
c) 64	d) 32	

2026

2025

Evaluate each expression 33. 35 - 3 · 8		Solution:
a) 59	b) 11	
c) 19	d) 61	

Evaluate each expression 34. 18 ÷ 9 + 2 · 6		Solution:
a) 14	b) 16	
c) 15	d) 18	

Evaluate each expression 35. 10 + 83 ÷ 16		Solution:
a) 10.5	b) 10.8	
c) 10.25	d) 11	

Rewrite linear equations in slope-intercept form

(1-8)

235

Write an equation of a line in slope-intercept form with the given slope and y-intercept:

1) slope: 5, y-intercept: -3

a)	y	=	5 <i>x</i>	_	3
----	---	---	------------	---	---

c)
$$y = 5x + 3$$

ahia

b)
$$y = -5x - 3$$

d)
$$y = -5x + 3$$

Solution:

Write an equation of a line in slope-intercept form with the given slope and y-intercept:

2) slope: -2, y-intercept: 7

a)
$$y = -2x - 7$$

c)
$$y = 2x - 7$$

b)
$$y = 2x + 7$$

d)
$$y = -2x + 7$$

Solution:

Write an equation of a line in slope-intercept form with the given slope and y-intercept:
3) slope: -6, v-intercept: -2

a)	y	=	6 <i>x</i>	_	2
	,	./				

c)
$$y = -6x - 2$$

b)
$$y = -6x + 2$$

d)
$$y = 6x + 2$$

Write an equation of a line in slope-intercept form with the given slope and y-intercept:

4) slope: 7, y-intercept: 1

a) y = 7x - 1b) y = 7x + 1C) y = -7x - 1d) y = -7x + 1Solution:

Write an equation of a line in slope-intercept form with the given slope and	y-intercept:
5) slope: 3. v-intercept: 2	

a)
$$y = -3x - 2$$

c)
$$y = 3x - 2$$

b)
$$y = -3x + 2$$

d)
$$y = 3x + 2$$

Write an equation of a line in slope-intercept form with the given slope and y-intercept: 6) slope: -4, y-intercept: -9

a)
$$y = 4x - 9$$

c)
$$y = -4x - 9$$

b)
$$y = -4x + 9$$

d)
$$y = 4x + 9$$

Write an equation of a line in slope-intercept form with the given slope and y-intercept:
7) slope: 1, y-intercept: -12

a)	y	=	$\boldsymbol{\chi}$	_	12
----	---	---	---------------------	---	----

b)
$$y = x + 12$$

c)
$$y = -x - 12$$

d)
$$y = -x + 12$$

 _

Write an equation of a line in slope-intercept form with the given slope and y-intercept:

8) slope: 0, y-intercept: 8

a)
$$y = 8x$$

b)
$$y = 8$$

c)
$$y = -8x$$

d)
$$y = -8$$

Solution:

Find the common difference of each arithmeterms 9) 0.02, 1.08, 2.14, 3.2	Solution:	
a) $d = 1.02$; next three terms: 4.24, 5.26, 6.28	b) $d = 1.08$; next three terms: 4.28, 5.36, 6.44	
c) $d = 1.10$; next three terms: 4.30, 5.40, 6.50	d) $d = 1.06$; next three terms: 4.26, 5.32, 6.38	

Find the common difference of each arithmeterms 10) 6, 12, 18, 24,	Solution:	
a) $d = 8$; next three terms: 32, 40, 48	b) $d = 4$; next three terms: 28, 32, 36	
c) $d = 6$; next three terms: 30, 36, 42	d) $d = 12$; next three terms: 36, 48, 60	

Find the common difference of each arithmetic sequence. Then find the next three
terms

- **11)** 21, 19, 17, 15, ...
- a) d = -2; next three terms: 13, 11, 9
- c) d = 2; next three terms: 23, 25, 27

- b) d = -4; next three terms: 11, 7, 3
- d) d = -1; next three terms: 14, 13, 12

Find the common difference of each arithmetic sequence. Then find the next three terms

12)
$$-\frac{1}{2}$$
, $0, \frac{1}{2}$, $1, \dots$

a)
$$d=1$$
; next three terms: 2, 3, 4

c)
$$d = -21$$
; next three terms: $-1, -1\frac{1}{2}, -2$ d) $d = 23$; next three terms: $2\frac{1}{2}, 4, 5\frac{1}{2}$

b) d = 21; next three terms: $\frac{3}{2}$, 2, $\frac{5}{2}$

Find the common difference of each arithmetic sequence. Then find the next three terms

13)
$$2\frac{1}{3}$$
, $2\frac{2}{3}$, 3 , $3\frac{1}{3}$, ...

a)
$$d = \frac{1}{3}$$
; next three terms: $3\frac{2}{3}$, 4,4 $\frac{1}{3}$

c)
$$d = 1$$
; next three terms: $4\frac{1}{3}$, $5\frac{1}{3}$, $6\frac{1}{3}$

b) $d = \frac{1}{3}$; next three terms: $3\frac{1}{3}$, 4,4 $\frac{1}{3}$

|--|

_	_	_	_		_	_	_	_	_	_		_	_	•

d)
$$d = \frac{2}{3}$$
; next three terms: $4,4\frac{2}{3},5\frac{1}{3}$

Find the common difference of each arithmetic sequence. Then find the next three terms

14)
$$\frac{7}{12}$$
, $1\frac{1}{3}$, $2\frac{1}{12}$, $2\frac{5}{6}$, ...

a)
$$d = \frac{2}{3}$$
; next three terms: $3\frac{1}{2}$, $4\frac{1}{6}$, $4\frac{5}{6}$

b)
$$d = \frac{2}{12}$$
; next three terms: $2\frac{11}{12}$, 3,3 $\frac{1}{12}$

c)
$$d = \frac{3}{4}$$
; next three terms: $3\frac{7}{12}$, $4\frac{1}{3}$, $5\frac{1}{12}$

d)
$$d = \frac{7}{12}$$
; next three terms: $3\frac{1}{2}$, $4\frac{1}{12}$, $4\frac{7}{12}$

255

Find the common difference of each arithmeterms 15) 3, 7, 11,15,	Solution:	
a) $d = 2$; next three terms: 17, 19, 21	b) $d = 4$; next three terms: 19, 23, 27	
c) $d = 3$; next three terms: 18, 21, 24	d) $d = 5$; next three terms: 20, 25, 30	

Find the common difference of each arithmeterms 16) 22, 19.5, 17, 14.5,	Solution:	
a) $d = -3$; next three terms: 11.5, 8.5, 5.5	b) $d = -2$; next three terms: 12.5, 10.5, 8.5	
c) $d = -1.5$; next three terms: 13, 11.5, 10	d) $d = -2.5$; next three terms: 12, 9.5, 7	

Find the common difference of each arithmetic sequence. Then find the next three
terms

a)
$$d=1$$
; next three terms: -6 , -5 , -4

b)
$$d=-2$$
; next three terms: -9 , -11 , -13

c)
$$d=2$$
; next three terms: -5 , -3 , -1

d) d=3; next three terms:
$$-4$$
, -1 , 2

Solution:

Find the common difference of each arithmetic sequence. Then find the next three terms

a)
$$d=$$
 – 2; next three terms: – 13, – 15, – 17

a)
$$d = -2$$
; next three terms: -13 , -15 , -17 b) $d = -3$; next three terms: -14 , -17 , -20

c)
$$d = 3$$
; next three terms: 0, 3, 6

d)
$$d = -1$$
; next three terms: -12 , -13 , -14

Construct arithmetic sequences

(1-8)	255

Determine whether each sequence is an arit 1) -3 , 1 , 5 , 9 ,	termine whether each sequence is an arithmetic sequence. $-3,1,5,9,\ldots$						
a) Yes, it is arithmetic because the common difference is 4.	b) Yes, it is arithmetic because the common difference is -4.						
c) No, it does not have common difference.	d) Can't be determined						

Determine whether each sequence is an arithmetic sequence. 2) $\frac{1}{2}$, $\frac{3}{4}$, $\frac{5}{8}$, $\frac{7}{16}$		Solution:
a) Yes, it is arithmetic because the common difference is $\frac{1}{4}$.	b) Yes, it is arithmetic because the common difference is 2.	
c) No, it does not have common difference.	d) Can't be determined	

Construct withmetic convenee	Construct arithmetic sequences	(1-8)	255
	Construct antinmetic sequences		

Determine whether each sequence is an arithmetic sequence. 3) $-10, -7, -4, 1,$		Solution:
a) Yes, it is arithmetic because the common difference is -3 . b) Yes, it is arithmetic because the common difference is 3 .		
c) No, it does not have common difference.	d) Can't be determined	

Determine whether each sequence is an arithmetic sequence. 4) $-12.3, -9.7, -7.1, -4.5,$		Solution:
a) Yes, it is arithmetic because the common difference is 2.6.	b) Yes, it is arithmetic because the common difference is 3.4.	
c) No, it does not have common difference.	d) Can't be determined	

Construct arithmetic sequences (1-8) 255

Determine whether each sequence is an arithmetic sequence. 5) $4,7,9,12,$		Solution:
a) Yes, it is arithmetic because the common difference is 3 .	b) Yes, it is arithmetic because the common difference is 2.	
c) No, it does not have common difference.	d) Can't be determined	

Determine whether each sequence is an arithmetic sequence. 6) $15, 13, 11, 9 \dots$		Solution:
a) Yes, it is arithmetic because the common difference is -2 .	b) Yes, it is arithmetic because the common difference is 2.	
c) No, it does not have common difference.	d) Can't be determined	

Use the given property of equality to com 5) If $23 + 24 = 37$, then $37 = 23 +$ Use symmetric Property of Equality.	plete each statem	ent	Solution:
a) 24	b) 20		
c) 37	d) 10	2025	

Use the given property of equality to complete (a) If $a+5=b+3$ and $a+5=12$, then $b+3=$ Use transitive Property of Equality.	ete each statement	Solution:
a) 24	b) 20	
c) 12	d) 10	

Recognize the	properties of e	equality and identity
---------------	-----------------	-----------------------

(1-8)	31

Use the given property of equality to confide 7) If $34 = 19 + 15$, then $19 + 15 =$ Use symmetric Property of Equality.	nplete each statement 	Solution:
a) 34	b) 20	
c) 37	d) 15	25

Use the given property of eq 8) $b + 5 + 12 =$ Use reflexive Property of Equ	uality to complete each statement	Solution:
a) b+5+12	b) 5+12+b	
c) 12+5+b	d) b+12+5	

Solve the following proportion 4) $\frac{15}{35} = \frac{g}{7}$		Solution:
a) 5	b) 2	
c) 4	d) 3	2026

Solve the following proportion 5) $\frac{7}{10} = \frac{m}{14}$		Solution:
a) 15	b) 16.8	
c) 9.8	d) 14	

Solve the following proportion 6) $\frac{8}{13} = \frac{v}{21}$		Solution:
a) 12.92	b) 11.8	
c) 13.6	d) 10.5	

Solve the following proportion 7) $\frac{w}{2} = \frac{4.5}{6.8}$		Solution:
a) 1.1	b) 1.32	
c) 1.5	d) 1.4	

Solve proportions

(4-15)	113

Solve the following proportion 8) $\frac{1}{0.19} = \frac{12}{n}$		Solution:
a) 2.28	b) 0.63	
c) 1.9	d) 2.0	2026

le i	Solution: 		
anj.	a) 0.42	b) 0.52	
	c) 0.84	d) 0.58	
	2025		

Solve the following proportion 10) $\frac{2.4}{3.6} = \frac{k}{1.8}$		Solution:
a) 1.5	b) 1.3	
c) 1.2	d) 1.0	

Solve the following proportion 11) $\frac{t}{0.3} = \frac{1.7}{0.9}$		Solution:
a) 0.65	b) 0.45	
c) 0.33	d) 0.57	

Solve proportions

(4-15)		
--------	--	--

113

$$12)\frac{7}{1.066} = \frac{z}{9.65}$$

a)	60.	25
----	-----	----

Solution:

		_	_	_	_	_	_	_	_	
_	_	_	_	_	_	_	_	_	_	

Solve the following proportion

13)
$$\frac{x-3}{5} = \frac{6}{10}$$

Sol	ution:	

_

Solve the following proportion

$$14)\frac{7}{x+9} = \frac{21}{36}$$

a) 9

c) 2

b) 6

d)
٠.,

Solution:

_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	-	_	_	_	_

Solve the following proportion

15)
$$\frac{10}{15} = \frac{4}{x-5}$$

a) 8

b) 9

d) 11

Solve each equation. Che	oose the correct solution.
--------------------------	----------------------------

1.
$$7 c + 12 = -4 c + 78$$

a)
$$c = 6$$

c)
$$c = 4$$

b)
$$c = 7$$

d)
$$c = 7$$

b) m = 4

d) m = 6

Solution:

97

Solve each equation. Choose the correct solution

a)
$$m = 3$$

c)
$$m = 5$$

4		
21		

Solve each equation. Choose the correct solution.

$$3.9x - 4 = 2x + 3$$

4.6 + 3t = 8t - 14

a)
$$x = 1$$

c)
$$x = 3$$

d)
$$x = 4$$

Solution:

a)
$$t = 3$$

b)
$$t = 4$$

c)
$$t = 5$$

d)
$$t = 6$$

 	2.0	Section 2	100	
Solve eo	uations	with th	е уапар е	on each si

5.
$$\frac{(b-4)}{6} = \frac{b}{2}$$

a)
$$b = -2$$

c)
$$b = 6$$

b) b = 4

d)
$$b = 12$$

Solution:

Solve each equation. Choose the correct solution.

$$6.\frac{(3v+12)}{6} = \frac{4n}{3}$$

a)
$$v = 3$$

c)
$$v = 5$$

b)
$$v = 4$$

d)
$$v = 2.4$$

_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	

1-	10	
	_	ı

Solve each ed	quation. Choos	se the correct	solution.
JOINE CACILE	quationi circo.		. Joiatioii.

7.
$$2(r+6) = 4(r+4)$$

a)
$$r = -2$$

c)
$$r = -1$$

b) r = - 4

d)
$$r = -3$$

$$8.6(n+5)=3(n+16)$$

a)
$$n = 3$$

c)
$$n = 2$$

b)
$$n = 4$$

d)
$$n = 6$$

11	Solve

a)
$$g = 4$$

c)
$$g = 14$$

b)
$$g = 5$$

d)
$$g = 7$$

Solution:

Solve each equation. Choose the correct solution.
10.
$$\cdot 12 - \frac{4}{5}(x + 15) = \left(\frac{2}{5}x + 6\right)$$

a)
$$x = 0$$

b)
$$x = -5$$

d)
$$x = 15$$

	Translate	sentences	into equation:	Š
--	-----------	-----------	----------------	---

(9-14)

71

a)
$$a^2 + 2a = b$$

c)
$$a^3 - 2a = b$$

b)
$$2a + a^3 = b$$

d)
$$2a^3 + a = b$$

Solution:

10)Seven less than the sum of p and t is as much as 6.

a)
$$p + t + 7 = 6$$

c)
$$7 - (p + t) = 6$$

b)
$$p + t - 7 = 6$$

d)
$$7(p+t) = 6$$

a) x^2	+ 2	y =	2
----------	-----	-----	---

$$b) x + x^2 = yz$$

c)
$$x^2 - x = yz$$

d)
$$x + y = z^2$$

a)
$$4f + g = 6g$$

b)
$$6(f + g) = 4g$$

c)
$$4(f + g) = 6g$$

 	 	 	 	 	 	_
 	 	 	 	 	 	_
	 	 _	 	 	 	_

+14i	

a)	Α	=	2L
----	---	---	----

c) $A = L^2$

b) $A = L + a$	

a)
$$P = 2\ell + 2w$$

c)
$$P = a + b + c^2$$

b)
$$P = 2\ell + 2$$

d)
$$P = a + b + c$$

(40). Dana's Market is selling 3 packs of stylus pens for 5.00 Dhs,
How much will 10 packs of stylus pens cost at this price
2

a) x=16.7	b) x=15.6
-----------	-----------

d)
$$x=14.7$$

(41). During basketball practice, Hala made 36 free throws in 3 minutes. How many free	Solution:
throws will Hala make in 5 minutes ?.	

d)
$$x=50$$

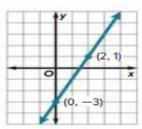
ı,		(40-43)
2	Solve proportions	

(42). Human fingernails grow at an average rate of 3.47 millimeters per month. How much will they grow in 20 months?				
b) x=6.97				
d) x=69.4				
2026 2025				
	months? b) x=6.97			

(43). Shmma enlarged the size of a picture to What is the new width of the picture if it was	Solution:	
a) The new width is 1.6 in	b) The new width is 360.5 in	
c) The new width is 22.5 in	d) The new width is 10 in	

a) y = 2x - 3

c) y = 3x - 1

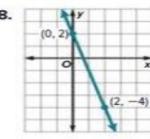

[37-39]

236

Solution:

Write an equation in slope-intercept form (y = mx + b) for each graph shown.

37. Points on the graph: (0, -3) and (2, 1), What is the equation of the line?

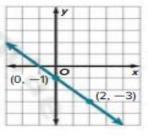

Solution:

b) y = x - 2

d) y = x + 1

Write an equation in slope-intercept form (y = mx + b) for each graph shown.

38. Points on the graph: (0, 2) and (2, -4), What is the equation of the line?


b) y = -2x + 4

c) y = -2x + 2

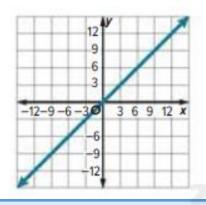
a) y = -3x + 2

d) y = -4x + 2

Write an equation in slope-intercept form (y = mx + b) for each graph shown. 39. Points on the graph: (0, -1) and (2, -3), What is the equation of the line?

_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

a)
$$y = -x - 1$$


b)
$$y = -x + 1$$

c)
$$y = x - 3$$

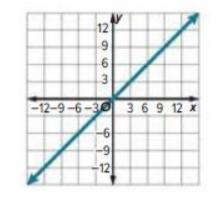
d)
$$y = -x - 2$$

1	α	(x)	_	37	- 1	1	1
⊥.	\mathcal{G}^{v}	(x)	_	X	\top	1	

The graph of g(x) is translated:

Solution:

a) 11 units left


b) 11 units right

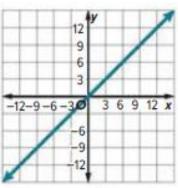
c) 11 units up

d) 11 units down

2. g(x) = x - 8

The graph of g(x) is translated:

b) 8 units right


c) 8 unit down

a) 8 units left

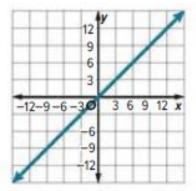
d) 8 unit up

3.
$$g(x) = (x - 7)$$

The graph of g(x) is translated:

Solution:

a) 7 units le	ft
---------------	----


b) 7 units right

c) 7 units down

d) 7 units up

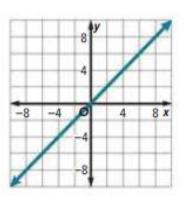
4.
$$g(x) = (x + 12)$$

The graph of g(x) is translated:

Solution:

a) 12 units left

b) 12 units right


c) 12 units up

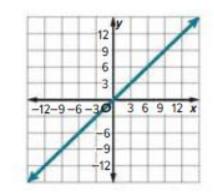
d) 12 units down

247

5.
$$g(x) = (x + 10) - 1$$

The graph of g(x) is translated:

Solution:


a) 10 units left and 1	b) 10 units right and
unit up	1 unit down

c) 10 units left and 1 unit down

d) 10 units right and 1 unit up

6. g(x) = (x - 9) + 5

The graph of g(x) is translated:

Solution:

a) . 9 units left and 5	b) 9 units right and
ınits up	units
. %	

c) 9 units left and 5 units

d) 9 units right and 5 units

(22-35)

18

Write an algebraic expression for
each verbal expression.
22. x more than 7

Solution:

__

a)
$$7 + x$$

b) x - 7

____<u>~</u>__

d) 7/x

Write an algebraic expression for
each verbal expression.
21 5 times a number

Solution:

24. 5 times a number

a)
$$5 + x$$

b) 5*x*

c) x/5

d) x-5

П	 	

Write an algebraic expression for
each verbal expression.
23. a number less 35

Solution:

a)
$$35 - x$$

b) x + 35

d) 35/x

Write an algebraic expression for each verbal expression.

25. one third of a number

25. One tima of a nambe

a) x/3

b) 3*x*

c) 3 + x

d) x-3

Solution:

(22-35)

18

Write an algebraic expression for each verbal expression. 26. f divided by 10		Solution:
a) f. 10	b) <i>f</i> /10	
c) 10/ <i>f</i>	d) $f + 10$	

Write an algebraic expression for each verbal expression. 28. three times a number plus 16		Solution:
a) $3x + 16$	b) $3 + 16x$	
c) $16 - 3x$	d) $\frac{x}{3} + 16$	

Write an algebraic expression for each verbal expression. 27. the quotient of 45 and r		Solution:
a) 54 <i>r</i>	b) 45/r	
c) r/45	d) 45 + r	

Write an algebraic expression for each verbal expression. 29. 18 decreased by 3 times d		Solution:
a)18 + 3d B)	b)18 – 3d	
c)3d – 18	d)3 – 18d	

Write an algebraic expression for each verbal expression. 30. <i>k</i> squared minus 11		Solution:
a)k + 11	b)11 – k²	
c)k ² – 11	d)k – 11²	- 6

Write an algebraic expression for each verbal expression. 32. The sum of a number and 10		Solution:
a)10 – x	b) 10x	
c) $x + 10$	d) $x - 10$	

Write an algebraic expression for each verbal expression. 31. 20 divided by t to the fifth power		Solution:
a)20 ÷ 5t	b)20 ÷ t ⁵	
c)t⁵ ÷ 20	d)5 ÷ 20t	

Write an algebraic expression for each verbal expression. 33. 15 less than the sum of <i>k</i> and 2		Solution:
a) 15 - (k + 2)	b) (k + 2) + 15	
c) (k + 2) – 15	d) 15 + k + 2	

Write verbal expressions for algebraic expressions
--

(22-35) 18

Solution:

Write an algebraic expression for each verbal expression. 34. The product of 18 and q		Solution:
a) 18 + q	b) 18 ÷ q	100
c) 18q	d)q – 18	

Write an algebraic expression for each verbal expression.

35. Six more than twice *m*

a) 2m + 6

c) 2m - 6

b) 6 – 2m	

d) m + 2 + 6

	40.00	_		
Use the	Distribution	Property	to evaluate e	more sources

(23-30)

42

Rewrite each expression using the
Distributive Property. Then
simplify.

Solution:

23. 2(x + 4)

a) 2x + 4

b) 2x + 8

c) x + 8

d) 2x - 8

b)3n + 5

Rewrite each expression using the Distributive Property. Then simplify.

25. (4-3m)8

a) 32 - 3m

b)4 - 24m

c) 32 - 24m

d)8 - 12m

Solution:

Rewrite each expression using the Distributive Property. Then simplify.

24. (5+n)3

a) 15 + n

c) 15 + 3n d) 3 + 5n

Solution:

Rewrite each expression using the Distributive Property. Then simplify.

26. -3(2x-6)

a)
$$-6x - 18$$

b)
$$-6x + 18$$

c)
$$6x - 18$$

d)
$$6x + 18$$

Solution:

Rewrite each expression using the
Distributive Property. Then
simplify.
(0 4)47

27.
$$(2-4n)17$$

a) $34 - 68n$	b) $34 + 68n$
---------------	---------------

c)
$$17n - 8$$

d)
$$2n - 68$$

Solution:

Rewrite each expression using the Distributive Property. Then simplify.

Rewrite each expression using the

Distributive Property. Then simplify.

a)32p + 16q - 28r b)8p + 64q - 7r

29.
$$\left(\frac{1}{3} - 2b\right) 27$$

c)9
$$b - 6$$

$$d)54b + 9$$

Rewrite each expression using the **Distributive Property. Then** simplify.

28.
$$11(4d + 6)$$

a)
$$44d + 6$$
 b) $44d + 66$

c)
$$11d + 66$$
 d) $4d + 66$

Solution:

c)
$$32p + 64q - 28$$

30. 4(8p + 16q - 7r)

c)
$$32p + 64q - 28r$$
 d) $4p + 16q - 7r$

Solution:

11. Find the slope of the line that passes through each pair of points.

(4, 3), (-1, 6)

a) $-\frac{3}{5}$

b) $\frac{3}{5}$

c) <u>5</u>

d) $-\frac{5}{3}$

12. Find the slope of the line that passes through each pair of points.

(8, -2), (1, 1)

- a) $-\frac{3}{7}$
- b)
- c) $-\frac{7}{3}$

d) $\frac{7}{3}$

Solution:

13. Find the slope of the line that passes through each pair of points.

(2, 2), (-2, -2)

a) <u>1</u>

c)

2

b) -1

d) -2

2025

14. Find the slope of the line that passes through each pair of points.

(6, -10), (6, 14)

a) **C**

b) undefined

c) 4

d) -4

Solution:

15. Find the slope of the line that passes	through each pair of points.
(5, -4), (9, -4)	

- a) O
- c) -

- b) undefined
- d) -1

Solution:

- 16. Find the slope of the line that passes through each pair of points. (11, 7), (-6, -2)
- a) $\frac{9}{17}$

b) $-\frac{9}{17}$

c) $\frac{17}{9}$

 $-\frac{17}{9}$

	17. Find the slope of the line that passes through each pair of points. (−3, 5), (3, 6)		Solution:
a)	<u>1</u> 6	b) $-\frac{1}{6}$	
c)	6	d) -6	

	nd the slope of the line that passes through each, (7, 2)	n pair of poin <mark>ts.</mark>	2025	Solution:
a)	undefined	b) O		
c)	<u>2</u> 7	d) $-\frac{2}{7}$		

19. Find the slope of the line that passes through each pair of points. (8, 10), (-4, -6)		Solution:	
a)	<u>4</u> 3	b) $-\frac{4}{3}$	
c)	$\frac{3}{4}$	$-\frac{3}{4}$	

Grapl Wha	h f(x)= x-2 by making a table. t is the value of f(x) when x=0.5?		Solution:
a)	1.5	b) -1.5	
c) :	2.5	d) -2.5	

For $f(x)= x-2 $, what is the value of $f(2)$?	e: 2	Solution:
a) 2	b) 0	
c) -2	d) 1	

What is the domain and range of $f(x)= x-2 $?		Solution:	
a)	Domain: x≥0 ; Range: y≥2	b) Domain: all real numbers; Range: y≥0	
c)	Domain: x≤2 ; Range: y≤0	d) Domain: 0 <x<20 0<y<20<="" ;="" range:="" td=""><td></td></x<20>	

Gra	ph f(x)= x+1		Solution:
Wł	nat is the value of f(x) when x=-1.25?		
a)	1.25	b) 0.25	
c)	-0.25	d) -1.25	

For	f(x)= x+1 , what is the domain and range?		Solution:
a)	Domain: all real numbers; Range: y≥0	b) Domain: x≥−1; Range: y≥0	
c)	Domain: x≤0; Range: y≤1	d) Domain: x>-1; Range: y>1	

If f(x)=2 x-1 , find f(5)	2026 2025	Solution:
a) 4	b) 6	
c) 8	d) 10	

If $f(x)=2 x-1 $, find $f(2.2)$		Solution:
a) 1.2	b)2.4	
c) 3.4	d) 2	

If $f(x)=2 x-1 $, find $f(5)$	e: la g	Solution:
a) 4	b) 6	
c) 8	d) 10	

(43-54)

81

solve the	equation
-----------	----------

$$12z = 108$$

a) z=8

b) z = 10

c) z=9

d) z = 12

Solution:

solve the equation

$$-7t = 49$$

a) t = -7

b) t=7

Solution:

c) t = -49

d) t-1

solve the equation

$$18f = -216$$

a) f = -12

c) f = -18

b) f = 12

d)

$$f = 216$$

Solution:

solve the equation

$$-22 = 11v$$

b) v = -2 **Solution:**

c)
$$v = -11$$

a) v=2

 $d) \quad v = 22$

solve the equation

$$-6d = -42$$

b)
$$d = -7$$

Solution:

a)

$$d = 7$$

c)

$$d = 6$$

d) d = -6

solve the equation

$$96 = -24a$$

$$96 = -24a$$

b)

$$a=4$$

c)
$$a = -2$$

a) a = -4

d)

$$a = 2$$

Solution:

43-54

solve the equation

$$\frac{c}{4} = 16$$

Solution:

a) c = 64

b) c = 12

c) c = 8

d) c = 4

solve the equation

$$\frac{a}{16} = 9$$

Solution:

a = 25

b) a = -36

c) a = 144

d) a = -144

solve the equation

$$-84 = \frac{d}{3}$$

Solution:

a) d = 252

b)
$$d = -252$$

c)
$$d = -28$$

d)
$$d = 28$$

solve the equation $-\frac{d}{7} = -13$

a)
$$d = -7$$

c)
$$d = -91$$

b)
$$d = 7$$

d)
$$d = 91$$

Solution:

solve the equation $\frac{t}{4} = -13$

a)
$$t = -52$$

c)
$$t = -4$$

b) t = 52

d)
$$t=4$$

Solution:

solve the equation $31 = \frac{-1}{6}n$

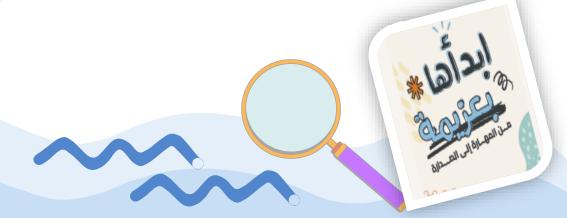
a)
$$n = 31$$

c)
$$n = -186$$


b) n = -31

d)
$$n = 186$$

Solution:


Written Exam

"النجاح لا يأتي من الراحة، بل من الاجتهاد"

تربيــة وتعليمـ

	21	Evaluate algebraic expressions by using the order of operations	. ah	j.co	(42-53)	19
			an an	3.00		
	22	Solve equations for specific variables. (2-7)			(19-22)	125
55		Solve equations for specific variables. (2.7)		9		
d			10	(0)		
3	23	Solve equations by applying the Distributiv Property			(21-24)	98
ğ			2026	12025		
ε						
	24 Graph linear functions by using the x- and y-intercepts			(9-14)	216	
			100			
	25	Calculate and interpret rate of change.		. ~	(3-6)	225
			10/1.			
	Salling In the salling of the sallin					

19

Evaluate each expression if g = 2, r = 3, and t = 11.

42.
$$g + 6t$$

44.
$$r^2 + (g^3 - 8)^5$$

46.
$$t^2 + 8rt + r^2$$

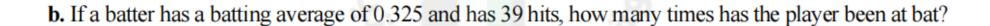
47.
$$3g(g+r)^2-1$$

Evaluate each expression if a = 8, b = 4, and c = 16.

48.
$$a^2bc - b^2$$

49.
$$\frac{c^2}{b^2} + \frac{b^2}{a^2}$$

$$50. \ \frac{2b + 3c^2}{4a^2 - 2b}$$


52.
$$(\frac{a}{b})^2 - \frac{c}{a-b}$$

53.
$$\frac{2a-b^2}{ab} + \frac{c-a}{b^2}$$

- 19. **RECTANGLES** The formula $P = 2\ell + 2w$ represents the perimeter of a rectangle. In this formula, ℓ is the length of the rectangle and w is the width.
 - **a.** Solve the formula for ℓ .

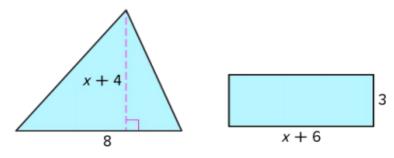
b. Find the length when the width is 4 meters and the perimeter is 36 meters.

- 20. **BASEBALL** The formula $a = \frac{h}{b}$ can be used to find the batting average a of a batter who has h hits in b times at bat.
 - **a.** Solve the formula for *b*.

21. **SHOPPING** Thomas went to the store to buy videogames for \$13.50 each and controllers. The total amount Thomas spent can be represented by c = 13.50g + p, where c is the total cost, g is the number of games he bought, and p is the cost of the controllers. The controllers cost \$55 and Thomas spent \$136 total.

a. Solve the formula for *g*.

b. Find how many games Thomas bought.

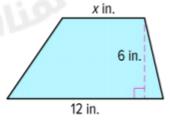

- 22. **GEOMETRY** The volume of a box V is given by the formula $V = \ell wh$, where ℓ is the length, w is the width, and h is the height.
 - **a.** Solve the formula for *h*.

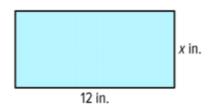
b. What is the height of a box with a volume of 50 cubic meters, length of 10 meters, and width of 2 meters?

21. **GEOMETRY** Supplementary angles are two angles with measures that have a sum of 180°. Complementary angles are two angles with measures that have a sum of 90°. The measure of the supplement of an angle is 10° more than twice the measure of the complement of the angle. Let 90 - x equal the degree measure of the complement angle and 180 - x equal the degree measure of the supplement angle. Write and solve an equation to find the measure of the angle.

22. **GEOMETRY** Write and solve an equation to find the value of x so that the figures have the same area.

23. **GEOMETRY** Write and solve an equation to find the value of x so that the figures have the same area.


9 ft


5 ft

24. **GEOMETRY** Write and solve an equation to find the value of x so that the figures have the same area.

The area of a trapezoid is $\frac{1}{2}h(b_1+b_2)$

Graph each equation by using the x-and y- intercepts.

9.
$$y = 4 + 2x$$

x	y

	1	y	
-	_		
-	_		
-	_		- -
-	_		^
-	_		
_	_		
		o	O

To find the x-intercept, let y = 0.

y = 4 + 2x Original equation

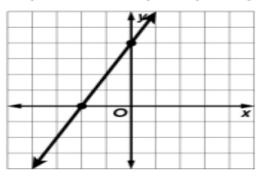
0 = 4 + 2x Replace y with 0.

-4 = 2x Subtract 4 from each side.

-2=x Divide each side by 2.

This means that the graph intersects the x-axis at (-2, 0).

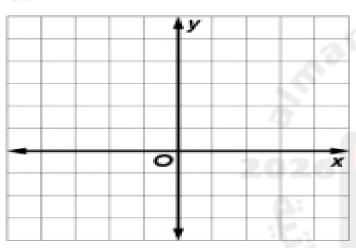
To find the y-intercept, let x = 0


y = 4 + 2x Original equation

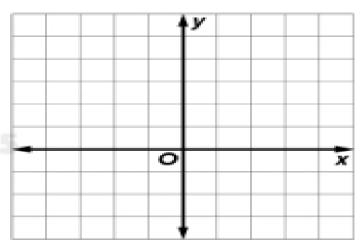
y = 4 + 2(0) Replace x with 0.

y = 4 Simplify.

This means that the graph intersects the y-axis at (0,4).

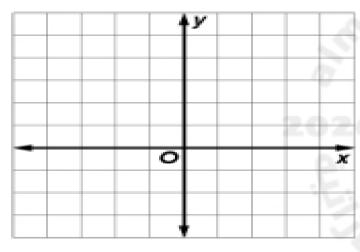

Graph the x-intercept. Graph the y-intercept. Draw a line through the points.

_

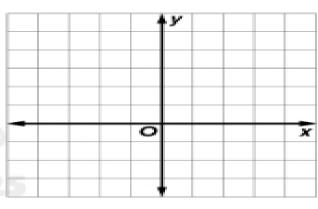

1	0	5	\mathbf{v}	-3x

X	y

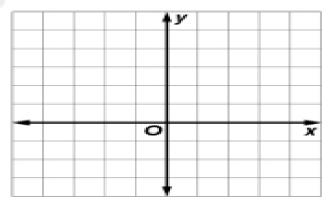
$$11. \ x = 5y + 5$$


x	y
	9

 	-
 0.0	71
	ш


12. x + y = 4

æ	y


13. x - y = -3

	x	y
Ī	0	
	70	A .

14.
$$y = 8 - 6x$$

x	y
4	J
	\

The table below shows the population density (people per square mile) for the state of Texas in different years.

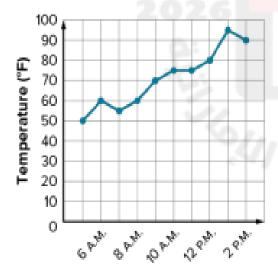
Find the average annual rate of change in the population density from 2000 to 2009.

Year	People/mile squared
1930	22.1
1960	36.4
1980	54.3
2000	79.6
2009	96.7

In 2012, there were about **275 students** in the Delaware High School band.

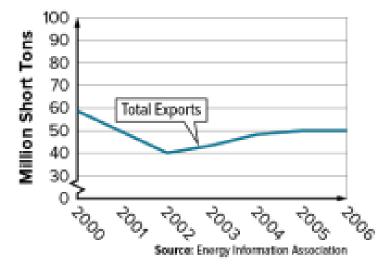
By 2018, the number had increased to **305 students**. Find the **annual rate of change** in the number of students in

the band.


Calculate and interpret rate of change.

(3-6) 225

5. Temperature


The graph shows the temperature in a city at different hours throughout one day.

- a. Find the **rate of change** in temperature between **6 A.M.** and **7 A.M.**, and explain what it means in the context of the situation.
- b. Find the **rate of change** in temperature from **1 P.M.** to **2 P.M.**, and explain what it means in the context of the situation.

6. COAL EXPORTS

The graph shows the annual coal exports from U.S. mines in millions of short tons.

- **a.** Find the rate of change in coal exports between 2000 and 2002, and describe its meaning in the context of the situation.
- **b.** Find the rate of change in coal exports between 2005 and 2006, and describe its meaning in the context of the situation.

