حل تجميعة أسئلة صفحات الكتاب وفق الهيكل الوزاري الجديد منهج انسباير

تم تحميل هذا الملف من موقع المناهج الإماراتية

موقع المناهج ← المناهج الإماراتية ← الصف التاسع العام ← علوم ← الفصل الأول ← ملفات متنوعة ← الملف

تاريخ إضافة الملف على موقع المناهج: 11-16-2023 15:57

ملفات اكتب للمعلم اكتب للطالب ا اختبارات الكترونية ا اختبارات ا حلول ا عروض بوربوينت ا أوراق عمل منهج انجليزي ا ملخصات وتقارير ا مذكرات وبنوك ا الامتحان النهائي ا للمدرس

المزيد من مادة علوم:

التواصل الاجتماعي بحسب الصف التاسع العام

صفحة المناهج الإماراتية على فيسببوك

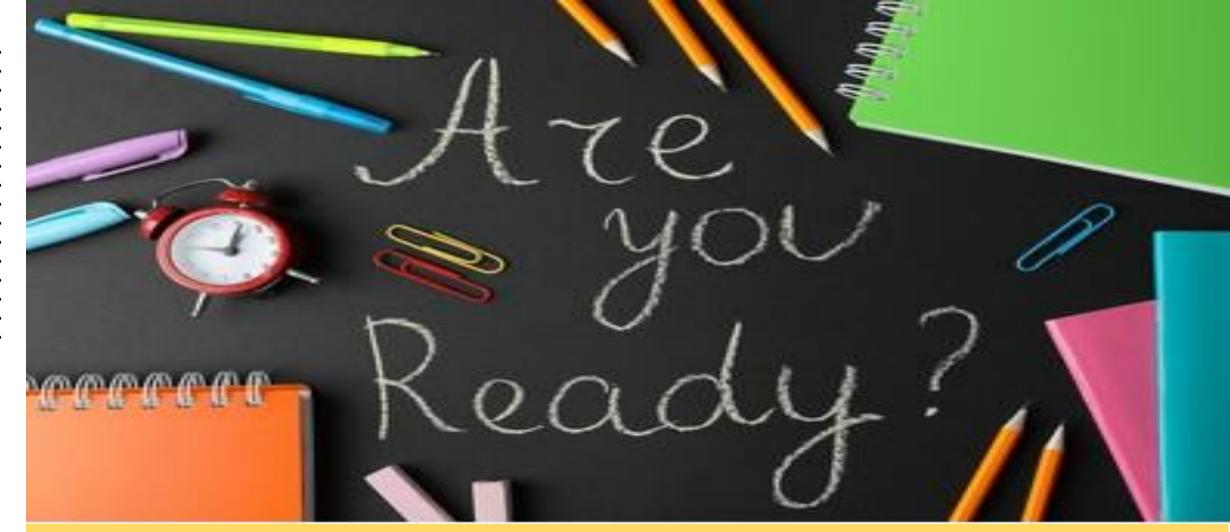
الرياضيات

اللغة الانجليزية

اللغة العربية

التربية الاسلامية

المواد على تلغرام

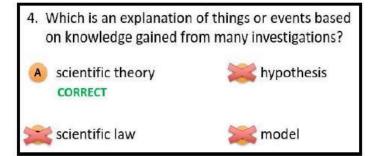

المزيد من الملفات بحسب الصف التاسع العام والمادة علوم في الفصل الأول	
تجميعة أسئلة اختبارات سابقة وفق الهيكل الوزاري الجديد منهج بريدج	1
مراجعة عامة وفق الهيكل الوزاري الجديد منهج بريدج	2
مراجعة نهائية شاملة وفق الهيكل الوزاري الجديد منهج انسباير	3
نموذج اختبار نهائي وفق الهيكل الوزاري منهج بريدج	4
تجميعة أسئلة مراجعة وفق الهيكل الوزاري الجديد منهج انسباير	5

Term 1

EOT Revision

Grade 9 GEN Science

2025-26


Grade 9 General Term 1 Revision Booklet 2025- 2026

1-Differentiate between scientific theory and scientific law Explain why a scientific theory cannot become a scientific law

Scientific theories	Scientific laws
an explanation of things or	
events based on knowledge	a statement about what
gained from many	happens in nature and seems
observations and	to be <u>true all the time.</u>
investigations.	

Which is a statement about what happens in nature and seems to be true all the time?

- a. scientific theory
- b. scientific law
- c. scientific hypothesis
- d. scientific model

Newton provided an explanation for why objects fall; he proposed that objects fall because they and Earth are attracted by a force. Which of the following represents what Newton said?

1-A has been tested and supported many times.

A scientific model

A scientific hypothesis

A scientific theory

A scientific law

5. Which is a statement about what happens in nature and seems to be true all the time?

scientific law CORRECT

hypothesis

scientific theory

conclusion

c. scientific hypothesis

d. scientific model

a. scientific theory

b. scientific law

Explain why a scientific theory cannot become a scientific law

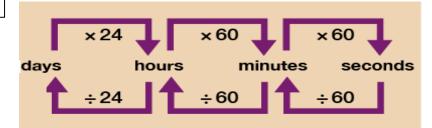
Because laws describe what happens, while theories explain why it happens.

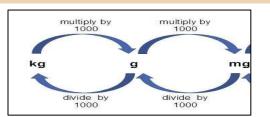
2-Express the derived units for common quantities (like velocity, acceleration, force, pressure, volume, density) in terms of their SI base units

SI Base Units **Quantity Measured** Unit Symbol Lenath meter m Mass kilogram kg second S Electric current Α ampere Temperature kelvin Amount of substance mole mol Intensity of light candela cd

Derived Quantity	Units
Volume, V	m³
Density, ρ	kgm ⁻³
Velocity, v	m/s
Force, F	N

Use dimensional analysis to validate equations and to choose the appropriate conversion factor when converting units


Demonstrate how to use dimensional analysis by using it to convert 35 km/h to m/s.


$$\left(\frac{35 \text{ km}}{\text{h}}\right) \left(\frac{1000 \text{ m}}{1 \text{ km}}\right) \left(\frac{1 \text{ h}}{60 \text{ min}}\right) \left(\frac{1 \text{ min}}{60 \text{ s}}\right) = 9.7 \text{ m/s}$$

What is the SI base unit of temperature?

- a. Celsius
- b. Fahrenheit
- c. Kelvin
- d. Joule

What is the base unit of time?

- a. Second
- b. Minute
- c. Hour
- d. Day

Convert 5021 centimeters to kilometers.

$$5021 \text{ cm} \left(\frac{1 \text{ pr}}{100 \text{ cm}} \right) \left(\frac{1 \text{ km}}{1000 \text{ pr}} \right) = 5.021 \times 10^{-2} \text{ km}$$

7. How many seconds are in a leap year?

366
$$\frac{\text{days}}{1 \text{ day}} \left(\frac{24 \text{ l/r}}{1 \text{ day}} \right) \left(\frac{60 \text{ min}}{1 \text{ l/r}} \right) \left(\frac{60 \text{ s}}{1 \text{ minr}} \right) = 31,622,400 \text{ s}$$

8. Convert the speed 5.30 m/s to km/h.

$$\left(\frac{5.30 \text{ pr}}{1 \text{ s}}\right)\left(\frac{60 \text{ s}}{1 \text{ min}}\right)\left(\frac{60 \text{ min}}{1 \text{ h}}\right)\left(\frac{1 \text{ km}}{1000 \text{ m}}\right) = 19.08 \text{ km/h}$$

3-Use dimensional analysis to validate equations and to choose the appropriate conversion factor when converting units

EXAMPLE Problem 1

USING DISTANCE AND TIME TO FIND SPEED When a car travels 434 km in 4.5 h, what is the car's average speed?

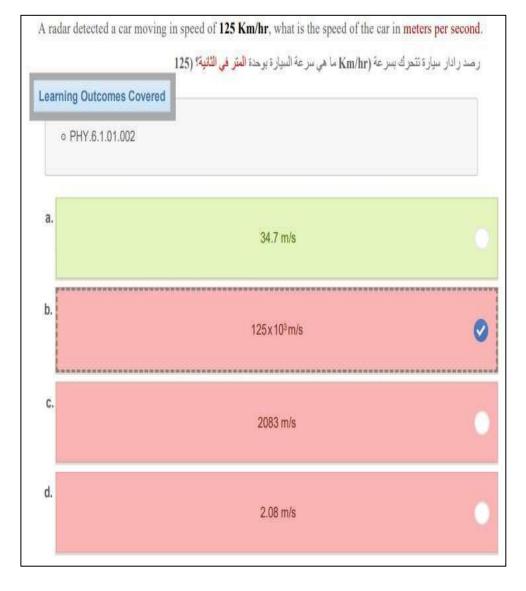
1 ANALYZE AND SKETCH THE PROBLEM

The car's speed is unknown. The known values include the distance the car traveled and the time. Use the relationship among speed, distance, and time to solve for the car's speed.

Known	Unknown		
distance = 434 km	speed = ?		
time = 4.5 h			

2 SOLVE FOR THE UNKNOWN

distance = speed × time	State the relationship as an equation
speed = distance time	Solve the equation for speed.
$speed = \frac{434 \text{ km}}{4.5 \text{ h}}$	Substitute distance = 434 km and time = 4.5 h.
speed = 96.4 km/h	Calculate, and specify the units.


3 EVALUATE THE ANSWER

Check your answer by using it to calculate the distance the car traveled.

distance = speed
$$\times$$
 time = 96.4 km/h \times 4.5 h = 434 km

The calculated distance matches the distance stated in the problem. This means that the calculated average speed is correct.

Page No. 11-12

-Use appropriate significant figures to record answers from a mathematical operation, with the correct number of digits

Rules for Counting Significant Digits:

• All non-zero digits and any zeros contained between non-zero digits count.

300042 = 6 significant digits

• Leading zeros don't count.

0.000034 = 2 significant digits

• Trailing zeros count if there is a decimal point.

0.0002500 = 4 significant digits

 Trailing zeros may or may not count if there is no decimal point, so we go with the most conservative answer.

190000 = 2 significant digits (could be up to 6)

- 8. Significant Figures Solve the following problems, using the correct number of significant figures each time.
- a. 10.8 g 8.264 g
- b. 4.75 m --0.4168 m
- c. 139 cm x 2.3 cm
- d. 13.78 g/11.3 mL
- e. 1.6 km + 1.62 m + 1200 cm

a. 10.8 g - 8.264 g 10.8 g - 8.264 g = 2.536 g = 2.5 g after rounding b. 4.75 m 0.4168 m

4.75 m - 0.4168 m = 4.3332 m

4.33 m after rounding

C- 139 cm x 2.3 cm = $320 \text{ cm}^2 \text{ or } 3.2 \text{ x } 102 \text{ cm}^2$

13.78 g + 11.3 mL 1.22 g/mL

in between zeros digits

leading zeros

0.0050830

significant figures (noun)

the digits of a number that can express it to a given degree of accuracy

الارقام في الرقم التي تمثله إلى درجة معيدة من الدقة

What is the number of significant digits in the measurement 10.005m?

a. 2

b. 3

c. 4

d. <mark>5</mark>

1.6 km + 1.62 m + 1200 cm = 1613.62 m = 1600 m or 1.6 km after rounding

What is the answer to (56 + 2.15 + 0.5643), giving the correct number of significant figures in the answer?

<mark>59</mark>

58

58.7143

58.71

What is the number of significant digits in the measurement 2.002m?

a. 2

o. 3

c. 4

d. 5

Page No. 14

- 1. Not sure about something Uncertainty
- 2. How closed a measured value is to **Accuracy** an accepted value
- Precision 3. How close a series of measurements are one to another

High precision

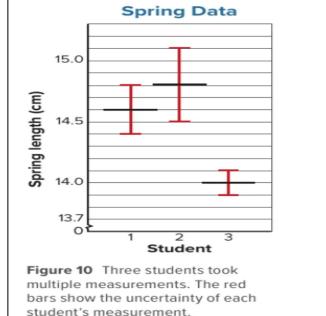
Which is more accurate when measuring a book that has a true length of 17.0 cm?

Susan:

17.0 cm, 17.01 cm, 16.9 cm

Amy:

17.5 cm, 15.0 cm, 15.2 cm


describes how closely measurements are to each other,

Which set is more precise?

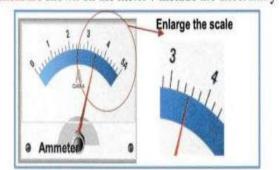
- a) 17.2, 18.4, 18.35
- b) 15.9, 15.89, 15.91
- c) 16.8, 17.2, 19.44

Example above, student 3's measurements are the most precise, within ± 0.1 cm.

Both the measurements of student 1 and student 2 are less precise because they have a larger uncertainty (student $1 = \pm 0.2$ cm, student $2 = \pm 0.3$ cm).

5-Compare and contrast precision and accuracy with examples

The three arrows represent three measurements for an experiment. Depending on the picture, which of the following statements is correct regarding to precision and accuracy?



- a. Measurements are accurate but not precise
- b. Measurements are precise but not accurate
- c. Measurements are neither accurate nor precise
- d. Measurements are accurate and precise

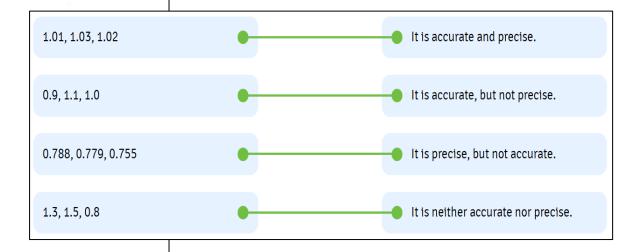
Q8 Depending on the figure, what is the measure shown on the meter? include the uncertainty

- \Box (3.6 \mp 0.2) A
- \Box (3.4 \mp 0.2) A
- \Box (3.6 \mp 0.1) A
- \Box (3.4 \mp 0.1) A

How close are a set of measurements to

Q7

According to the table next to the measurement of the mass of a wooden box by four students each with three attempts to measure, if you

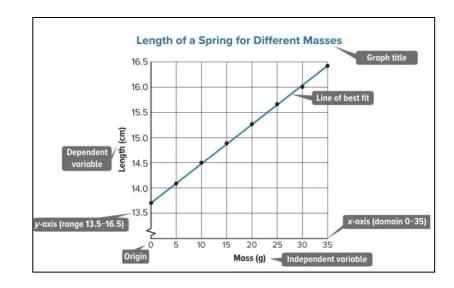

Student	1st attempt	2 nd attempt	3rd attempt
Mahmoud	2.3 kg	2.5 kg	2.7 kg
Hamdan	2.2 kg	2.6 kg	2.9 kg
Adam	2.8 kg	2.9 kg	2.8 kg
Sultan	2.6 kg	3.3 kg	2.9 kg

know that the real mass of the box is (2.5 kg) answer items (6 and 7).

each other when taken the same way?
Precision
Accuracy

Measurement

- · Which student has the most precise measurements?
 - a. Mahmoud
 - b. Hamdan
 - c. Adam
 - d. Sultan
- Which student has the most accurate measurements?
 - a. Mahmoud
 - b. Hamdan
 - c. Adam
 - d. Sultan

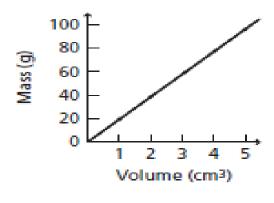


7-Represent data in graphical form, draw the best fit line, and identify from the shape of the graph if the relationship between the variables is linear

- Independent Variable: What the scientist changes.
- Dependent Variable: What is measured.
- Constants: Factors kept the same.
- Control Group: The standard for comparison.

Table 3	Length of a Spring for
	Different Masses

Mass Attached to Spring (g)	Length of Spring (cm)
0	13.7
5	14.1
10	14.5
15	14.9
20	15.3
25	15.7
30	16.0
35	16.4

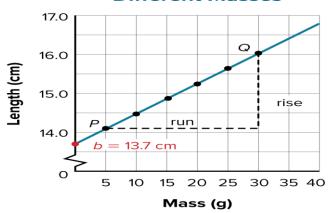

NOTE: Independent variable is plotting on x axis

dependent variable is plotting on x axis

The mass values of specified volumes of pure gold nuggets are given in Table 1-4.

Table 1-4				
Mass of Pure Gold Nuggets				
Volume (cm ³) Mass (g)				
1.0	19.4			
2.0	38.6			
3.0	58.1			
4.0	77.4			
5.0	96.5			

a. Plot mass versus volume from the values given in the table and draw the curve that best fits all points.



A linear relationship can be ritten as an equation:

$$\frac{16 \ cm - 14.1 \ cm}{30 \ g - 5 \ g} = 0.08 \ cm/g$$

Length of a Spring for **Different Masses**

ESE QUESTIONS

 $\mathcal{L}_{f} = 9 \, \text{m} \quad \mathcal{L}_{f} = 3 \, \text{m}$ $t f = 3 \, \text{s}$

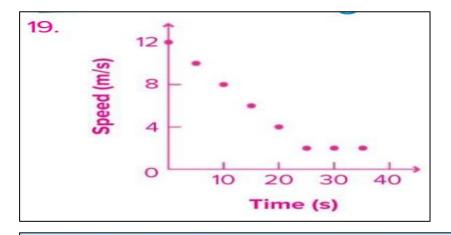
6- Depending on the (position - time) graph for an object, what is its average velocity?

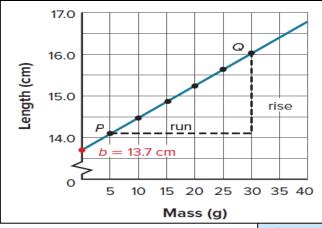
 $\Box +3.0 \, m/s$ \Box -3.0 m/s

+2.0 m/s \Box -2.0 m/s

$$V = \frac{x_{f-x_{i}}}{t_{f-t_{i}}}$$

9- Predict the unknown values in a linear relation using the slope and the intercept with the vertical axis

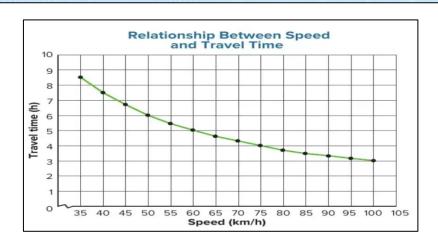

Page No. 22



Check Your Progress

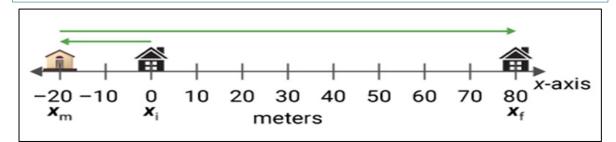
Make a Graph Graph the following data.
 Time is the independent variable.

Time (s)	0	5	10	15	20	25	30	35
Speed (m/s)	12	10	8	6	4	2	2	2

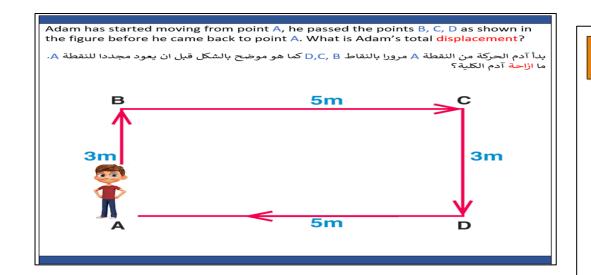

21. Predict Use the relationship illustrated in Figure 16 to determine the mass required to stretch the spring 15 cm.

21. 17 g

22. Predict Use the relationship shown in Figure 18 to predict the travel time when speed is 110 km/h.

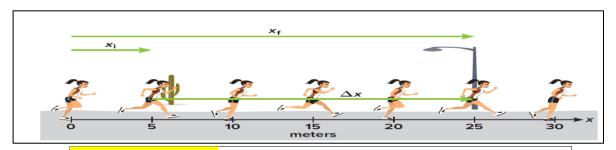

20. Interpret a Graph What would be the meaning of a nonzero y-intercept in a graph of total mass versus volume?

22. About 2.6 h


Distance The length of a path traveled between two positions (stunit m)

(Displacement)
$$\Delta x = x_f - x_i$$

$$x_i = 0m \qquad x_f = 80 m$$


$$\Delta x = 80 - 0 = 80m \ East$$
Distance = 20 + 20 + 80 = 120 m

Displacement

Is a change in position.

Is the distance with a given direction between starting point (x_i) and ending point (x_f)

(Displacement)
$$\Delta x = x_f - x_i$$

 $x_i = 5m$ $x_f = 25m$

 $\Delta x = 25 - 5 = 20m \; East$

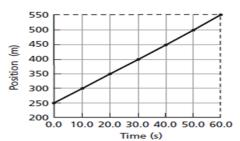
Distance = 25m

ESE QUESTIONS

i- Depending on the figure, what is the displacement for the car after (0.30 s) from the beginning of its movement?

time period (0.15 s) between the two images

- □ +70 cm □ +50 cm
- □ +80 cm □ +40 cm


xt = 50cm X: = 10cm Ax = xt - X: = 50cm - 10cm = 40cm

10-Differentiate between distance travelled and displacement

Page No. 32-3

The position-time graph below shows the cyclist's location in a 60s-time interval. What is the cyclist's displacement from the starting position at 40.0 s?

يوضح الرسم البياني الموقع-الزمن أدناه موقع راكب دراجة في فاصل زمني 60s. ما <mark>إزاحة</mark> راكب الدراجة عن نقطة البداية في الثانية 40.0؟

(Displacement) $\Delta x = x_f - x_i$

$$x_i = 250m$$

$$x_f = 450 \, m$$

$$\Delta x = 450 - 250 = 200m East$$

If the Emirati Hope Probe orbited Mars one full cycle, what is the probe's distance traveled and displacement?

Distance is circumference of the circular orbit while displacement is zero.

المسافة @ محاط المدار الدائري برائما الإزاحة إسباوي صف "را

Distance and displacement both are zero

المساقة والازاحة الاهما صفر

Classify physical quantities into vector and scalar quantities (distance, mass, displacement, speed, velocity, acceleration, force, work, energy, pressure

Distance is zero while the displacement is circumference of the circular orbit.

المسافة صفر بالنما الإزاحة ومحاط المدار الدائري

Vector- has a magnitude (value) and direction	Scalar - has only magnitude (value)		
displacement	distance		
velocity	mass		
acceleration	Speed		
Force	work		
	energy		
	pressure		
	Time		
	Temperature		

Distance and displacement both are equal to circumference of the circular orbit.

المسافة و الاز احة كلاهما يساوي محيط المدار الدائري

Ahmed moved 40m west from his starting point and then turned back and moved 100m due east in a straight-line path. Find his displacement.

a) 60 m east b. 60 m west

a.

b.

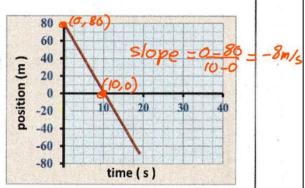
(60m) - (40m) = 60m E

c. 140 m east

d. 140 m west

10-Differentiate between distance travelled and displacement

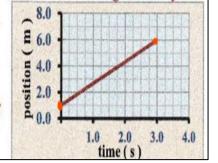
7- Depending on the (position - time) graph for an object moving to the west.


What is the position of the object after (30 s) if it continues its motion with the same average velocity?

$$27 - 160 m \qquad \approx = -8 t + 80$$

$$\Box$$
 -110 m $\approx = -8(30) + 80$

$$\Box$$
 -80 m $2 = -240 + 80$ $2 = -160$ m


6- Depending on the (position - time) graph for an object, what is its average velocity?

$$\Box +2.0 \, m/s$$

$$\Box$$
 -2.0 m/s

$$+1.7 \, m/s$$

$$\Box$$
 -1.7 m/s

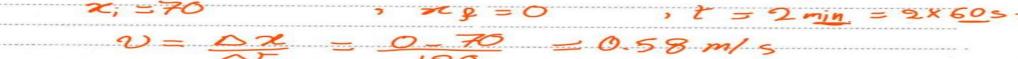
y=mx+b

The following table shows Maryam's positions and times when she moved to the north inside her school on a straight line.

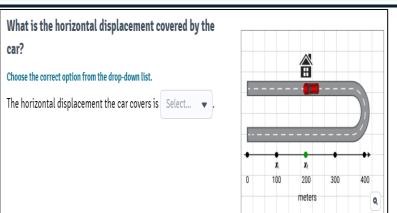
back

Time(s)	0	20	40	60	80	100	120	140
Position (m)	0	10	20	30	40	50	60	70

Answer (19,20,21)


19-Draw a position-time graph to represent Maryam's motion in the school

21-Calculate the average velocity of Maryam in (m/s) if she reaches back in (2.0) minutes.

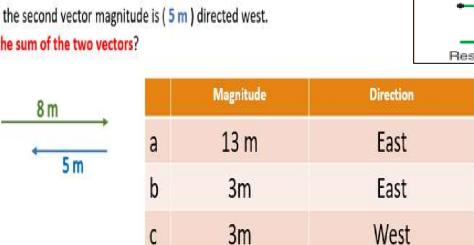

R = A + B

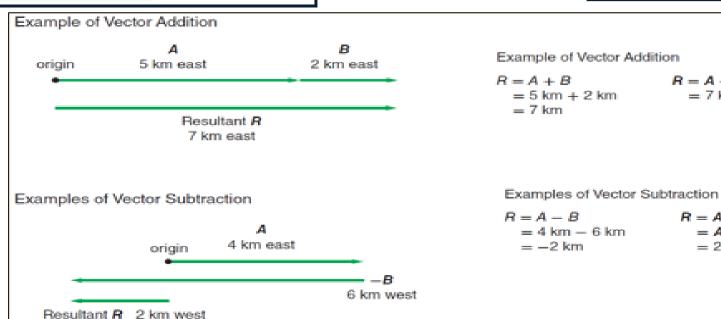
R = A - B

=A+(-B)

= 2 km west

= 7 km east




(Displacement)
$$\Delta x = x_f - x_i$$

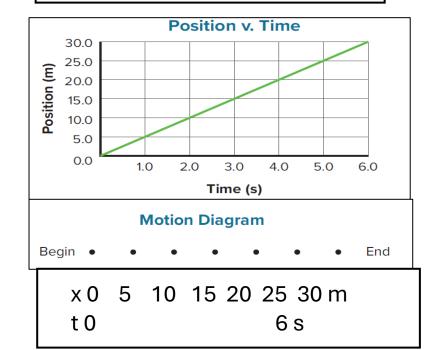
 $x_i = 100m$ $x_f = 200 m$

$$\Delta x = 200 - 100 = 100m$$
 East
Distance = 400 + 200 = 600 m

In the figure there are two vectors. The first vector magnitude is (8 m) directed east, and the second vector magnitude is (5 m) directed west.

What is the sum of the two vectors?

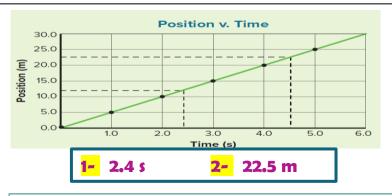
4 km west Resultant R 3 km east

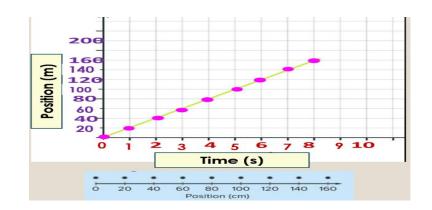

7 km east

origin.

Table 1 Position v. Time

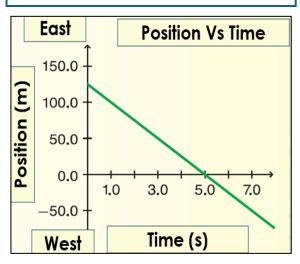
Time (s)	Position (m)	
0.0	0.0	
1.0	5.0	
2.0	10.0	
3.0	15.0	
4.0	20.0	
5.0	25.0	


- 1- Plot the data
- 2- Use the graph to draw a motion diagram
- 3-What is the instantaneous position at
- 3.0 second (15m)


13- Convert a particle model to a position time graph and vice-versa

EXAMPLE Problem 1

ANALYZE A POSITION-TIME GRAPH When did the runner whose motion is described in Figure 11 reach 12.0 m beyond the starting point? Where was she after 4.5 s?



1-Using the particle model motion diagram of a baby crawling across a kitchen floor, plot a position-time graph to represent the motion. The time interval between dots on the diagram is 1 s. 1-Create a particle model motion diagram from the position-time graph

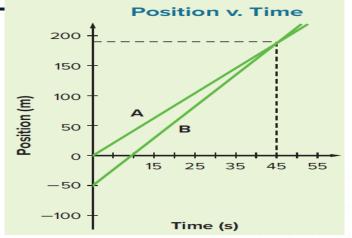
Page No. 41

10-Describe the motion of each object in the following graph:

The car starts at a position 125.0 m and moves toward the origin, reaching the origin in 5.0 s after it started moving beyond the origin.

14- Interpret a position-time graph that represents the motion of multiple objects

Page No. 40


EXAMPLE Problem 2

INTERPRETING A GRAPH The graph to the right describes the motion of two runners moving along a straight path. The lines representing their motion are labeled A and B. When and where does runner B pass runner A?

At 45 s 2- 190 m

15- Apply the equation of motion, (xf = vavg t + xi) or (xf - xi = vavg t), in numerical problems to calculate the position or other physical quantities

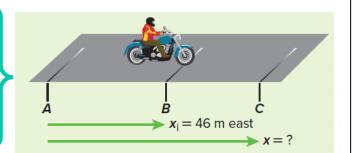
Page No. 46-47

EXAMPLE Problem 4

POSITION The figure shows a motorcyclist traveling east along a straight road. After passing point B, the cyclist continues to travel at an average velocity of 12 m/s east and arrives at point C 3.0 s later. What is the position of point **C**?

$$x_f = \overline{v} t + x_i$$

$$x_f = (12 \times 3) + 46$$
$$x_f = 82 m \text{ East}$$

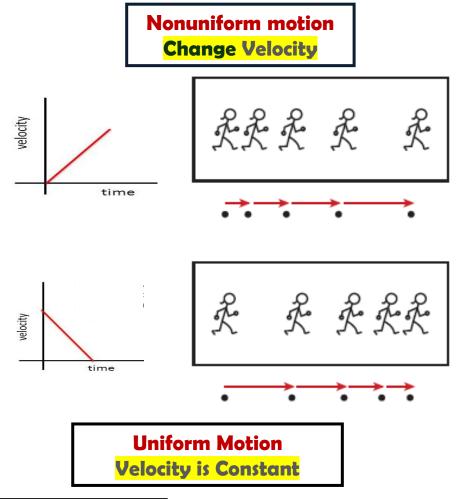

$$x_f = 82 m$$
 East

$$\overline{v} = 12 \ m/seast$$

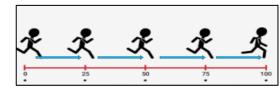
$$x_i = 46 m \frac{\text{east}}{}$$

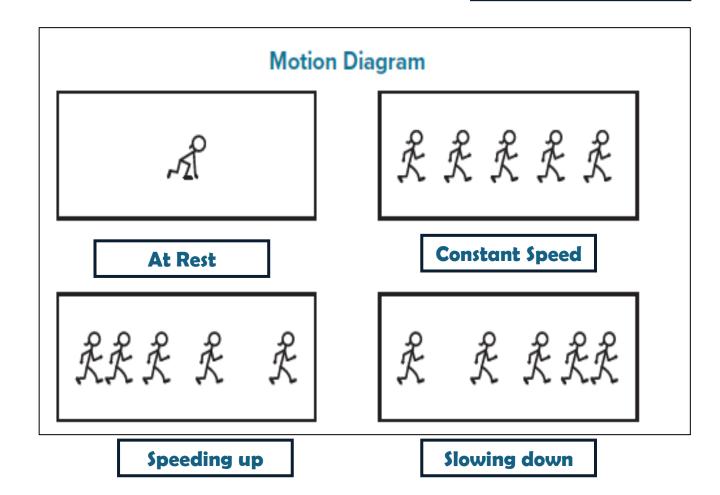
$$t = 3 s$$

$$x_f = ?$$

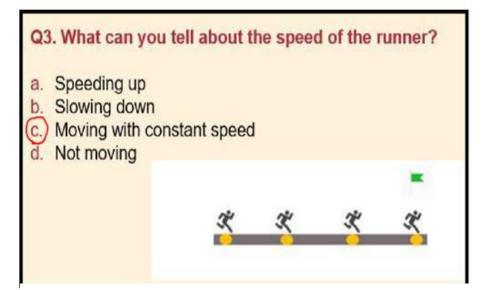


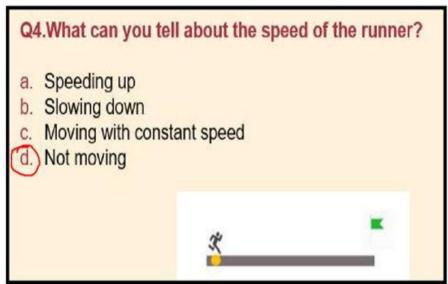
ESE QUESTIONS

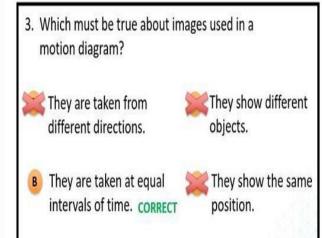

Q9 A snail is moving along a straight path. Find the snail's position relative to its 10.30 m = 0.103 m

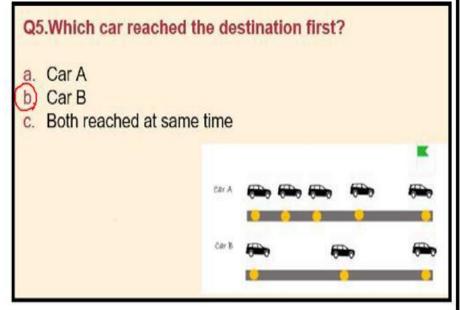

starting point if it moves 10.3 cm/s north for 3.10 s?

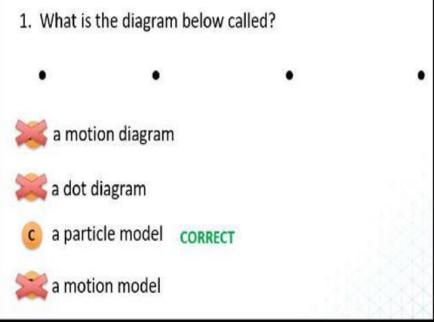
= 0:32m

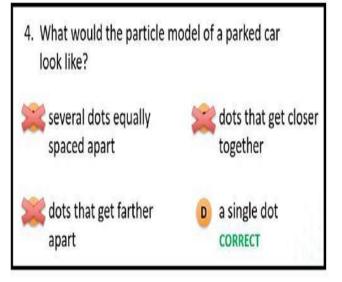





ESE QUESTIONS


16-Recognize uniform or non-uniform motion from a motion diagram or a particle model.


Page No. 53-58

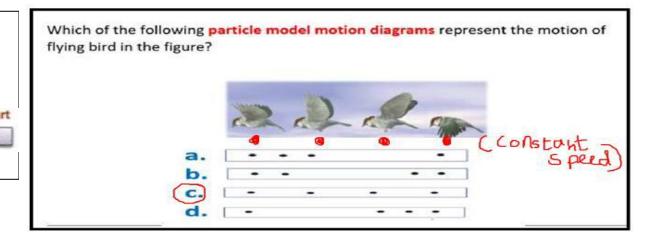


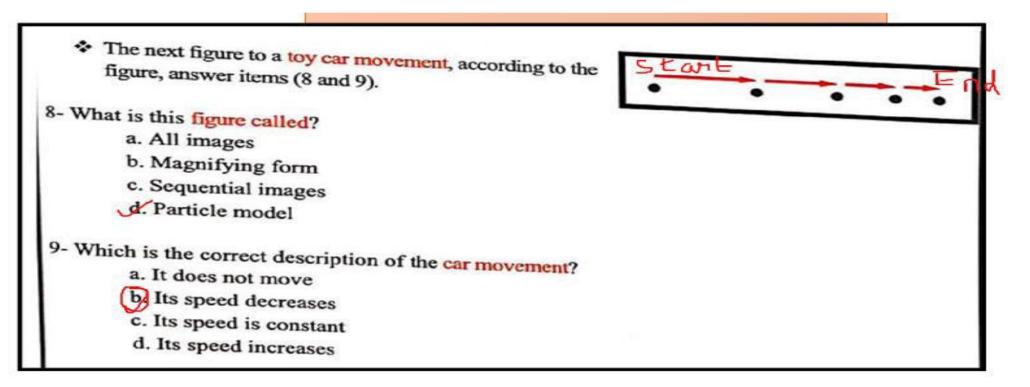
ESE QUESTIONS

16- Recognize uniform or non-uniform motion from a motion diagram or a particle model.

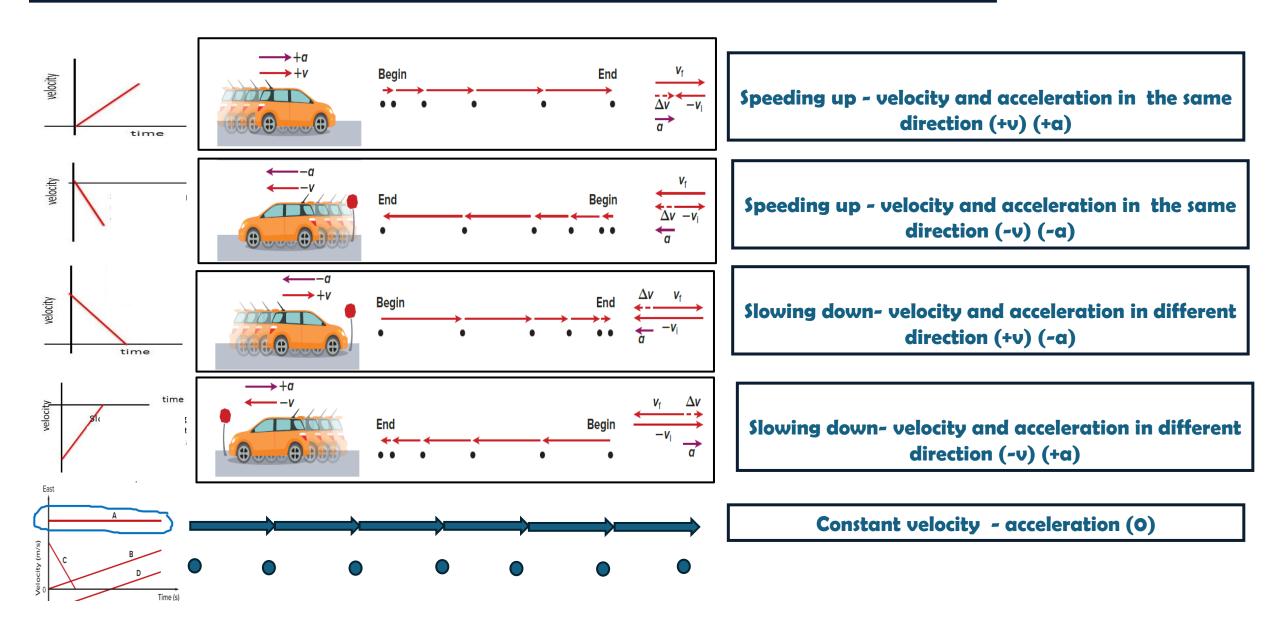
Page No. 53-58

Depending on the particle model in the figure for the motion of a vehicle, which of the following is true for the vehicle's motion?


end

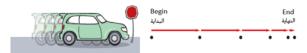

The vehicle moved at constant velocity

The vehicle moved faster

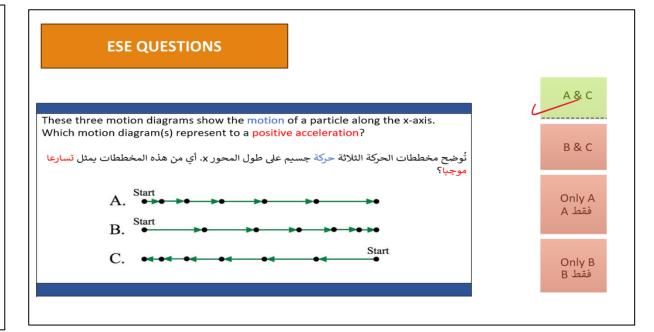

The vehicle moved slower

The vehicle started to move faster and then slower

Page No. 56



16- Describe the motion of an object if its velocity and acceleration are either in the same direction or opposite directions, hence state if an object is slowing down or speeding up


Page No. 56

ESE QUESTIONS

The car in the figure travels from the Start point to the End point in a straight line with a variable speed. Which of the following statements is true about the motion of the car?

- a. Velocity and acceleration remain constant in magnitude, and both are directed to the right
- b. Speed decreases and acceleration is directed to the right
- c.) Speed decreases and acceleration is directed to the left
- d. Speed increases and acceleration is directed to the left

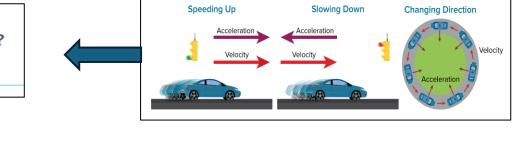
Define free fall and free fall acceleration


Free Fall: Is movement of an object caused only by the force of gravity

Free Fall Acceleration is the acceleration due to gravity

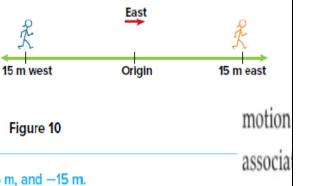
About 400 years ago, Galileo Galilei discovered that, neglecting the effect of the air, all objects in free fall have the same acceleration. It doesn't matter what they are made of or how much they are

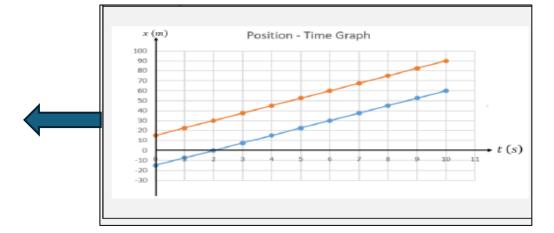
Page No. 71



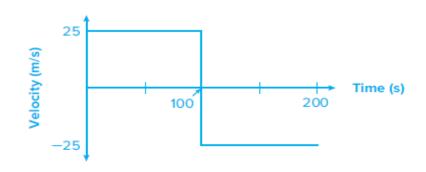
CHECK YOUR PROGRESS

11. Describing Motion What are three ways an object can accelerate?


speed up, slow down, change direction



- **12. Position-Time and Velocity-Time Graphs** Two joggers run at a constant velocity of 7.5 m/s east. **Figure 10** shows the positions of both joggers at time t = 0.
 - a. What would be the difference(s) in the position-time graphs of their motion?


Both lines would have the same slope, but they

would rise from the x-axis at different points, +15 m, and -15 m.

13. Velocity-Time Graph Sketch a velocity-time graph for a car that goes east at 25 m/s for 100 s, then west at 25 m/s for another 100 s.

The car moves with constant velocity, but it accelerate because the change in the direction of motion.

Page No. 65

- 16. A golf ball rolls up a hill toward a miniature golf hole. Assume the direction toward the hole is positive.
- a. If the golf ball starts with a speed of 2.0 m/s and slows down at a constant rate of 0.50 m/s², what is its velocity after 2.0 s?
- b. What is the golf ball's velocity if the constant acceleration continues for 6.0 s?
- c. Describe the motion of the golf ball in words and with a motion diagram

Vi = 2 m/s Vf = ?
t = 6 s a = -0.50 m/s²
Vf = Vi +
$$\overline{a} \triangle t$$

2+(-0.50x6)=-3 m/s
3 m/s away from the hole

c. The ball's velocity decreased in the first case. In the second, the ball slowed to a stop and then began rolling back down the hill. See Online Solutions Manual.

A bus traveling 30.0 km/h east has a constant increase in speed of 1.5 m/s². What is its velocity 6.8 s later?

```
Vi = 30 km/h East

Vi= (30 \times 1000)/1 \times 60 \times 60 = 8.3 m/s

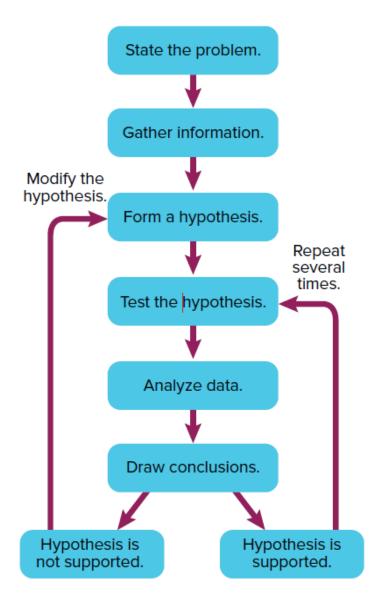
Vi = 8.3 m/s Vf = ? t=6.8 a = 1.5 m/s<sup>2</sup>

Vf = Vi + \boxed{a} \triangle t

8.3+(1.5 \times 6.8) = 18.5 m/s East

Or

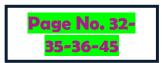
18.533 \times 1000/3600 = 66.7 km/h
```



18. If a car accelerates from rest at a constant rate of 5.5 m/s² north, how long will it take for the car to reach a velocity of 28 m/s north?

V_i = 0 m/s V_f = 28 m/s
t = ? = 5.5 m/s²
V_f = V_i +
$$\overline{a}$$
 Δ t
28=0+(5.5x?)=5.1 s

List the common steps of scientific methods used in investigations Classify common quantities into base and derived quantities with their \$1 units

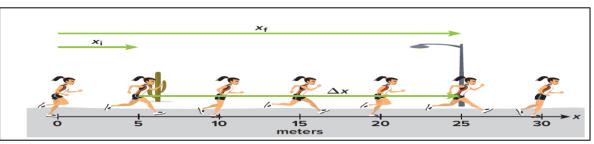


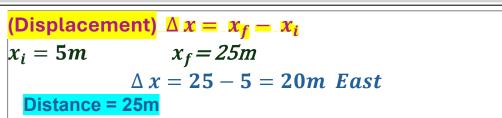
SI Base Units		
Quantity Measured	Unit	Symbol
Length	meter	m
Mass	kilogram	kg
Time	second	S
Electric current	ampere	А
Temperature	kelvin	К
Amount of substance	mole	mol
Intensity of light	candela	cd

Derived quantity

Derived Quantity	Units	
Volume, V	m³	
Density, ρ	kgm ⁻³	
Velocity, v	m/s	
Force, F	N	
Acceleration, a	m/s^2	

- 22- Interpret the motion represented by motion diagrams and particle models.
- -Determine displacement using vector addition or subtraction in one dimension
- -Define and calculate the average speed using a suitable mathematical representation
- -Define and calculate the average velocity using a suitable mathematical representation


Distance The length of a path traveled between two positions ("unik m)


Displacement

Is a change in position.

Is the distance with a given direction between starting point (x_i) and ending point (x_f)

What is the sum of a vector of length 4 km west and a vector 6 km east?

ما مجموع متجه طوله 4 kmغربا ومتجه km6شرقا

Examples of Vector Subtraction

مثال لطرح المتجهات

$$R = A + B$$
 $R = A + B$ $R =$

What is the sum of a vector of length 7 km west and a vector 4 km east?

ما مجموع متجه طوله 7km غربا ومتجه km4شرقا

AVERAGE VELOCITY The graph at the right describes the straight-line motion of a student riding her skateboard along a smooth, pedestrian-free sidewalk. What is her average velocity? What is her average speed?

b- The average Velocity

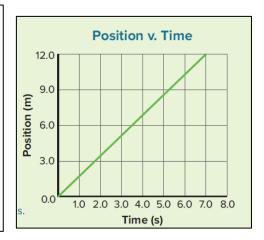
$$\overline{v} = \frac{x_f - x_i}{t_f - t_i}$$

$$\overline{v} = \frac{12 - 0}{7 - 0}$$

$$\overline{v} = \frac{12}{7}$$

$$x_f = 12 km$$

$$x_i = 0 km$$


$$t_i = 0 s$$

$$t_f = 7 s$$

The average speed
$$\overline{v} = 1.7 \ m/s$$

The average speed $\overline{v} = 1.7 \ m/s$

26- The graph in the figure shows the motion of a cruise ship sailing slowly through calm waters to the south.

- a. What is the ship's average speed?
- b. What is the ship's average velocity?

b- The average Velocity

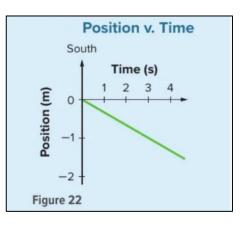
$$\overline{v} = \frac{x_f - x_i}{t_f - t_i}$$

$$\overline{v} = \frac{-1 - 0}{3 - 0}$$

$$\overline{v} = \frac{-1}{3}$$

$$x_f = -1 m$$

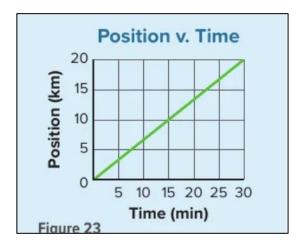
$$x_i = 0 km$$


$$t_i = 0 s$$

$$t_f = 3 s$$

a-The average speed
$$v = \begin{bmatrix} -0.33 \ m/s \end{bmatrix}$$

 $\overline{v} = -0.33 \, m/s$ north


The average speed $v = 0.33 \ m/s$

29-The graph in Figure 22 represents the motion of a bicycle.

- a. What is the standard average speed of the bicycle?
- b. What is the vector average speed of the bicycle?

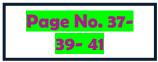
b- The average Velocity

$$\overline{v} = \frac{x_f - x_i}{t_f - t_i}$$

$$\overline{v} = \frac{20 - 0}{30 - 0}$$

$$\overline{v} = \frac{20}{30}$$

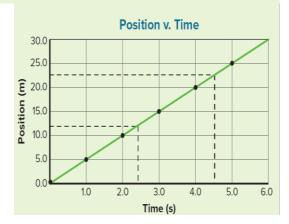
$$x_f = 20 km$$
$$x_i = 0 km$$
$$t_i = 0 min$$


$$30 - 0 t_f = 30 min$$

$$\overline{v} = 0.66 \, m/s$$
 in positive direction

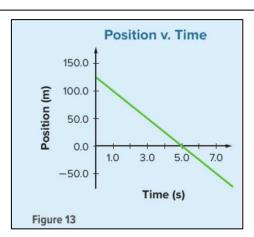
The average speed
$$\overline{v} = 0.67 \ km/min$$

-Calculate average velocity (magnitude and direction) from the slope of a position-time graph during a certain time interval and instantaneous velocity from the slope of a position-time graph at a certain instant

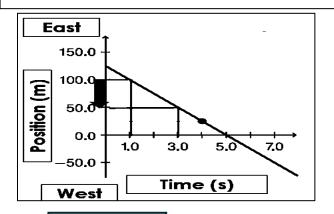


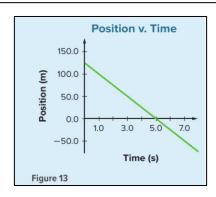
EXAMPLE Problem 1

ANALYZE A POSITION-TIME GRAPH When did the runner whose motion is described in **Figure 11** reach 12.0 m beyond the starting point? Where was she after 4.5 s?


1- 2.4 s

2- 22.5 m


10. The graph in the figure 13 represents the motion of a car moving along a straight highway. Describe in words the car's motion.


The car starts at a position 125.0 m and moves toward the origin, reaching the origin in 5.0 s after it started moving beyond the origin.

12. Answer the following questions about the car's motion. Assume that the positive x-direction is east of the origin and the negative x-direction is west of the origin.

- a. At what time was the car's position 25.0 m east of the origin?
- b. Where was the car at time t = 1.0 s?
- c. What was the displacement of the car between times t = 1.0 s and t = 3.0 s?

a-4.0 s

b-100 m

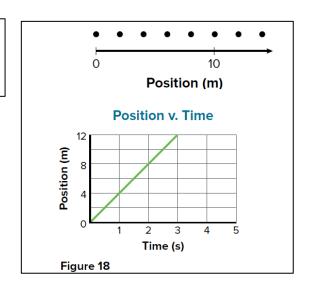
$$\Delta x = x_f - x_i$$

Displacemeny = 50 - 100

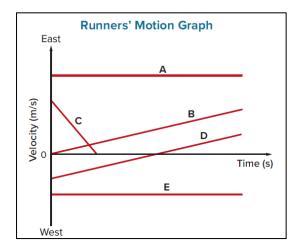
Displacement = -50 m

Displacement = 50 m west

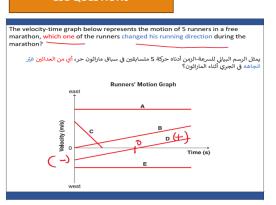
23-Analyze a position-time graph to describe an object's motion

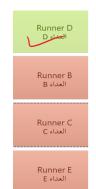

-Calculate average velocity (magnitude and direction) from the slope of a position-time graph during a certain time interval and instantaneous velocity from the slope of a position-time graph at a certain instant

25. Critical Thinking Look at the diagram and graph shown in Figure 18. Do they describe the same motion? Explain. The time intervals in the particle model diagram are 2 s.


No
Both travel in positive direction, but one moving
faster than the other

In particle model reach to position 10 m in 10 s In the graph reach to position 10 m in 2.5 s

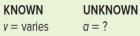

24-Interpret the velocity-time graph for a single or multiple objects in motion
-Find the slope and y-intercept of a velocity-time graph to describe the motion of an object

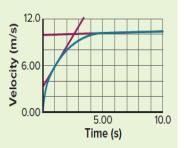


	Motion description	
Α	Move with constant velocity to East	
В	Speeding up to East	
O	Slowing down to East	
D	Slowing down to west then Speeding up to East	
Е	Constant velocity to west	

ESE QUESTIONS

24-Interpret the velocity-time graph for a single or multiple objects in motion -Find the slope and y-intercept of a velocity-time graph to describe the motion of an object




EXAMPLE Problem 1

VELOCITY AND ACCELERATION How would you describe the sprinter's velocity and acceleration as shown on the graph?

1 ANALYZE AND SKETCH THE PROBLEM

From the graph, note that the magnitude of the sprinter's velocity starts at zero, increases rapidly for the first few seconds, and then, after reaching about 10.0 m/s, remains almost constant.

2 SOLVE FOR THE UNKNOWN

Draw tangents to the curve at two points. Choose t = 1.00 s and t = 5.00 s. Solve for the magnitude of the instantaneous acceleration at 1.00 s:

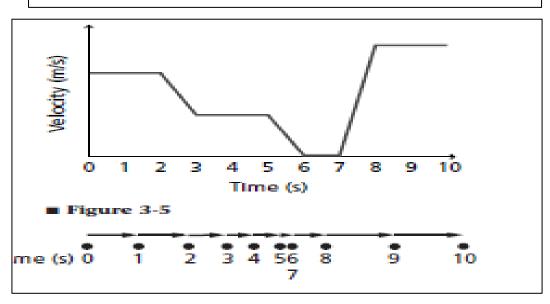
$$a = \frac{\text{rise}}{\text{rup}}$$
 The slope of the line at 1.00 s is equal to the acceleration at that time.

$$= \frac{10.0 \text{ m/s} - 6.00 \text{ m/s}}{2.4 \text{ s} - 1.00 \text{ s}}$$

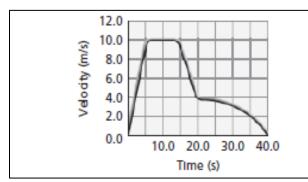
$$= 2.9 \text{ m/s/s} = 2.9 \text{ m/s}^2$$

Solve for the magnitude of the instantaneous acceleration at 5.00 s:

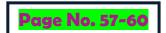
$$a = \frac{\text{rise}}{\text{rup}}$$
 The slope of the line at 5.00 s is equal to the acceleration at that time.


$$= \frac{10.3 \text{ m/s} - 10.0 \text{ m/s}}{10.0 \text{ s} - 0.00 \text{ s}}$$

$$= 0.030 \text{ m/s/s} = 0.030 \text{ m/s}^2$$


The acceleration is not constant because its magnitude changes from 2.9 m/s² at 1.00 s to 0.030 m/s² at 5.00 s.

The acceleration is in the direction chosen to be positive because both values are positive.


The object starts motion with high velocity and high acceleration then decreased and finally moved with almost constant velocity Figure 3-5 is a v-t graph for Steven as he walks along the midway at the state fair. Sketch the corresponding motion diagram, complete with velocity vectors.

3. Refer to the v-t graph of the toy train in Figure 3-6 to answer the following questions.

- a. When is the train's speed constant? 5.0 to 15.0 s
- b. During which time interval is the train's acceleration positive?
- 0.0 to 5.0 s
- c. When is the train's acceleration most negative?
- 15.0 to 20.0 s

Refer to Figure 3-6 to find the average acceleration of the train during the following time intervals.

a. 0.0 s to 5.0 s

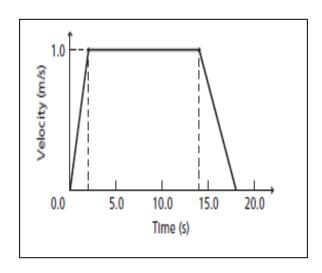
$$\overline{a} = \frac{v_2 - v_1}{t_2 - t_1}$$

$$= \frac{10.0 \text{ m/s} - 0.0 \text{ m/s}}{5.0 \text{ s} - 0.0 \text{ s}}$$

$$= 2.0 \text{ m/s}^2$$

b. 15.0 s to 20.0 s

$$\overline{a} = \frac{v_2 - v_1}{t_2 - t_1}$$


$$= \frac{4.0 \text{ m/s} - 10.0 \text{ m/s}}{20.0 \text{ s} - 15.0 \text{ s}}$$

$$= -1.2 \text{ m/s}^2$$

c. 0.0 s to 40.0 s

$$\overline{a} = \frac{v_2 - v_1}{t_2 - t_1}$$
 = $\frac{0.0 \text{ m/s} - 0.0 \text{ m/s}}{40.0 \text{ s} - 0.0 \text{ s}}$
= 0.0 m/s^2

5. Plot a v-t graph representing the following motion. An elevator starts at rest from the ground floor of a three-story shopping mall. It accelerates upward for 2.0 s at a rate of 0.5 m/s², continues up at a con-stant velocity of 1.0 m/s for 12.0 s, and then experiences a constant downward acceleration of 0.25 m/s² for 4.0 s as it reaches the third floor.

