مراجعة نهائية للفصل وفق الهيكل الوزاري الجديد منهج انسباير

تم تحميل هذا الملف من موقع المناهج الإماراتية

موقع المناهج ← المناهج الإماراتية ← الصف الرابع ← علوم ← الفصل الأول ← ملفات متنوعة ← الملف

تاريخ إضافة الملف على موقع المناهج: 19-11-2025 15:21

ملفات اكتب للمعلم اكتب للطالب ا اختبارات الكترونية ا اختبارات ا حلول ا عروض بوربوينت ا أوراق عمل منهج انجليزي ا ملخصات وتقارير ا مذكرات وبنوك ا الامتحان النهائي ا للمدرس

المزيد من مادة علوم:

التواصل الاجتماعي بحسب الصف الرابع

صفحة المناهج الإماراتية على فيسببوك

الرياضيات

اللغة الانجليزية

اللغة العربية

التربية الاسلامية

المواد على تلغرام

المزيد من الملفات بحسب الصف الرابع والمادة علوم في الفصل الأول	
ملزمة مراجعة نهائية منهج بريدج	1
حل كراسة تدريبية مراجعة وفق الهيكل الوزاري الجديد منهج بريدج	2
نموذج تدريبي ثان وفق الهيكل الوزاري منهج انسباير متبوع بالإجابات	3
نموذج تدريبي أول وفق الهيكل الوزاري منهج انسباير متبوع بالإجابات	4
حل مراجعة نهائية للفصل وفق الهيكل الوزاري الجديد منهج انسباير	5

Science Final Exam Review Term 1 2025/2026

Done by: Maryam Banafea Ravina Hurbans

What is included in the exam?

- 1. MULTIPLE CHOICE QUESTIONS- (MCQ)
- **20 questions-** MARKS PER QUESTION 3 MARKS

- 2. FORMAL REPONSE QUESTION-(FRQ)
- 4 questions- MARKS PER QUESTION- 8-12 MARKS

Number of MCQ عدد الأسئلة الموضوعية	20
Marks of MCQ درجة الأسئلة الموضوعية	3
Number of FRQ عدد الأسئلة المقالية	4
Marks per FRQ الدرجات للأسئلة المقالية	(8-12)
Type of All Questions	الأسئلة الموضوعية /MCQ
نوع كافة الأسئلة	الأسئلة المقالية /FRQ

UNIT 3 Dynamic Earth

Unit 3 P. 19 (2nd Paragraph)

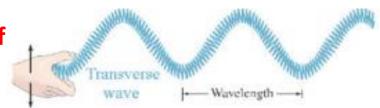
Module 1, Lesson 1 (Map Earth's Features)

LO: Students will be able to describe what a volcano is and what comes out of it.

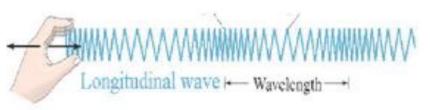
Volcano: an opening on Earth's surface where melted rock or gases are

forced out.

Quest	Question		
An ope	ening on Earth's surface where melted rocks or		
gases	are forced out is called		
	~/ 2/		
	C.		
Α	Earthquake		
В	Volcano		
С	Tornado		
	IUIIIauu		


Questi	on
What is	s forced out of a volcano?
6	~C
موز	
Α	Rocks
В	Sand
С	Lava and gases
	23.13. 33. 83.2.2

P. 49 (2nd Paragraph)


Module 2, Lesson 2 (Model Earthquake Movement)

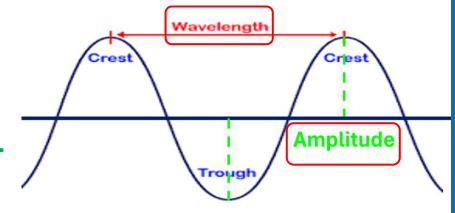
LO: Students will be able to identify how particles move in transverse and longitudinal waves.

Transverse Wave: a wave that vibrates perpendicular to the direction of the energy. Move materials up and down.

Longitudinal Wave: moves material back and forth as the wave travels through it.

Que	stion	
A wa	A wave that moves materials up and down is called	
Α	Longitudinal wave	
В	Transverse wave	

Question		
How do particles move in longitudinal wave?		
	_	
Α	Up and down	
	·	
В	Back and forth	


P. 95 Wavelength, Amplitude

Module 2, Lesson 2 (Model Earthquake Movement)

LO: Students will be able to identify and label the main parts of transverse and longitudinal waves, including wavelength and amplitude.

Wavelength: the distance between wave crests and troughs.

Amplitude: the height of a wave from its crest or trough to its midpoint.

Qι	Question	
Th	e distance between wave crests and troughs is called	
A	Crest	
В	Wavelength	
С	Amplitude	

Que	Question	
	The height of a wave from its crest or trough to its midpoint is called	
Α	Crest	
В	Wavelength	
С	Amplitude	

Unit 3 P. 96 Label Diagram Activity

Module 2, Lesson 2 (Model Earthquake Movement)

LO: Students will be able to identify and label the main parts of transverse and longitudinal waves, including wavelength and amplitude.

Unit 3 P. 101

Module 2, Lesson 2 (Model Earthquake Movement)

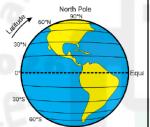
LO: Students will be able to read and interpret data from tables to answer questions about earthquake magnitudes.

	California Earthquake Data				
Year	Location	Magnitude	Year	Location	Magnitude
1906	San Francisco	7.8	1980	Eureka	7.2
1911	Calaveras Fault	6.5	1984	Morgan Hill	6.2
1920	Los Angeles	4.9	1989	Loma Prieta	6.9
1923	Cape Mendocino	7.2	1992	Landers	7.3
1933	Long Beach	6.4	1994	Northridge	6.7
1940	Imperial Valley	7.1	2004	Parkfield	6.0
1954	Arcata	6.6	2010	Baja	7.2

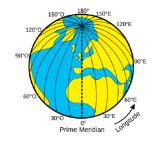
	Question In which regions were there earthquakes of magnitude greater		
	than 6.5 and under 7.0?		
A Baja, Long Beach, Calaveras Fault		Baja, Long Beach, Calaveras Fault	
	В	Arcata, Loma Prieta, Northridge	
	С	Parkfield, Morgan Hill, Baja	

Q	Question		Question	
Н	How many earthquakes had a		How many earthquakes had a	
m	magnitude greater than 7.0?		magnitude less than 7.0?	
Α	5	Α	7	
В	6	В	8	
С	7	С	9	

Que	Question			
In w	In which regions were there earthquakes of magnitude greater			
than	than 6.2 and under 7.2?			
Α	5			
В	6			
С	7			


Unit 3 P. 17 (2nd Paragraph)

Module 1, Lesson 1 (Map Earth's Features)


LO: Students will understand that lines of latitude and longitude are imaginary lines that help locate places on Earth.

Longitude and latitude lines help locate places on Earth

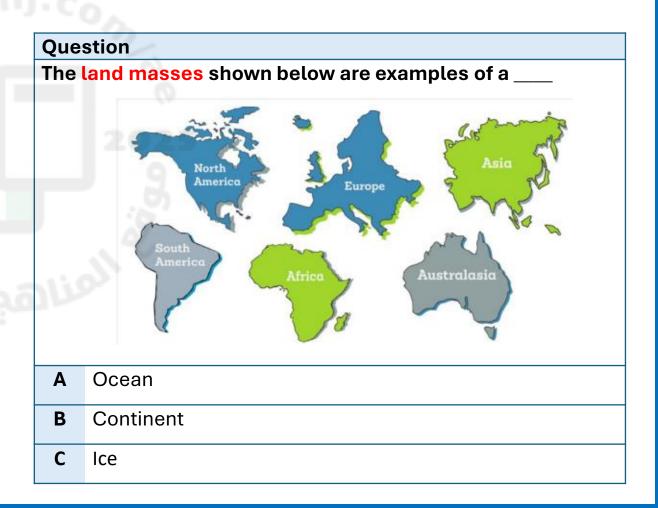
Latitude lines: tell how far north or south a place is from the equator.

Longitude lines: tell how far east or west a place from the prime meridian.

Que	Question		
The imaginary lines that tell how far north or south a place is from the equator are called			
Α	Longitude		
В	Latitude		

Question		
The imaginary lines that tell how far east or west a place from the prime meridian are called		
Α	Longitude	
В	Latitude	

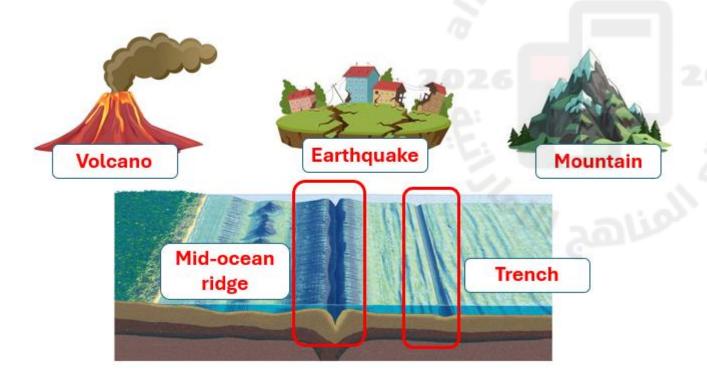
Unit 3 P. 14 (2nd Paragraph)


Module 1, Lesson 1 (Map Earth's Features)

LO: Students will understand that large land masses on Earth are called continents.

Continent: a large landmass.

Question	
A co	ntinent is a
Α	A large water body
В	A large landmass
С	A small island

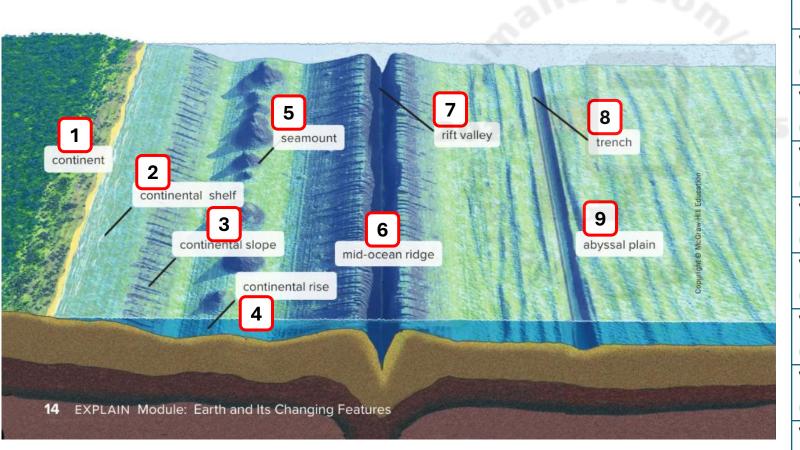


Unit 3 P. 25 Q1

Module 1, Lesson 1 (Map Earth's Features)

LO: Students will be able to identify the physical feature that is found near the edge of a continent.

What mostly like to occur near the plate boundaries?



Which feature is most likely to occur near the edge of a continent? A Plain B Mountain C Lake D Abyssal Plain

P. 14 – 15 Section Ocean Features (Labelled Image)

Module 1, Lesson 1 (Map Earth's Features)

LO: Students will be able to identify and name parts of the ocean floor.

Question

Which part of the ocean floor is number 1? (Continent / Continental shelf / Seamount)

Which part of the ocean floor is number 2?

(Continent / Continental shelf / Seamount)

Which part of the ocean floor is number 3?

(Continental slope / Rift Valley / Seamount)

Which part of the ocean floor is number 4?

(mid-ocean ridge / continental rise)

Which part of the ocean floor is number 5?

(Continent / Continental shelf / Seamount)

Which part of the ocean floor is number 6?

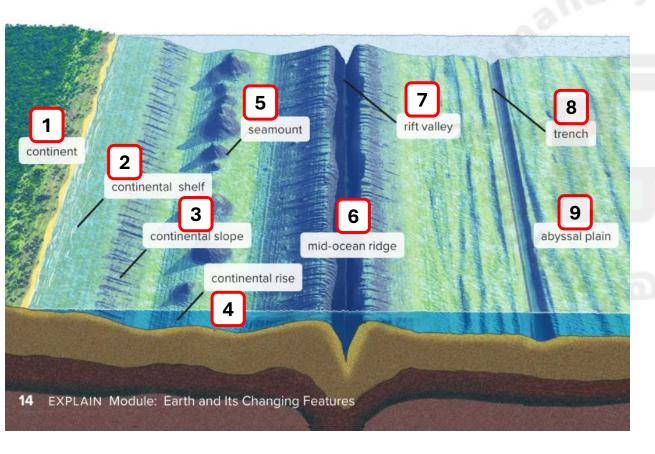
(mid-ocean ridge / continental rise)

Which part of the ocean floor is number 7?

(Continental slope / Rift Valley / Seamount)

Which part of the ocean floor is number 8?

(Abyssal plain / trench / mid-ocean ridge)


Which part of the ocean floor is number 9?

(Abyssal plain / trench / mid-ocean ridge)

P. 14 – 15 Section Ocean Features (Labelled Image)

Module 1, Lesson 1 (Map Earth's Features)

LO: Students will be able to recognize that underwater canyons can form on the continental slope.

Question		
Where do underwater canyons form on the ocean floor?		
Α	Continental shelf	
В	Continental slope	
С	Continental rise	

Ques	uestion		
At w	hich number in the figure do underwater canyons form?		
Α	1.9		
В	2		
С	3		

Question		
What landform can you find on the continental slope?		
Α	Volcano	
В	Trench	
С	Underwater canyon	

Unit 3 P 114-115

Module 2, Lesson 3 (Reduce Earthquake Damage)

LO: Students will know ways buildings are made strong to stay safe during earthquakes.

How are buildings made strong to stay safe during an earthquake?

1. Use steel, wood, and concreate frames.

2. Bracing: diagonal pieces connecting beams and columns. (Shape of X or K letters).

- 3. Shear Wall: A stiff wall made of braced panels.
- 4. Mass Dampers: A heavy mass that is placed inside the top floors in tall buildings.

Qı	Question		
W	What part of a building helps it stay strong against lateral forces?		
1	Α	Bracing	
	В	Shear wall	
	С	Mass Dampers	
l	D	All of the above	

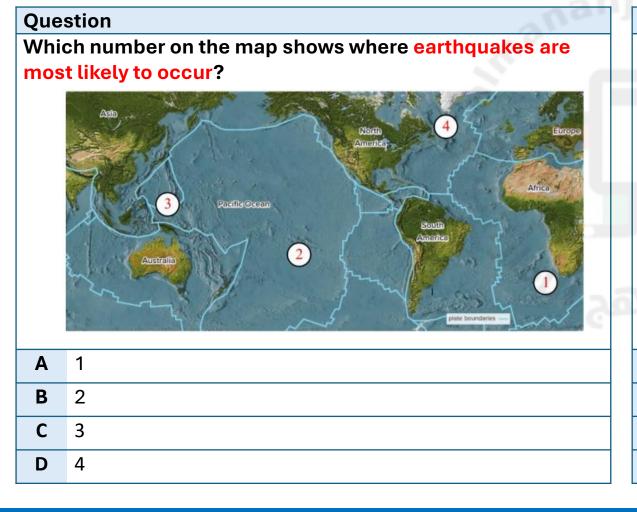
Unit 3 p.19 (3rd Paragraph), p.19 Q.2, p.85 Q.1, Q.2 Module 1, lesson 1 & Module 2, Lesson 1

LO: Students will be able to identify areas near fault lines or tectonic plate boundaries as regions where earthquakes are most likely to occur.

Earthquakes usually occur along the plates boundaries

Question

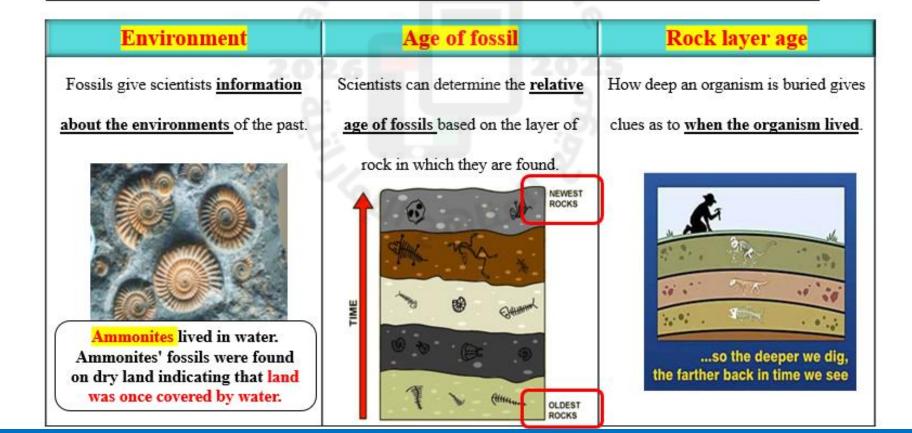
What is the pattern of earthquakes shown in the world map?



- A Earthquakes occur along the plate boundaries
- **B** Earthquake occur away from the plate boundaries

Unit 3 p.19 (3rd Paragraph), p.19 Q.2, p.85 Q.1, Q.2 Module 1, lesson 1 & Module 2, Lesson 1

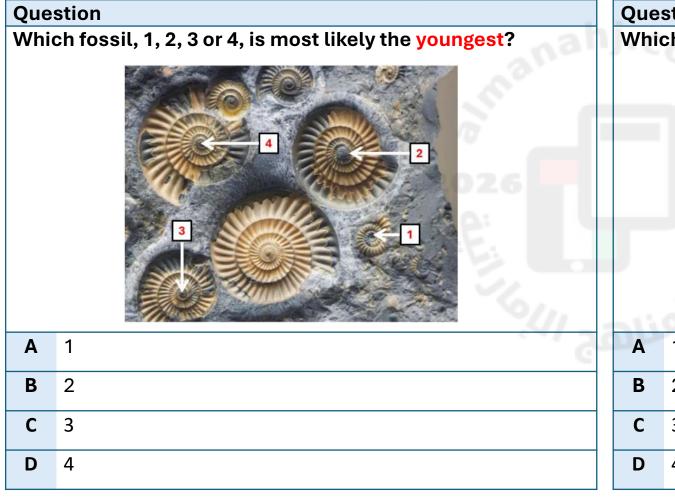
LO: Students will be able to identify areas near fault lines or tectonic plate boundaries as regions where earthquakes are most likely to occur.

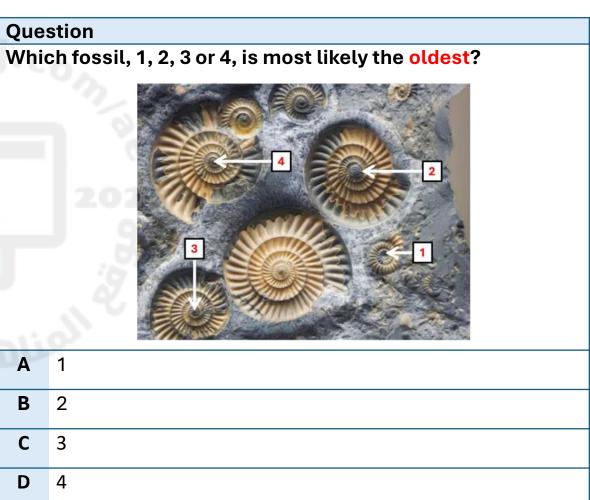

Question Looking at the map, what do you know about the pattern of where earthquakes occur? In the middle of the continents Near the plate boundaries Away from the plate boundaries In the middle of the oceans

p.32 Section on Fossils (including image and paragraph that comes after) Module 1, Lesson 2 (Evidence from Rocks and Fossils)

LO: Students will be able to use pictures of fossils to identify which one is the youngest.

Fossils: are the remains or imprints of living things from the past that preserved in sedimentary rocks.

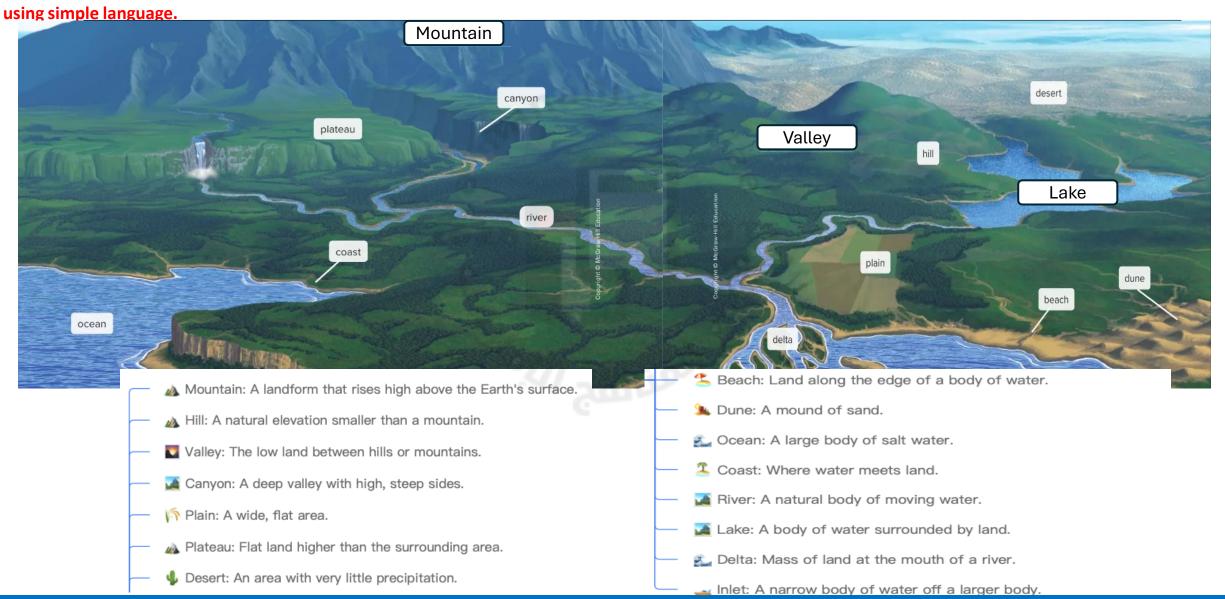

What Fossils Tell us



p.32 Section on Fossils (including image and paragraph that comes after)

Module 1, Lesson 2 (Evidence from Rocks and Fossils)

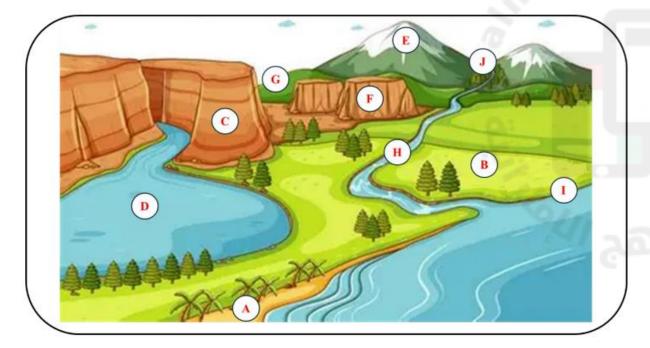
LO: Students will be able to use pictures of fossils to identify which one is the youngest.



p.32 12-13 Landforms

Module 1, Lesson 1 (Map Earth's Features)

LO: Students will be able to identify and name common landforms from diagrams. Students will be able to describe the characteristics of different landforms



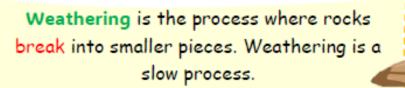
p.32 12-13 Landforms

Module 1, Lesson 1 (Map Earth's Features)

LO: Students will be able to identify and name common landforms from diagrams. Students will be able to describe the characteristics of different landforms using simple language.

Question: From the image below, identify the landforms labelled A to J in the table. Then describe them.

	Landform	Description
A	0/2	
В	D	
С	(0)	
D	2025	
Е	5.5	
F	3/1/2	
G		
Н		
I		
J		

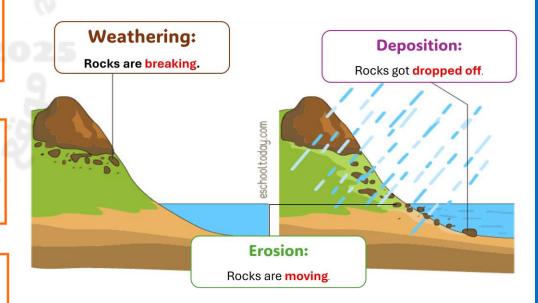

Unit 3 p.48-52 Section Weathering + Section Erosion and Deposition, p.50 Erosion and Deposition by gravity, water and wind, p.51 Q.1

Module 1, Lesson 3 (Changes in Landscapes Over Time)

: Students will be able to identify true and false statements about weathering and erosion and deposition. Students will be able to name common ways erosion and deposition happen. Students will be able to explain why fast-moving water changes land more than slowmoving water

Changes in landscapes are caused by:

Weathering, Erosion, Deposition

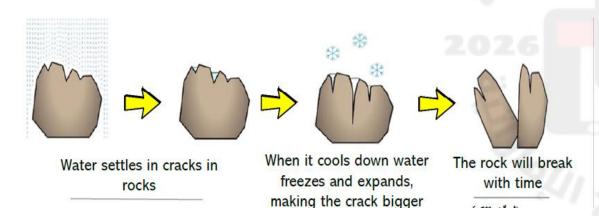

التجوية هى عملية تكسر الصخور إلى قطع أصغر وهي عملية ىطىئة.

Erosion is the process where the broken rocks and soil move from one place to another.

التعرية هي حركة الصخور المتكسِّرة والتّربة من مكان إلى مكان آخر.

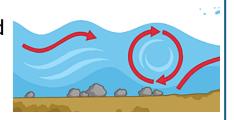
الترسيب هي توقف هذه الصخور (STOP) Deposition is the process where the moving rocks come to a stop and get dropped off in another place.

عن الحركة وإسقاطها في مكان

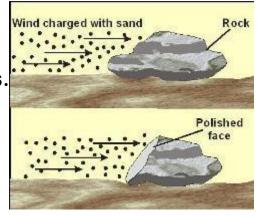

Changes in landscapes are caused by: Deposition: Weathering: Erosion: Eroded soil and rock being The slow process that breaks Movement of weathered material from one place to another. materials into smaller peices. dropped off in another place. Chemical Weathering: Physical Weathering: When rocks change its properties When rocks break with NO change. Gravity (color, texture, minerals) lce Running water (rivers) Acids Moving wtaer Oxygen Wind Living thing Wind Waves in Shorelines Animals Glaciers ... Plants roots

Types/Causes of Weathering:

A. Physical Weathering: Change in size and shape of rocks without changing its chemical properties, such as color, texture or minerals.


Causes/Types of **physical weathering:**

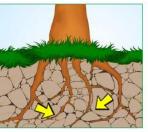
1. <u>lce</u>


2. Moving water:

Rivers move rocks and they grind against each other causing **abrasion** and break rocks.

3. Wind

Wind blows sand and small rocks
Rocks grind against each other
causing abrasion and break rocks.


4. Animals

Gophers, worms, and ants can break rocks as they burrow in the ground.

5. Plant roots:

Plant roots can **grow inside rock cracks** and **split them** into pieces.

Types/Causes of Weathering:

B. Chemical Weathering: Change in rocks chemical properties, such as color, texture or minerals.

<u>Causes/Types</u> of **<u>chemical weathering</u>**:

1. Acids

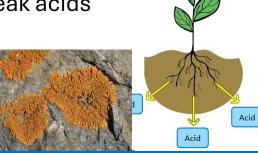
Sometimes volcano's **lava** mixes with the water. So, water becomes **acidic**.

Acidic lava + Water = Acidic water

When acidic water hits the rocks next to it, it makes the soft and break them.

2. Oxygen

Some rocks contain **minerals** like <u>iron</u>. When these rocks are exposed to <u>water</u> and <u>oxygen</u>, they form <u>rust</u>.


Rust makes rocks soft and easy to break.

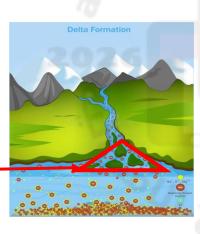
3. Living things:

Lichens (plant-like organism) grow on rocks. Lichens and plants roots make weak acids

that cause **chemical weathering.**

Types/Causes of **Erosion and Deposition**:

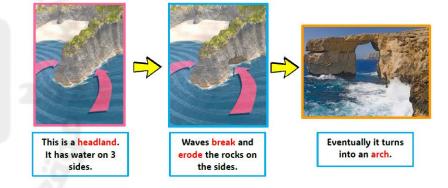
1. **Gravity**


Gravity pulls broken rocks down the lope (mudslides, landslides and rockslides).

2. Running water

Rivers move rocks and soil as they flow (erosion).

Rivers deposit rocks and soil that can form delta.


3. Wind

Wind can move sand (erosion)
A sand dune is a deposit of wind blown sand.

4. Waves in Shorelines

 Waves have a lot of energy, so, they can break solid rocks, move them, and drop them off somewhere else to make a beach.

5. Glaciers

When **snow** collects **quickly** it gets heavy and starts to **move**, which is called **"glacier"**.

Glaciers move rocks as they move.

Erosion Effect on Living Things:

Erosion has negative impacts on wildlife.

It destroys organisms' habitats.

Heavy rainfall can destroy nests and burrows.

Unit 3 p.48-52 Section Weathering + Section Erosion and Deposition, p.50 Erosion and Deposition by gravity, water and wind, p.51 Q.1

Module 1, Lesson 3 (Changes in Landscapes Over Time)

Students will be able to identify true and false statements about weathering and erosion and deposition. Students will be able to name common ways erosion and deposition happen. Students will be able to explain why fast-moving water changes land more than slowmoving water

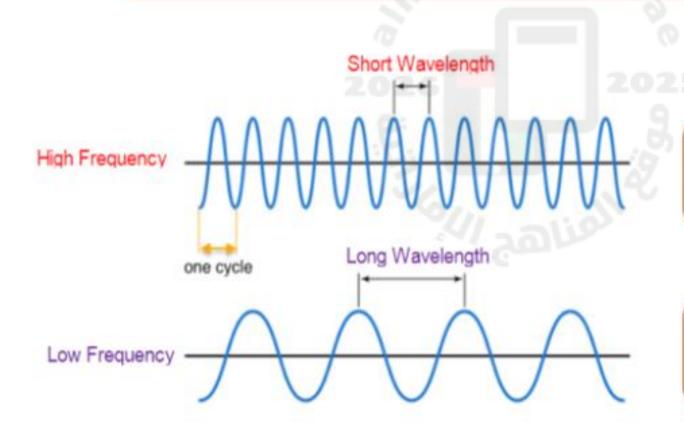
Question: Identify which of the following sentences are true or false.

- 1. Weathering is a slow process that does not break down materials into smaller pieces. (TRUE / FALSE)
- 2. Physical weathering does not change the minerals that make up rocks. . (TRUE / FALSE)
- 3. Water, living things and oxygen can cause chemical weathering. (TRUE / FALSE)
- 4. Erosion is the movement of weathered material from place to another. (TRUE / FALSE)
- 5. Deposition is the process through which eroded soil and bits of rock are dropped off in another place. (TRUE / FALSE)
- 6. Erosion and deposition change the land. (TRUE / FALSE)

Unit 3 p.48-52 Section Weathering + Section Erosion and Deposition, p.50 Erosion and Deposition by gravity, water and wind, p.51 Q.1

Module 1, Lesson 3 (Changes in Landscapes Over Time)

LO: Students will be able to identify true and false statements about weathering and erosion and deposition. Students will be able to name common ways erosion and deposition happen. Students will be able to explain why fast-moving water changes land more than slowmoving water

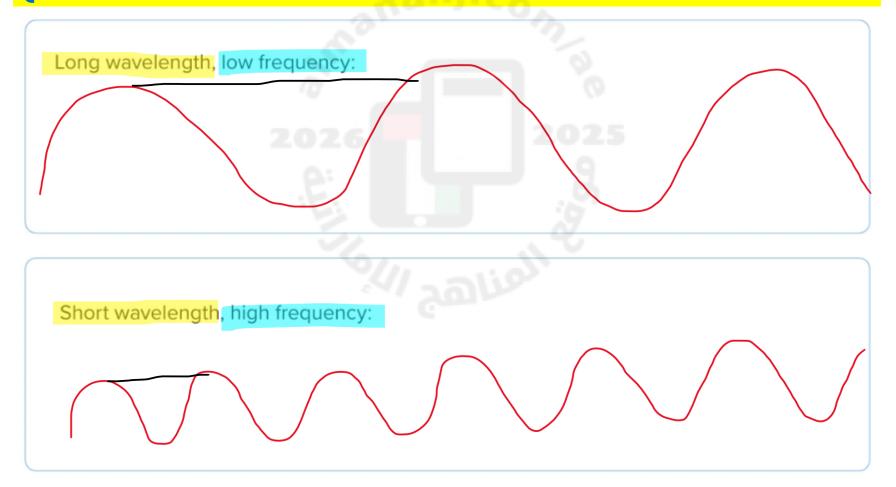

Question : In what w	ays does erosion and	d deposition happen?
1	- The	
2		
3	2026	
4.	·E:	
Question : Why does	fast moving water h	ave a greater effect on la

Unit 3 p. 95 Section Feature of Waves (1st Paragraph), p.96 Q.2,

Module 2, Lesson 2 (Model Earthquake Movement)

LO: Students will be able to compare the wavelength and frequency of two waves traveling at the same speed. Students will be able to rank earthquake magnitudes by comparing their values.

Frequency: is how many crests or troughs move in a specific time.

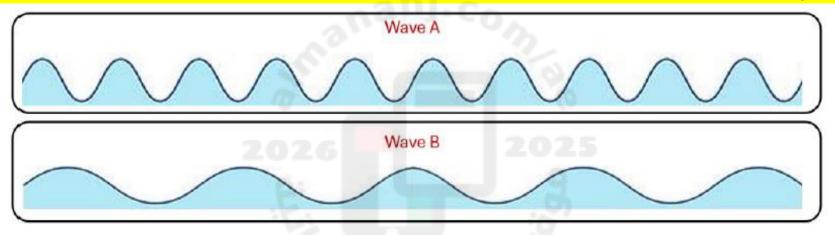

High frequency (عدد موجات أكثر) Short Wavelength (طول موجي أقصر) More energy (طاقة أكثر)

اعدد موجات أقل) Low frequency (طول موجي أطول) Long Wavelength (طاقة أكثر) Less energy Unit 3 p. 95 Section Feature of Waves (1st Paragraph), p.96 Q.2,

Module 2, Lesson 2 (Model Earthquake Movement)

LO: Students will be able to compare the wavelength and frequency of two waves traveling at the same speed. Students will be able to rank earthquake magnitudes by comparing their values.

Question: Draw waves with the characteristics indicated below



Unit 3 p. 95 Section Feature of Waves (1st Paragraph), p.96 Q.2,

Module 2, Lesson 2 (Model Earthquake Movement)

LO: Students will be able to compare the wavelength and frequency of two waves traveling at the same speed. Students will be able to rank earthquake magnitudes by comparing their values.

Question: The two waves shown below travel with the same speed.

Which wave has longer wavelength? Explain your answer.

.....

Which wave has shorter wavelength? Explain your answer.

- Which wave has lower frequency?
- Which wave has higher frequency?

Unit 3 p. 95 Section Feature of Waves (1st Paragraph), p.96 Q.2,

Module 2, Lesson 2 (Model Earthquake Movement)

LO: Students will be able to compare the wavelength and frequency of two waves traveling at the same speed. Students will be able to rank earthquake magnitudes by comparing their values.

Question: Arrange the earthquakes in the table below from:

Magnitude: The amount of energy released by an earthquake.

Earthquake	Magnitude
A	6.9
В	7.8
С	4.3

a. Strongest to weakest:

b. Weakest to strongest:

.....

Earthquake	Magnitude
A	6.9
В	6.8
С	7.3

a. Strongest to weakest:

.....

b. Weakest to strongest:

Forces and Energy

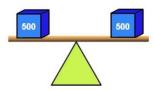
P. 13 Section - Balanced and Unbalanced Forces

Module 1 Lesson 1 (Forces and Motion)

LO:

Students will be able to identify whether forces acting on an object are balanced or unbalanced.

Balanced Force: forces working on an object without changing its motion.


Unbalanced Force: change the motion of an object.

Draw circle around pictures that represent balanced forces and square around unbalanced forces.

Que	Question				
Unb chai	alanced forces cause the skier's s nge	peed and to			
Α	Shape				
В	Direction				
С	Movement				

P. 13 Section - Balanced and Unbalanced Forces Module 1 Lesson 1 (Forces and Motion)

LO:

Students will be able to identify whether forces acting on an object are balanced or unbalanced.

Balanced Force: forces working on an object without changing its motion.

Unbalanced Force: change the motion of an object.

P. 15 Section - Friction

Module 1 Lesson 1 (Forces and Motion)

LO: Students will understand the concept of friction and its effects on moving objects.

Friction: a force between surfaces that slows down objects or stops them from moving.

A force between surfaces that slows down objects or stops them from moving is called ______ A Gravity B Inertia C Friction D Speed

Que	stion
Wha	t is the effect of friction?
A	Make objects move faster
В	Make objects move slower or stop them from moving
С	Have no effect on movement

P. 15 Section - Friction

Module 1 Lesson 1 (Forces and Motion)

LO: Students will understand the concept of friction and its effects on moving objects.

Friction: a force between surfaces that slows down objects or stops them from moving.

Question	
Heav	vier objects have friction.
Α	More
В	Less
С	The same

Que	Question		
Smo	mooth surface have friction than rough surfaces.		
Α	More		
В	Less		
С	The same		

P. 10 Section - Speed

Module 1 Lesson 1 (Forces and Motion)

LO: Students will be able to identify the correct units used to measure a given quantity.

Speed: how fast an object changes position over time.

<u>Calculate speed:</u> distance over time travelled.

$$speed = \frac{distance}{time}$$

Units of speed:

Distance: meter (m)

kilometer (km)

mile (mi)

Speed: meters per seconds (m/s)

Kilometers per hour (km/h)

Miles per hour (mph)

Question		
In v	In what units can you measure distance?	
Α	Cocondo	
Α	Seconds	
В	Liters	
С	Kilometers	

Question		
In what units can you measure time?		
Α	Meters	
В	Hours	
С	Miles	

Qu	estion
ln v	vhat <mark>units</mark> can you measure <mark>speed?</mark>
Α	Km
В	Hours
С	Km/h

P. 11 Section - Acceleration

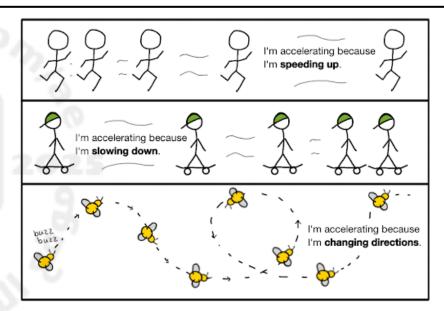
Module 1 Lesson 1 (Forces and Motion)

LO: Students will be able to define acceleration as a change in velocity.

Acceleration: a change in velocity over time.

Velocity: speed and direction of an object.

Question


Acceleration is a change in _____ over time.

- **A** Motion
- **B** Speed
- **C** velocity

Question

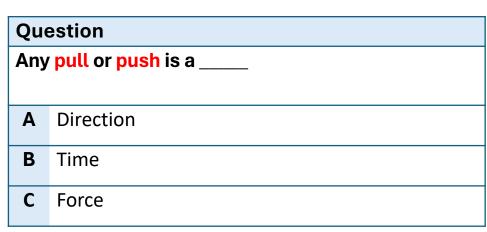
A change in velocity over time is called _____

- **A** Motion
- **B** Speed
- **C** Acceleration

Question A change in an object's speed or direction is called

A Motion

- **B** Speed
- **C** Acceleration

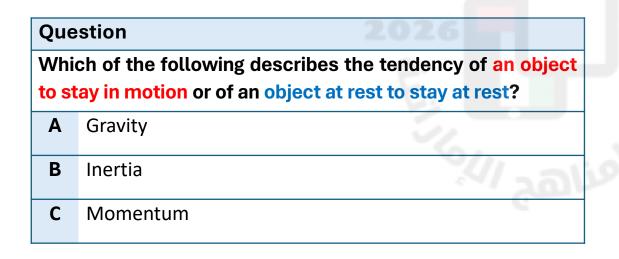

P. 12 (1st paragraph)

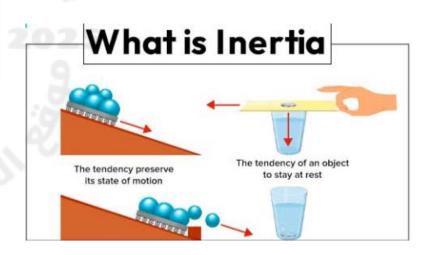
Module 1 Lesson 1 (Forces and Motion)

Students will be able to define a force as a push or a pull.

Force: any push or pull. Can cause an object to start moving, stop moving, change direction, speed up or slow down

Que	Question		
Pus	Pushing a door is a type of		
		202	
Α	Direction	ο:	
В	Force	: [
С	Place	Ü	



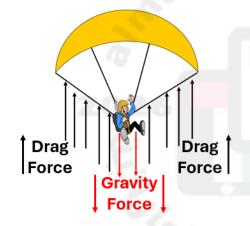

P. 13 (5th paragraph)

Module 1 Lesson 1 (Forces and Motion)

LO: Students will understand the concept of inertia as the tendency of objects to keep doing what they are doing

Inertia: the tendency of an object in motion to stay in motion or an object at rest to stay at rest.

P. 15 Section - Friction P 21 Q3


Module 1 Lesson 1 (Forces and Motion)

O: Students will understand how changing drag forces affect the motion of objects in motion

Drag forces: acts with solids against gases or fluids.

Drag force (or air resistance) is just like friction.

Drag force pulls the object in the opposite direction

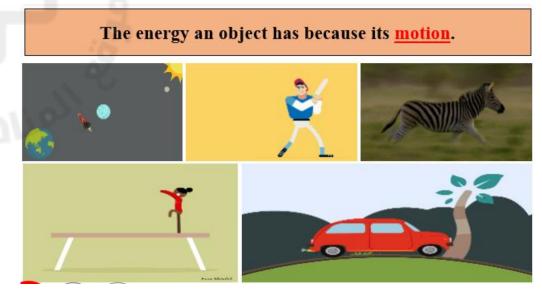
Question		
If the drag forces are decreased, then an object will		
fall		
Α	More slowly	
В	Faster	
С	At the same speed	

Unit 1 p.30 Section: Stored Energy, p.31 Section Energy in Motion, p.39 Q 2

Module 1 Lesson 2 (Speed and Energy)

Students will be able to recognize when an object has only potential energy, only kinetic energy, or both at the same time.

Stored energy (potential energy): is energy that is stored inside an object.


Energy of Motion (kinetic energy): the energy an object has because it is moving.

The energy that is stored inside an object.

Still Objects Objects above a surface Compressed spring Stretched objects

Energy of Motion (kinetic energy)

Unit 1 p.30 Section: Stored Energy, p.31 Section Energy in Motion, p.39 Q 2

Module 1 Lesson 2 (Speed and Energy)

Students will be able to recognize when an object has only potential energy, only kinetic energy, or both at the same time.

Stored energy (potential energy): is energy that is stored inside an object.

Energy of Motion (kinetic energy): the energy an object has because it is moving.

Question		
What form of energy does an apple have on the branch of a tree?		
Α	Stored energy	
В	Energy of motion	
С	Both stored and energy of motion	

Question	
An airplane in flight has	
Α	Stored energy because it is above the ground
В	Energy of motion because it is moving
С	Both stored and energy of motion

Question	
What form of energy does a car in motion on a flat road have?	
6	2023
Α	Stored energy
В	Energy of motion
С	Both stored and energy of motion

Que	estion	
	A ball is thrown upwards. What form or forms of energy does it have as it moves away from the ground?	
Α	Stored energy because it is above the ground	
В	Energy of motion because it is moving	
С	Both stored and energy of motion	

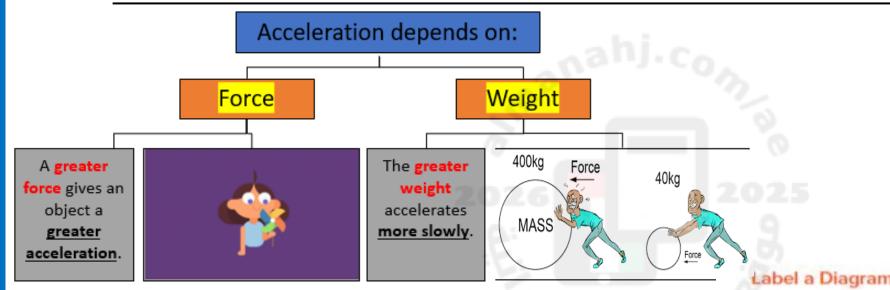
Unit 1 p.30 (1st paragraph)

Module 1 Lesson 2 (Speed and Energy)

LO:

Students will be able to recall the definition of energy

Energy: the ability to do work.


Question	
Which statement is true about energy?	
Α	Energy makes things stop
В	Energy helps things do work
С	Energy is not needed to move

Question		
The ability to do work is called		
	<i>5</i> 7.	
Α	Force	
В	Energy	
С	Acceleration	

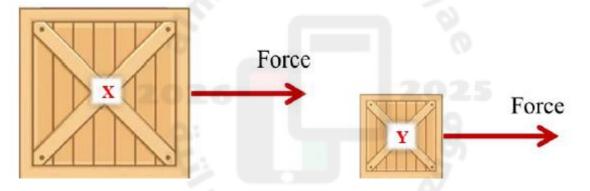
Unit 1 p.12 Label a Diagram Activity

Lesson 1 (Speed and Energy)

LO: Students will understand the relationship between force, mass, and acceleration. Students will know how to calculate average speed using distance and time

Label a Diagram: Force and Acceleration

Use what you learned in the paragraph above to draw arrows that show the acceleration of each cart. Draw a longer arrow to represent greater force and a shorter arrow to represent lesser force.



Unit 1 p.12 Label a Diagram Activity

Lesson 1 (Speed and Energy)

LO: Students will understand the relationship between force, mass, and acceleration. Students will know how to calculate average speed using distance and time

Question: The image below shows two crates of different masses. The crates experience the same force.

a. Which crate has larger acceleration? Why?

a. Which crate has lower acceleration? Why?

Unit 1 p.12 Label a Diagram Activity

Lesson 1 (Speed and Energy)

LO: Students will understand the relationship between force, mass, and acceleration. Students will know how to calculate average speed using distance and time

To measure speed:

$$speed = \frac{distance}{time}$$

A boy is driving his car. He travels <u>50 Km</u> in <u>10 minutes</u>. Calculate his speed.

$$Speed = \frac{50}{10}$$

Speed =
$$5 \text{ km/m}$$

Question: If a car travels 360 kilometers in 3 hours, what was the car's average speed?

__8

Distance: meter (m)

kilometer (km)

mile (mi)

Speed: meters per seconds (m/s)

Kilometers per hour (km/h)

Miles per hour (mph)

Question: If a car travels 250 kilometers in 2 hours, what was the car's average speed?