حل كراسة تدريبية مراجعة وفق الهيكل الوزاري الجديد منهج بريدج

تم تحميل هذا الملف من موقع المناهج الإماراتية

موقع المناهج ← المناهج الإماراتية ← الصف الثاني عشر المتقدم ← رياضيات ← الفصل الأول ← ملفات متنوعة ← الملف

تاريخ إضافة الملف على موقع المناهج: 18-11-2025 20:59:06

ملفات ا كتب للمعلم ا كتب للطالب ا اختبارات الكترونية ا اختبارات ا حلول ا عروض بوربوينت ا أوراق عمل منهج انجليزي ا ملخصات وتقارير ا مذكرات وبنوك ا الامتحان النهائي ا للمدرس

المزيد من مادة || رياضيات:

إعداد: مدرسة درب السعادة

التواصل الاجتماعي بحسب الصف الثاني عشر المتقدم

صفحة المناهج الإماراتية على فيسببوك

الرياضيات

اللغة الانجليزية

اللغة العربية

التربية الاسلامية

المواد على تلغرام

المزيد من الملفات بحسب الصف الثاني عشر المتقدم والمادة رياضيات في الفصل الأول	
مراجعة شاملة امتحانات وزارية سابقة وفق الهيكل الوزاري الجديد باللغتين	1
كراسة تدريبية مراجعة وفق الهيكل الوزاري الجديد منهج بريدج	2
مراجعة الدرس السابع Functions Logarithmic and Exponential of Derivatives مشتقة الدوال الأسية والدوال اللوغاريتمية من الوحدة الثالثة (اختبر نفسك 11)	3
نموذج اختبار تجريبي وفق الهيكل الوزاري الجديد منهج بريدج	4
حل ملزمة مراجعة عامة وفق الهيكل الوزاري الجديد منهج بريدج	5

الحقيبة التدريبية 2025-2026 صف 12متقدم ف 1

القسم الموضوعي				
نوع المهارة	ناتج التعلم	رقم الصفحة في الكتاب	أرقام الاسئلة في الحقيبة	رقم السوال
استخدام معلومات ومفاهيم	تقدير طول القوس على منحني دالة معطاة	70	6-1	الأول
تذكر+ استخدام معلومات ومفاهيم	ايجاد قيمة نهاية ما بيانيا ان وجدت	77	16-7	الثاني
استخدام المعلومات والمفاهيم + تفكير موسع	ايجاد نهاية الدوال كثيرة الحدود والنسبية والمثلثية باستخدام نظريات النهايات	87	24-17	الثالث
استخدام المعلومات والمفاهيم + تفكير موسع	استخدام نظرية الشطيرة لايجاد النهايات	87	28-25	الثالث
تذكر + استخدام المعلومات والمفاهيم	استخدام خصائص الاتصال لدراسة اتصال الدالة او مجموعة الدوال عند نقطة معينة	97	36-29	الرابع
تذكر + استخدام المعلومات والمفاهيم	ايجاد النهايات التي تؤول الى اللا نهاية عند اللانهاية	108	50-37	الخامس
استخدام المعلومات والمفاهيم + تفكير موسع	ايجاد خطوط التقارب الافقي والراسي والمائلة باستخدام النهايات	108	62-51	السادس
تذكر	ربط وتفسير ميل الخط القاطع والخط المماس	138	63	السابع
تذكر	ايجاد المشتقة لدالة عند نقطة معينة	147	64	السابع
استخدام المعلومات والمفاهيم + تفكير موسع	فهم العلاقة بين الاتصال والاشتقاق	153	73-65	الثامن + التاسع
استخدام المعلومات والمفاهيم + تفكير موسع	استخدام قوانين التفاضل والمشتقات العليا في حل المشكلات الحياتية	163	77-74	العاشر
تفكير موسع	استخدام قوانين التفاضل والمشتقات العليا في حل المشكلات الحياتية	163	82-78	الحادي عشر
استخدام المعلومات والمفاهيم	ايجاد مشتق معكوس دالة باستخدام قاعدة السلسلة	178	88-83	الثاني عشر
استخدام المعلومات والمفاهيم + تفكير استراتيجي موسع	تطبيق قاعدة السلسلة في الاشتقاق	179	104-89	الثالث عشر+الرابع عشر
استخدام المعلومات والمفاهيم	ايجاد مشتق الدوال المثلثية باستخدام قواعد التفاضل	186	110-105	الرابع عشر
استخدام المعلومات والمفاهيم + تفكير استراتيجي موسع	ايجاد مشتق الدوال اللوغاريتمية الطبيعية	196	115-111	الرابع عشر
استخدام المعلومات والمفاهيم + تفكير استراتيجي موسع	ايجاد مشتقات الدوال الأسية	195	125-116	الرابع عشر
استخدام المعلومات والمفاهيم	استخدام الاشتقاق الضمني لايجاد مشتقات الدوال المثلثية العكسية	206	131-126	الرابع عشر
استخدام المعلومات والمفاهيم	فهم نظرية رول واستخدامها في التطبيقات	216	132	الخامس عشر
استخدام المعلومات والمفاهيم	تعلم نظرية القيمة المتوسطة واستخدامها في التطبيقات	221		السادس عشر

	القسم المقالي				
نوع المهارة	ناتج التعلم	رقم الصفحة في الكتاب	أرقام الاسئلة في الحقيبة	رقم السوال	
تذكر + استخدام المعلومات والمفاهيم	البحث عن اتصال دالة عند نقطة ما	98	3-1	السابع عشر	
استخدام المعلومات والمفاهيم	ايجاد النهايات التي تؤول الى اللانهاية والنهايات عند اللانهاية	108	7-4	الثامن عشر	
استخدام المعلومات والمفاهيم + تفكير استراتيجي موسع	تطبيقات حياتية على قاعدة ضرب المشتقات	171	12-8	الثامن عشر	
استخدام المعلومات والمفاهيم	حل المشكلات الحياتية باستخدام مشتقات الدوال الأسية واللوغاريتمية	196	20-13	التاسع عشر + العشرون	
تفكير استراتيجي موسع	ايجاد المشتقات للعلاقات الضمنية	201	21	الحادي والعشرون	
استخدام المعلومات والمفاهيم + تفكير استراتيجي موسع	استخدام الاشتقاق الضمني لايجاد مشتقات الدوال المثلثية العكسية	206	عدد الاسئلة الفرعية 8	الثاني والعشرون	
استخدام المعلومات والمفاهيم + تفكير استراتيجي موسع	التعرف على نظرية القيمة المتوسطة واستخدامها في التطبيقات	221	عدد الاسئلة الفرعية 6	الثالث والعشرون	

السؤال الأول: في التمارين السنة القادمة قدر طول المنحني y=f(x) في الفترة المحددة باستخدام y=f(x) مستقيمة ثم خمن الطول الفعلي للمنحني

ملاحظة هامة: عند طلب تخمين أو قيمة تقريبية تعتبر اي اجابة قريبة من الاجابة الحقيقية بمثابة اجابة مقبولة. وفي الاختيار من متعدد نختار اقرب اجابة للاجابة الحقيقية من بين الاجابات

		f(x)=cc	$\cos x, 0 \le x \le \pi/2$ -1
1.9	3.4	3.9	0.1

	aah	$f(x) = \sin x$	$\ln x, 0 \le x \le \pi/2 -2$
0.1	1.9	3.9	كل ماسبق خاطئ

	2026	$f(x) = \sqrt{x}$	$x + 1, 0 \le x \le 3$ -3
0.1	1.9	3.2	كل ماسبق خاطئ

	2/1/2	f(x) =	$1/x, 1 \le x \le 2$	-4
4	2.9	0.01	1.1	

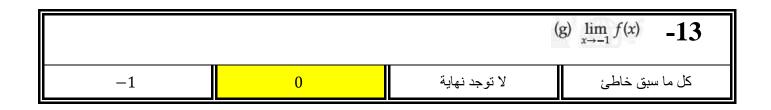
		$f(x)=x^2$	$+1, -2 \le x \le 2$ -5
9.1	0.1	1.9	كل ماسبق خاطئ

		$f(x)=x^3$	$+2, -1 \le x \le 1$ -6
7	3	0.1	كل ماسبق خاطئ

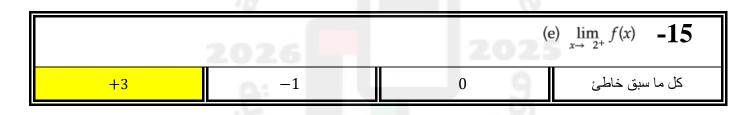
السوال الثاني: في التمارين القادمة انظر للتمثيل البياني جيدا ثم أوجد كل نهاية من النهايات:

			(a) $\lim_{x \to 0^{-}} f(x)$ -7
-2	+2	0	+1
	nah	J.Co.	

	The same		(b) $\lim_{x \to 0^+} f(x)$ -8
-2	+2	0	+1


	:E:	يق ا	(c) $\lim_{x\to 0} f(x)$ -9
-2	+2	لا توجد نهاية	كل ما سبق خاطئ
	9/1/2	مانمار	

			(d) $\lim_{x \to -2^{-}} f(x)$ -10
+2	-2	0	كل ما سبق خاطئ


			(e) $\lim_{x \to -2^+} f(x)$ -11
+2	-2	0	كل ما سبق خاطئ

		(f) $\lim_{x \to -2} f(x) \qquad -12$
+2	-2	لا توجد نهاية	كل ما سبق خاطئ

	641	Jiell	(f) $\lim_{x\to 2} f(x)$ -16
+3	-1	لا توجد نهاية	كل ما سبق خاطئ

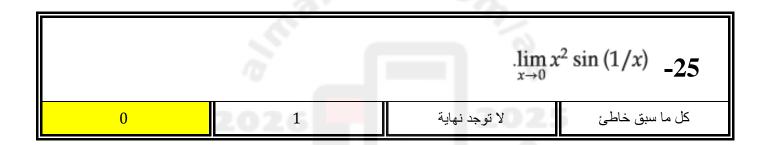
السؤال الثالث: أوجد النهاية المشار اليها ان وجدت:

	$\lim_{x\to 2} f(x),$ حيث	$f(x) = \begin{cases} 2x & , \\ x^2 & , \end{cases}$	$ \begin{array}{ll} x < 2 & -17 \\ x \ge 2 \end{array} $
0	4	لا توجد نهاية	كل ما سبق خاطئ

$$\lim_{x \to -1} f(x)$$
, حیث $f(x) = \begin{cases} x^2 + 1 & , & x < -1 \\ 3x + 1 & , & x \ge -1 \end{cases}$ حیث کل ما سبق خاطئ $f(x) = \begin{cases} x^2 + 1 & , & x < -1 \\ 3x + 1 & , & x \ge -1 \end{cases}$ کل ما سبق خاطئ $f(x) = \begin{cases} x^2 + 1 & , & x < -1 \\ 3x + 1 & , & x \ge -1 \end{cases}$ کل ما سبق خاطئ

$$\lim_{x \to -1} f(x),$$
 حیث $f(x) = \begin{cases} 2x+1 &, & x < -1 \\ 3 &, & -1 \le x \le 1 \\ 2x+1 &, & x > 1 \end{cases}$ حیث -19

$$\lim_{x \to 1} f(x)$$
, حیث $f(x) = \begin{cases} 2x+1 &, & x < -1 \\ 3 &, & -1 \le x \le 1 \\ 2x+1 &, & x > 1 \end{cases}$ حیث $f(x) = \begin{cases} 2x+1 &, & x < -1 \\ 3 &, & -1 \le x \le 1 \end{cases}$ کل ما سبق خاطئ $f(x) = \begin{cases} 2x+1 &, & x < -1 \\ 3 &, & -1 \le x \le 1 \end{cases}$ کل ما سبق خاطئ $f(x) = \begin{cases} 2x+1 &, & x < -1 \\ 3 &, & -1 \le x \le 1 \end{cases}$ کل ما سبق خاطئ


	5/1/5	$\lim_{h\to 0}\frac{(2}{h}$	$\frac{(h^2-4)^2-4}{h}$ -21
0	4	لا توجد نهاية	کل ما سبق خاطئ

		$\lim_{h\to 0}\frac{(1-1)^{n+1}}{n}$	$\frac{(1+h)^3-1}{h}$ -22
3	1	لا توجد نهاية	كل ما سبق خاطئ

		$\lim_{x\to 2}\frac{\mathrm{si}}{}$	$\frac{n(x^2-4)}{x^2-4} -23$
0	1	لا توجد نهاية	كل ما سبق خاطئ

			$\lim_{x\to 0} \frac{\tan x}{5x} - 24$
$\frac{1}{5}$	1	لا توجد نهاية	كل ما سبق خاطئ

		$\lim_{x\to 0} x^2$	sec (1/x) -26
0	1	لا توجد نهاية	كل ما سبق خاطئ

		$\lim_{x\to 0^+} [\sqrt{x} c c$	$\cos^2(1/x)$] -27
0	1	لا توجد نهاية	كل ما سبق خاطئ

	$\lim_{x\to 0} x^2 f(x)$	ة محدودة عندئذ	28- بفرض f دال
0	1	لا توجد نهاية	کل ما سبق خاطئ

السؤال الرابع: في كل من التمارين القادمة حدد الفترات التي تكون عندها f متصلة

		f	$x) = \sqrt{x+3} - 29$
$(-\infty, +\infty)$	(3,+∞)	[3,+∞)	کل ما سبق خاطئ

		f	$(x) = \sqrt{x^2 - 4} - 30$
(-∞,2] ∪ [2,+∞)	$(-\infty,2) \cup (2,+\infty)$	[-2,+2]	کل ما سبق خاطئ

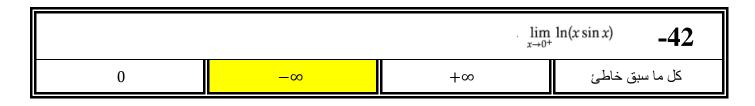
$f(x) = \sqrt[3]{x + 1}$		$=\sqrt[3]{x+2}$ -31	
(−∞,+∞)	[2,+∞)	[−2,+∞)	کل ما سبق خاطئ

		f	$f(x) = \ln(\sin x) -34$
$\sin x \ge 0$	$(0,\pi)+2\pi k$	$(0,\pi)$	کل ما سبق خاطئ

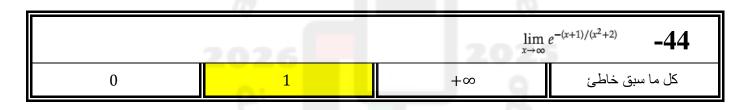
		f(x) =	$\sin^{-1}(x+2)$ -35
$(-\infty, +\infty)$	(-3, -1)	[-3, -1]	كل ما سبق خاطئ

		f(x)	$= \frac{\ln(x^2 - 1)}{\sqrt{x^2 - 2x}} - 36$
$(-\infty,1) \cup (2,+\infty)$	$(-\infty,1) \cup (1,+\infty)$	$(-\infty,0) \cup (2,+\infty)$	كل ما سبق خاطئ

	nat	ıj.co	
		ة المشار اليها:	لسؤال الخامس: أوجد النهاي
	2026	$\lim_{x\to\infty}\frac{1}{3}$	$\frac{x^2 + 3x - 2}{x^2 + 4x - 1}$ -37
-∞	0	$\frac{1}{3}$	كل ما سبق خاطئ


	6/1.	$\lim_{x\to\infty}\frac{1}{4}$	$\frac{2x^2 - x + 1}{x^2 - 3x - 1} \qquad -38$
+∞	$\frac{1}{2}$	0	کل ما سبق خاطئ

			$\lim_{\to -\infty} \frac{-x}{\sqrt{4+x^2}} -39$
1	0	+∞	كل ما سبق خاطئ


		$\lim_{x\to\infty} \frac{1}{x}$	$\frac{2x^2 - 1}{4x^3 - 5x - 1} \qquad -40$
0	1	+∞	کل ما سبق خاطئ

		$\lim_{x\to\infty}$ lim	$\ln\left(\frac{x^2+1}{x-3}\right) \qquad -41$
0	1	+∞	كل ما سبق خاطئ

	461.	$\lim_{x \to \infty}$	cot ⁻¹ x -45
0	1	+∞	كل ما سبق خاطئ

		lim s	$\sec^{-1} \frac{x^2 + 1}{x + 1}$ -46
0	$\frac{\pi}{2}$	+∞	كل ما سبق خاطئ

		$\lim_{x\to 0}$	$\sin(e^{-1/x^2})$ -47
0	-∞	+∞	كل ما سبق خاطئ

		1.	$\lim_{n\to\infty} \sin(\tan^{-1} x) -48$
0	1	+∞	کل ما سبق خاطئ

			$\lim_{x\to\pi/2}e^{-\tan x} \qquad -49$
0	+∞	غير موجودة	كل ما سبق خاطئ

	aal	li.co l	$\lim_{x\to 0^+} \tan^{-1}(\ln x)$ -50
0	+∞	$-\frac{\pi}{2}$	كل ما سبق خاطئ

السؤال السادس: في التمارين القادمة عين خطوط التقارب الأفقية والرأسية ثم اختر الاجابة الصحيحة

$$f(x)=rac{x}{4-x^2}$$
 -51 کل ماسبق خاطئ لا يحوي خطوط تقارب $x=0$ مقارب افقي کل ماسبق خاطئ

$$f(x) = rac{x^2}{4-x^2}$$
 -52 كل ماسبق خاطئ لا يحوي خطوط تقارب $x=4$ مقارب افقي

		f	$(x) = \frac{x}{\sqrt{4 + x^2}} -53$
مقارب افقي $y=0$	لا يوجد مقارب رأسي	لا يحوي خطوط تقارب	كل ماسبق خاطئ

$$f(x) = \frac{x}{\sqrt{4 - x^2}} - 54$$

مقارب افقي y=-1

مقارب رأسي x=4

لا يحوي خطوط تقارب

كل ماسبق خاطئ

$$f(x) = \frac{3x^2 + 1}{x^2 - 2x - 3} \cdot 55$$

مقارب افقي y = +3

مقارب رأسي $\chi=4$

لا يحوي خطوط تقارب

كل ماسبق خاطئ

$$f(x) = \frac{1 - x}{x^2 + x - 2} - 56$$

مقارب افقی y=-1

مقارب رأسي x=-2

لا يحوي خطوط تقارب

كل ماسبق خاطئ

2020

$$f(x) = 4 \tan^{-1} x - 157$$

مقارب افقي y=1

مقارب رأسي x=1

لا يوجد مقارب رأسي

كل ماسبق خاطئ

 $f(x) = \ln(1 - \cos x) \cdot 58$

مقارب افقي y=+3

مقارب رأسي x=0

لا يحوي خطوط تقارب

كل ماسبق خاطئ

 $y = \frac{x^3}{4 - x^2} - 59$

مقارب مائل y = -x

مقارب مائلy = x

لا يحوي خطوط تقارب

$$y = \frac{x^2 + 1}{x - 2}$$
 -60

مقارب مائل y = x + 2

مقارب مائل y = x - 2

لا يحوي خطوط تقارب

كل ماسبق خاطئ

$$y = \frac{x^4}{x^3 + 2}$$
 -61

مقارب مائل y = x + 2

مقارب مائل y = x

لا يحوي خطوط تقارب

كل ماسبق خاطئ

$$y = \frac{x^3}{x^2 + x - 4} \qquad -62$$

مقارب مائل y = x + 2

مقارب مائل y = x - 1

لا يحوي خطوط تقارب

كل ماسبق خاطئ

السؤال السابع: اختر الاجابة الصحيحة لكل سؤال:

ميل المماس ل
$$y=rac{x-1}{x+1}$$
 عند $y=x-1$ يساوي تقريبا -63

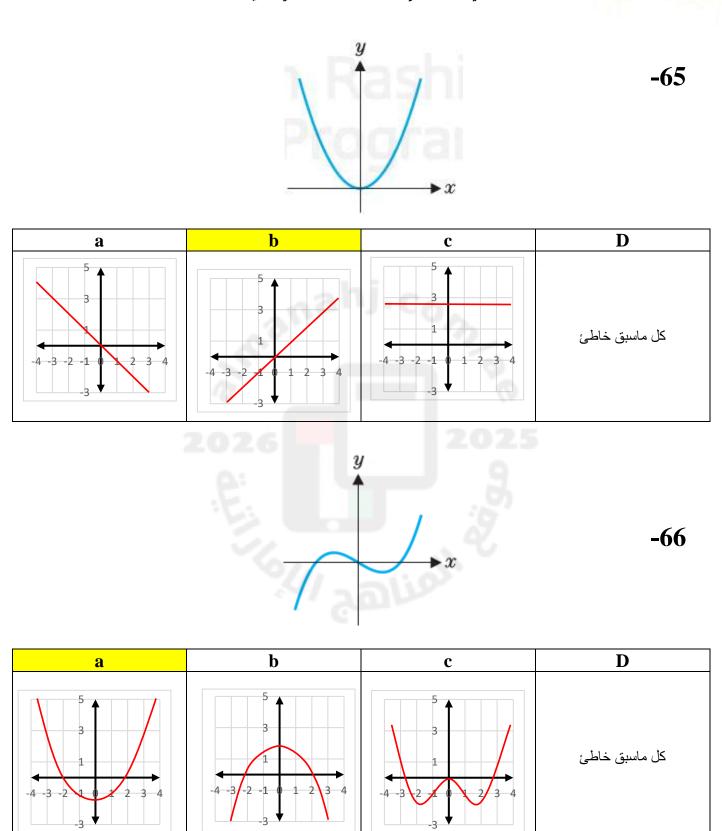
0

1

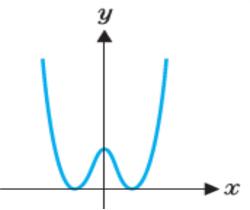
2

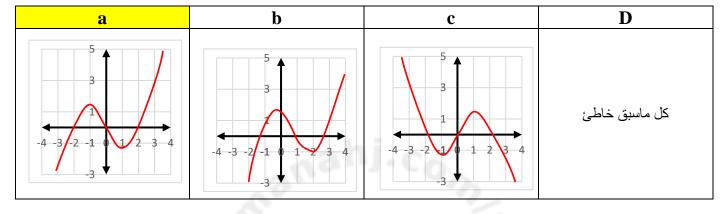
كل ماسبق خاطئ

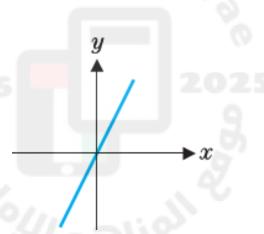
$$f'(x)$$
 إذا كانت $f(x) = \frac{1}{x} (x \neq 0)$. فأوجد -64

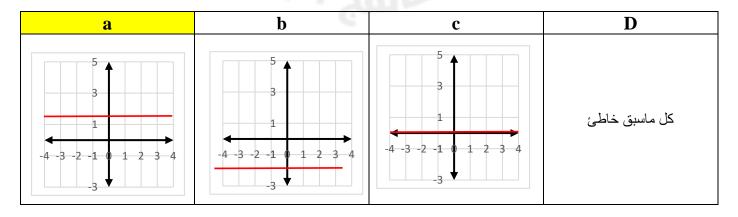

 $f'(x) = -\frac{1}{x^2}$

 $f'(x) = \frac{1}{x^2}$

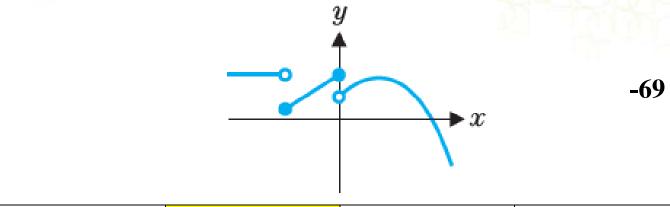

f'(x)=1

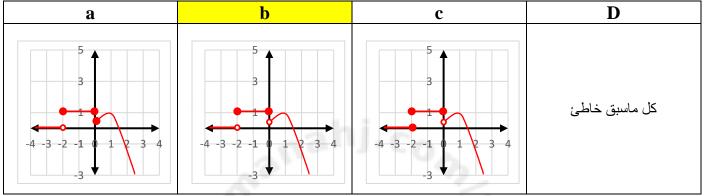

السؤال الثامن: ليكن لدينا التمثيل البياني للدالة f اختر التمثيل البياني الذي يمكن أن يعبر عن دالتها المشتقة:

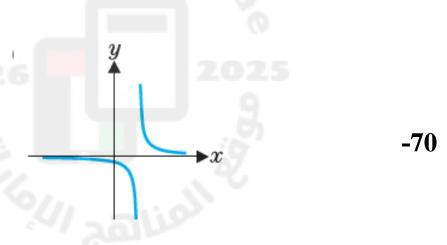


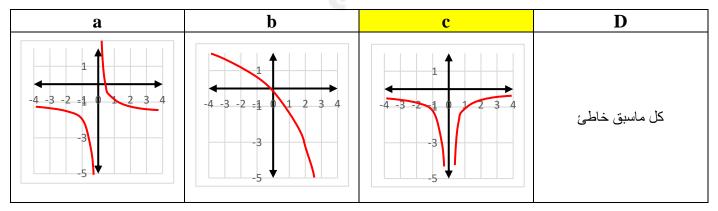


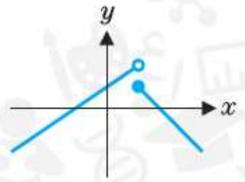
-67

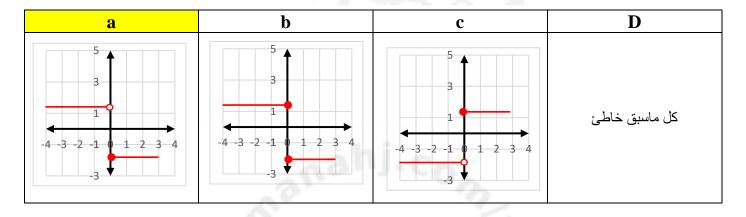


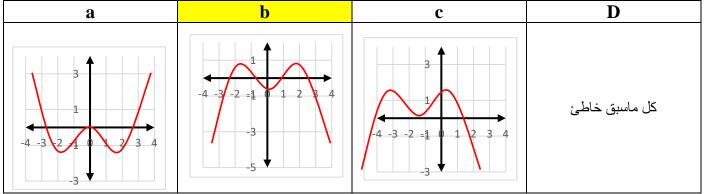



-68

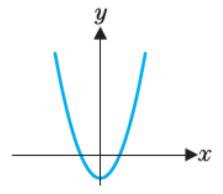




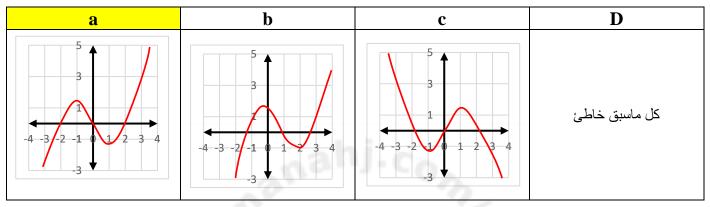




-71



: f المسؤال التاسع : ليكن لدينا التمثيل البياني للدالة f' اختر التمثيل البياني الذي يمكن أن يعبر عن الدالة



-73

السؤال العاشر: في الاسئلة القادمة عين دالة السرعة ودالة التسارع لدالة الموقع المعطاة

$$s(t) = -4.9t^2 + 12t - 3$$
 _-75 $v(t) = -9.8t + 12$ $a(t) = 0$ $a(t) = -4.9$

$$s(t)=\sqrt{t}+2t^2$$
 -76 $v(t)=\sqrt{t}+4t$ $a(t)=\sqrt{t}$ $a(t)=2\sqrt{t}$

$$s(t) = 10 - \frac{10}{t} - 77$$

$$v(t) = \frac{10}{t^2}$$

$$a(t) = -\frac{10}{t^2}$$

$$v(t) = -\frac{10}{t^2}$$

كل ماسبق خاطئ

السؤال الحادي عشر: اختر الاجابة الصحيحة لكل سؤال:

: هي
$$x$$
 التي يشكل عندها المماس على منحني $y = x^3 - 3x + 1$ زاوية قياسها 45° مع المحور x هي x

$$x = \frac{2\sqrt{3}}{3}$$

$$x = \frac{\sqrt{3}}{3}$$

$$x = \frac{3\sqrt{3}}{2}$$

كل ماسبق خاطئ

$$y=x^3-3x+1$$
 قيم $y=x^3$ التي يشكل عندها المماس على منحني $y=x^3-3x+1$ واوية قياسها $y=x^3-3x+1$ هي :

$$x = 0$$

$$x = \frac{2\sqrt{3}}{3}$$

$$x = \frac{\sqrt{3}}{3}$$

كل ماسبق خاطئ

: متوازیان هي
$$y = x^4 + x^3 + 3$$
 و $y = x^3 + 2x + 1$ متوازیان هي $x = x^4 + x^3 + 3$

$$x = \frac{1}{\sqrt{2}}$$

$$x = \frac{1}{\sqrt[3]{2}}$$

$$x = \frac{1}{\sqrt[2]{3}}$$

$$f(0)=-2\;, f'(0)=2\;, f''(0)=3\;$$
 هي الدرجة الثانية التي تحقق $f(0)=-2\;, f'(0)=2\;$

$$f(x) = \frac{3}{2}x^2 + 2x - 2$$

$$f(x) = x^2 + 2x - 2$$

$$f(x) = \frac{3}{2}x^2 + 2x - 2$$
 $f(x) = x^2 + 2x - 2$ $f(x) = \frac{3}{2}x^2 - 2x - 2$ کل ماسیق خاطئ

$$f(0)=0\,$$
 , $f'(0)=-1\,$, $f''(0)=1\,$ هي: التي تحقق $f(0)=0\,$, $f'(0)=0\,$

$$f(x) = \frac{1}{2}x^2 + 5x$$

$$f(x) = \frac{1}{2}x^2 - x$$

$$f(x) = \frac{1}{2}x^2 + 5x - 1$$

السؤال الثاني عشر: لتكن الدالة g معكوس الدالة f عندئذ g'(a) لكل دالة مما يلي هو:

$$f(x) = x^3 + 4x - 1, a = -1$$
 -83

$$g'(-1) = \frac{1}{2}$$

$$\boldsymbol{g}'(-1) = -\frac{1}{2}$$

$$g'(-1) = \frac{1}{4}$$

كل ماسبق خاطئ

$$f(x) = x^5 + 4x - 2$$
, $a = -2$ -84

$$\boldsymbol{g}'(-2) = \frac{1}{2}$$

$$g'(-2) = -\frac{1}{2}$$

$$g'(-2) = \frac{1}{4}$$

كل ماسبق خاطئ

$$f(x) = x^5 + 3x^3 + x$$
, $a = 5$ -85

$$\boldsymbol{g}'(5) = \frac{1}{2}$$

$$g'(5) = \frac{1}{15}$$

$$g'(5) = \frac{1}{12}$$

كل ماسبق خاطئ

$$f(x) = x^3 + 2x + 1, a = -2$$
 -86

$$g'(-2) = \frac{1}{2}$$

$$g'(-2) = -\frac{1}{2}$$

$$g'(-2) = \frac{1}{4}$$

كل ماسبق خاطئ

$$f(x) = \sqrt{x^3 + 2x + 4}, a = 2$$
 -87

$$g'(2) = 1$$

$$\boldsymbol{g}'(2) = 2$$

$$g'(2) = 3$$

كل ماسبق خاطئ

$$f(x) = \sqrt{x^5 + 4x^3 + 3x + 1}, a = 3$$
 -88

$$\boldsymbol{g}'(3) = \frac{1}{10}$$

$$\boldsymbol{g}'(3) = \frac{3}{10}$$

$$g^{'(3)} = -\frac{3}{10}$$

h(x) = f(g(x)): السؤال الثالث عشر: استخدم المعلومات المعطاة لحساب الدالة المشتقة للدالة:

f'(2)=3, f'(1)=4, g(1)=2, f(1)=3, g'(1)=-2, g'(3)=5 حيث h'(1)

h'(1) = -6

h'(1) = 6

h'(1)=0

كل ماسبق خاطئ

f'(3) = -3, f'(2) = -1, g(2) = 3, f(2) = 1, g'(1) = 2, g'(2) = 4

h'(2) = 1

h'(2) = 12

h'(2) = -12

كل ماسبق خاطئ

91- مشتق دالة فردية هي:

دالة زوجية وفردية بنفس الوقت

دالة فردية

دالة زوجية

كل ماسبق خاطئ

92- مشتق دالة فردية هي :

دالة زوجية وفردية بنفس الوقت

دالة فردية

دالة زوجية

كل ماسبق خاطئ

السؤال الرابع عشر: عين مشتق كل من الدوال:

 $f(x^2)$ -93

2xf'(x)

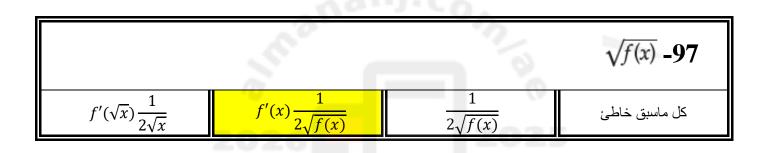
 $2xf'(x^2)$

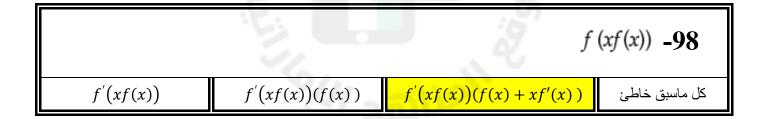
2f'(x)

كل ماسبق خاطئ

 $[f(x)]^2 -94$

2f(x)f'(x)


2f'(x)


f(x)f'(x)

			f (f(x)) -95
f'(f'(x))	f'(f(x))	f'(f(x))f'(x)	كل ماسبق خاطئ

 $f(\sqrt{x})$ **-96** $f'(\sqrt{x}) \frac{1}{2\sqrt{x}}$ $f'(\sqrt{x}) \frac{1}{\sqrt{x}}$ $f'(x) \frac{1}{2\sqrt{x}}$ $f'(x) \frac{1}{2\sqrt{x}}$ $f'(x) \frac{1}{2\sqrt{x}}$ $f'(x) \frac{1}{2\sqrt{x}}$

1/f(x) -100 $\left(-\frac{1}{f^2(x)}\right)f'\left(\frac{1}{x}\right) \qquad \left(\frac{1}{f^2(x)}\right)f'\left(\frac{1}{x}\right) \qquad \left(-\frac{1}{f^2(x)}\right)$ کل ماسبق خاطئ

		f	$\left(\frac{x}{f(x)}\right)$ -101
$f'\left(\frac{x}{f(x)}\right).\left(\frac{f(x)-xf'(x)}{f^2(x)}\right)$	$\frac{f(x) - xf'(x)}{f^2(x)}$	$f'\left(\frac{x}{f(x)}\right)\left(\frac{1}{f'(x)}\right)$	كل ماسبق خاطئ

			$1+f(x^2)$ -102
f'(2x)	$f'(x^2)$	$2xf'(x^2)$	كل ماسبق خاطئ
	ALL CO.	77.5	

	2026	$[1+f(x)]^2$ -103	
2f'(x)	2f(x)f'(x)	2(1+f(x))f'(x)	كل ماسبق خاطئ

	5/1/2	alial f	(1+f(x)) -104
$f'\big(1+f'(x)\big)$	f'(1+f(x))f'(x)	f'(1+f'(x))f'(x)	كل ماسبق خاطئ

		$f(t) = \sin \theta$	3t sec 3t -105
3sec ² (3t)	$3tsec^2(3t)$	3sec(3 <i>t</i>)	كل ماسبق خاطئ

$$f(t) = \sqrt{\cos 5t \sec 5t} - 106$$

 $rac{1}{2\sqrt{cos5tsec5t}}$ 0 $rac{-1}{2\sqrt{cos5tsec5t}}$ كل ماسبق خاطئ

$$f(w) = \frac{1}{\sin 4w} - 107$$

$$f(x) = 2\sin 2x \cos 2x - 108$$

 $\cos^2 2x - \sin^2 2x$ $\cos^2 2x - 4\sin^2 2x$ $\cos^2 2x + 4\sin^2 2x$ کل ماسبق خاطئ

$$f(x) = 4\sin^2 3x + 4\cos^2 3x - 109$$

كل ماسبق خاطئ 4 علام الله على الله على

$$f(x) = \tan \sqrt{x^2 + 1}$$
 -110

 $\frac{1}{\sqrt{x^2+1}}sec^2\sqrt{x^2+1}$ $\frac{x}{\sqrt{x^2+1}}sec\sqrt{x^2+1}$ $\frac{x}{\sqrt{x^2+1}}sec^2\sqrt{x^2+1}$ کل ماسبق خاطئ

ملاحظة هامة جداً (غير موجودة في الكتاب)

عند اشتقاق دالة قوة الاساس فيها متغير $_{\rm X}$ والاس عدد حقيقي نستخدم قاعدة والاساس فيها متغير $_{\rm X}$ و عند اشتقاق دالة قوة الاساس فيها عدد حقيقي والاس متغير $_{\rm X}$ نستخدم قاعدة وعند اشتقاق دالة قوة الاساس فيها متغير $_{\rm X}$ والاس متغير $_{\rm X}$ نستخدم قاعدة

ثم نكمل الاشتقاق بحسب الدالة الأسية النيبرية $u^w=e^{\ln u^w}=e^{w\ln u}$

$$f(x) = x^{\sin x} - 111$$

$$x^{sinx}\left(\frac{xcosx.\ln x + sinx}{x}\right)$$

$$\left(\frac{x\cos x \cdot \ln x + \sin x}{x}\right)$$

$$x^{sinx}\left(\frac{xcosx.\ln x - sinx}{x}\right)$$

$$f(x) = x^{4-x^2} - 112$$

$$x^{4-x^2} \left(-2x \ln x + (4-x^2) \frac{1}{x} \right)$$

$$x^{4-x^2} \left(-2\ln x + (4-x^2) \frac{1}{x} \right)$$

$$x^{4-x^2} \left(-2x \ln x + (4-x^2) \right)$$

$$f(x) = (\sin x)^x - 113$$

$$(sinx)^x(cotx + \ln(sinx))$$

$$(sinx)^{x}(xcotx + \ln(sinx))$$

$$(sinx)^x(xcotx + \ln x)$$

$$f(x) = (x^2)^{4x} - 114$$

$$(x^2)^{4x}(8+\ln x)$$

$$x^{4x}(8+8\ln x)$$

$$(x^2)^{4x}(8+8\ln x)$$

$$f(x) = x^{\sqrt{x}} -115$$

$$x^{\sqrt{x}} \left(\frac{\sqrt{x}}{x} + \frac{\ln x}{2\sqrt{x}} \right)$$

$$x^{\sqrt{x}} \left(\frac{\sqrt{x}}{x} + \frac{\ln x}{\sqrt{x}} \right)$$

$$x^{\sqrt{x}} \left(\frac{\sqrt{x}}{2x} + \frac{\ln x}{2\sqrt{x}} \right)$$

$$f(x) = x^3 e^x - 116$$

$$x^2e^x + x^3e^x$$

$$3x^2e^x + x^3e^x$$

$$3x^2 + e^x$$

$$f(t) = t + 2^t - 117$$

$$1 + t2^{t-1}$$

$$1 + 2^{t}$$

$$1 + 2^t \ln 2$$

$$f(t) = t4^{3t}$$
 -118

$$4^{3t} + t4^{3t} \ln 4$$

$$4^{3t} + 3t4^{3t} \ln 4$$

$$4^{3t} + 3t4^{3t}$$

$$f(x) = 2e^{4x+1} - 119$$

	8	_	4	t.	+	1
- 1	o	е	-	_	-	Ξ

$$4e^{4t+1}$$

$$8e^4$$

$$f(x) = (1/e)^x - 120$$

$$-\frac{1}{e^x}$$

$$e^{-x}$$

$$\frac{1}{e^x}$$

$$h(x) = (1/3)^{x^2} - 121$$

 $-2x\left(\frac{1}{x}\right)^x$ کل ماسبق خاطئ $2x\left(\frac{1}{x}\right)^x \ln 3$ کل ماسبق خاطئ $2x\left(\frac{1}{x}\right)^x$

 $f(u) = e^{u^2 + 4u} - 122$

 $f(w) = \frac{w}{e^{6w}} - 123$

 $\frac{1-w}{e^{6w}}$ $\frac{1+6w}{e^{6w}}$ $\frac{1-6w}{e^{6w}}$ کل ماسبق خاطئ

 $f(x) = \ln 2x - 124$

 $\frac{1}{2x}$ كل ماسبق خاطئ $\frac{2}{x}$ كل ماسبق خاطئ

 $f(x) = \ln \sqrt{8x} - 125$

 $\frac{1}{2\sqrt{x}}$ $\frac{8}{2\sqrt{8x}}$ $\frac{1}{2x}$ کل ماسبق خاطئ

$$f(x) = \sin^{-1}(x^3 + 1)$$
 -126

$$\frac{3x^2}{\sqrt{1-(x^3+1)^2}} \qquad \frac{3x^2}{\sqrt{1+(x^3+1)^2}}$$

$$\frac{-3x^2}{\sqrt{1-(x^3+1)^2}}$$

كل ماسبق خاطئ

$$f(x) = \sin^{-1}(\sqrt{x}) \quad -127$$

$$\frac{1}{\sqrt{x(1-x)}}$$

$$\frac{1}{2\sqrt{x(1-x)}}$$

$$\frac{1}{2\sqrt{x(1+x)}}$$

كل ماسبق خاطئ

$$f(x) = \cos^{-1}(2/x)$$
 -128

$$\frac{2}{\sqrt{x^2-4}}$$

$$\frac{2}{|x|\sqrt{x^2+4}}$$

$$\frac{2}{|x|\sqrt{x^2-4}}$$

كل ماسبق خاطئ

$$f(x) = \tan^{-1}(\sqrt{x}) - 129$$

$$\frac{1}{\sqrt{x}(1-x)}$$

$$\frac{1}{2\sqrt{x}(1+x)}$$

$$\frac{1}{2\sqrt{x}(1-x)}$$

كل ماسبق خاطئ

$$f(x) = \tan^{-1}(1/x) -130$$

$$-\frac{1}{x^2-1}$$

$$-\frac{1}{x^2+1}$$

$$\frac{1}{x^2+1}$$

f(x)	=	etan-	^{1}x	-131
f(x)		$e^{\cdot \cdot \cdot \cdot \cdot}$	~	-131

 $e^{tan^{-1}x}$

 $\frac{e^x}{1+x^2}$

 $\frac{e^{tan^{-1}x}}{1-x^2}$

كل ماسبق خاطئ

السؤال الخامس عشر:

$$[0,1]$$
 في الفترة $f(x)=x^3-3x^2+2x+2$: في الفترة ول للدالة : $f(x)=x^3-3x^2+2x+2$

1.58

0.42

0

كل ماسبق خاطئ

السؤال السادس عشر:

133- اختر العبارة الصحيحة:

$sin(a) \le a$	$ \sin(a) \le a$	$ \sin(a) \le a $	کل ماسبق خاطئ
	241 2	علامناه	

انتهت الأسئلة الموضوعية

قسم الأسئلة المقالية

السؤال السابع عشر: في التمارين الاتية حدد قيمة a, b التي تجعل الدالة f متصلة:

1-
$$f(x) = \begin{cases} \frac{2\sin x}{x} & , & x < 0 \\ a & , & x = 0 \\ b\cos x & , & x > 0 \end{cases}$$

The Lim
$$f(x) = \lim_{x \to 0^{-}} 25 \text{ in } x = 2.1 - 2$$

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} b \cos x = b$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} b \cos x = b$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} b \cos x = b$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} b \cos x = b$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} b \cos x = b$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} b \cos x = b$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} b \cos x = b$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} b \cos x = b$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} b \cos x = b$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} b \cos x = b$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} b \cos x = b$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} b \cos x = b$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} b \cos x = b$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} b \cos x = b$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} b \cos x = b$$

2-
$$f(x) = \begin{cases} ae^{x} + 1 & , & x < 0\\ \sin^{-1} \frac{x}{2} & , & 0 \le x \le 2\\ x^{2} - x + b & , & x > 2 \end{cases}$$

2
$$\lim_{x \to 0} f(x) = \lim_{x \to 0} (ae^{x} + 1) = (a + 1)$$

 $\lim_{x \to 0} f(x) = f(0) = \sin^{-1}(\frac{0}{2}) = 0$
 $\lim_{x \to 0} f(x) = f(2) = \sin^{-1}(\frac{2}{2}) = 0$
 $\lim_{x \to 0} f(x) = f(2) = \sin^{-1}(\frac{2}{2}) = 0$
 $\lim_{x \to 0} f(x) = \lim_{x \to 0} (x^{2} - x + b) = 0$
 $\lim_{x \to 0} f(x) = \lim_{x \to 0} (x^{2} - x + b) = 0$
 $\lim_{x \to 0} f(x) = \lim_{x \to 0} (x^{2} - x + b) = 0$
 $\lim_{x \to 0} f(x) = \lim_{x \to 0} (x^{2} - x + b) = 0$

3-
$$f(x) = \begin{cases} a(\tan^{-1} x + 2) &, & x < 0 \\ 2e^{bx} + 1 &, & 0 \le x \le 3 \\ \ln(x - 2) + x^2 &, & x > 3 \end{cases}$$

[3]
$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} a(\tan^{-1}x + 2)$$

$$= a(0 + 2) = 2a$$

$$\lim_{x \to 0^{+}} f(x) = f(0) = 2e + 1 = 3$$

$$2a = 3 \Rightarrow a = 3$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \left[\ln(x - 2) + x^{2} \right]$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \left[\ln(x - 2) + x^{2} \right]$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \left[\ln(x - 2) + x^{2} \right]$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \left[\ln(x - 2) + x^{2} \right]$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \left[\ln(x - 2) + x^{2} \right]$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \left[\ln(x - 2) + x^{2} \right]$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \left[\ln(x - 2) + x^{2} \right]$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \left[\ln(x - 2) + x^{2} \right]$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \left[\ln(x - 2) + x^{2} \right]$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \left[\ln(x - 2) + x^{2} \right]$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \left[\ln(x - 2) + x^{2} \right]$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \left[\ln(x - 2) + x^{2} \right]$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \left[\ln(x - 2) + x^{2} \right]$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \left[\ln(x - 2) + x^{2} \right]$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \left[\ln(x - 2) + x^{2} \right]$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \left[\ln(x - 2) + x^{2} \right]$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \left[\ln(x - 2) + x^{2} \right]$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \left[\ln(x - 2) + x^{2} \right]$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \left[\ln(x - 2) + x^{2} \right]$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \left[\ln(x - 2) + x^{2} \right]$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \left[\ln(x - 2) + x^{2} \right]$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \left[\ln(x - 2) + x^{2} \right]$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \left[\ln(x - 2) + x^{2} \right]$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \left[\ln(x - 2) + x^{2} \right]$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \left[\ln(x - 2) + x^{2} \right]$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \left[\ln(x - 2) + x^{2} \right]$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \left[\ln(x - 2) + x^{2} \right]$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \left[\ln(x - 2) + x^{2} \right]$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \left[\ln(x - 2) + x^{2} \right]$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \left[\ln(x - 2) + x^{2} \right]$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \left[\ln(x - 2) + x^{2} \right]$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \left[\ln(x - 2) + x^{$$

السؤال الثامن عشر: أجب عن الأسئلة الاتية:

لنفترض أنّ حجم بؤبؤ عين حيوان محدد يُعطى بالعلاقة f(x) (mm) (f(x)). حيثما يكون f(x) هو كثافة الضوء على بؤبؤ العين. إذا كان $f(x) = \frac{80x^{-0.3} + 60}{2x^{-0.3} + 5}$. فأوجد حجم بؤبؤ العين عندما لا يوجد ضوء وحجمه مع وجود كمية لانهائية من الضوء.

[4]
$$f(x) = \frac{80 \times + 60}{2 \times 3 + 15}$$
 $x = 0$ $5 \text{ or } 1991 \text{ leise}$

Lim $f(x) = \frac{80}{80}$
 $x = 0$ 60
 $x = 0$

Lim $f(x) = \frac{1}{20}$
 $x = 0$
 $x = 0$

$$F(x) = \frac{80 \times + 60}{8 \times 0.3 + 15}$$

$$x = 0 \quad \text{Col} \quad \text{Sop} \quad \text{Apply losis}$$

$$\lim_{x \to 0} f(x) = \frac{\infty}{200}$$

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{1}{200} = \lim_{x$$

$\lim_{x \to \infty} f(x) = 2$ و $\lim_{x \to 0^+} f(x) = 8$ و $\lim_{x \to 0} f(x) = 8$ و $\lim_{x \to \infty} f(x) = 2$ و $\lim_{x \to 0} f(x) = 3$

 $v(t) = -\sqrt{\frac{32}{k}} \frac{V(t)}{1 - e^{-2t\sqrt{32k}}}$ بالعلاقة $v(t) = -\sqrt{\frac{32}{k}} \frac{1 - e^{-2t\sqrt{32k}}}{1 + e^{-2t\sqrt{32k}}}$ بالعلاقة بعد القفز أوجد أقصى سرعة $v(t) = -\sqrt{\frac{32}{k}} \frac{1 - e^{-2t\sqrt{32k}}}{1 + e^{-2t\sqrt{32k}}}$ أقصى سرعة v(t) = 0.00128 و v(t) = 0.00064 بأي عامل يتوجب على لاعب القفز الحر تغيير قيمة v(t) = 0.00128 النصف أقصى سرعة إلى النصف ألدم

7 tomas cies acom GROS
t-1+00 = 0 V cost issis
$V = \lim_{t \to +\infty} \frac{-2t\sqrt{32k}}{k} = -\sqrt{\frac{32}{k}} \frac{1-0}{1+0}$
$V = -\sqrt{\frac{32}{k}}$
$k = 0.00064 \Rightarrow V = -\sqrt{50000}$ $V \approx -223.6$
Joi co k = 0.00128 => V = -√25000: V ≈ - 158.1
$V' = \frac{1}{2}V \Rightarrow V' = -\frac{\sqrt{32}}{\sqrt{2}} \text{ (if in)}$ $V' = \frac{1}{2}V \Rightarrow \sqrt{\frac{32}{k'}} = -\frac{1}{2}\sqrt{\frac{32}{k'}}$ $\frac{32}{\sqrt{2}} = \frac{1}{4} \cdot \frac{32}{\sqrt{2}} \Rightarrow \sqrt{\frac{32}{2}} \Rightarrow \sqrt{\frac{32}{2}} = \frac{1}{4} \cdot \frac{32}{\sqrt{2}} \Rightarrow \sqrt{\frac{32}{2}} \Rightarrow \frac{3$
$\frac{32}{k'} = \frac{4 \cdot 32}{k} \Rightarrow k' = 4k$

B a jest Quantitand jes
P ; pl Price sell ; s.
$\Leftrightarrow P'(t) = 0.03 Revenues $
$R(t) = Q(t) \cdot P(t) \cdot \text{olxable} = \text{olyable}$
$R'(t) = Q'(t) \cdot P(t) + P'(t) \cdot Q(t)$
= -0.04 Q(t) P(t) + 0.03 P(t) Q(t) (5) je dele 21 pl
R'(t) = (-0.04 + 0.03) p(t). O(t)
E Sine P(t) Out, cioqui
R'(t) = -0.01 R(t)
المال الله على الناقل أوالا تفاق

9- كما في التمرين 25، افترض أنّ الكميّة المبيعة تنخفض بمعدّل 4%. فما المعدّل الذي يجب زيادة السّعر به للحفاظ على الإيراد ثابتًا؟

a'(t) =-0.04 (2(t)
$P'(t) = \propto P(t)$ $-\tilde{a} \mid 1 \mid R(t)\tilde{c} \mid s \mid G \mid \tilde{b} \mid \tilde{a} \mid \tilde{b} \mid \tilde$
R'(t) = -0.04 Q(t) P(t) + x P(t) Q(t)
R'(t) = R(t)(-0.04+x)
R'(t) = 0 (= C-10)
$R'(t) = 0$ =) $-0.04 + \alpha = 0$
= $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$

10- افترض أنّ سعر إحدى السّلع 20 AED للقطعة وقد بيعت 20,000 قطعة. فإذا كان السعر يزداد بمعدل AED 1.25 في العام الواحد وتزداد الكمية المبيعة بمعدّل 2000 قطعة في العام الواحد، فبأي معدل سيزداد الإيراد؟

[P]
$$(x, y) : P(t) = 20, P'(t) = 1.25$$

$$Q(t) = 20000, Q'(t) = 2000$$

$$R'(t) : Q'(t) P(t) + P'(t) Q(t)$$

$$= 2000 \times 20 + 1.25 \times 20000$$

$$= 65000 Rs$$

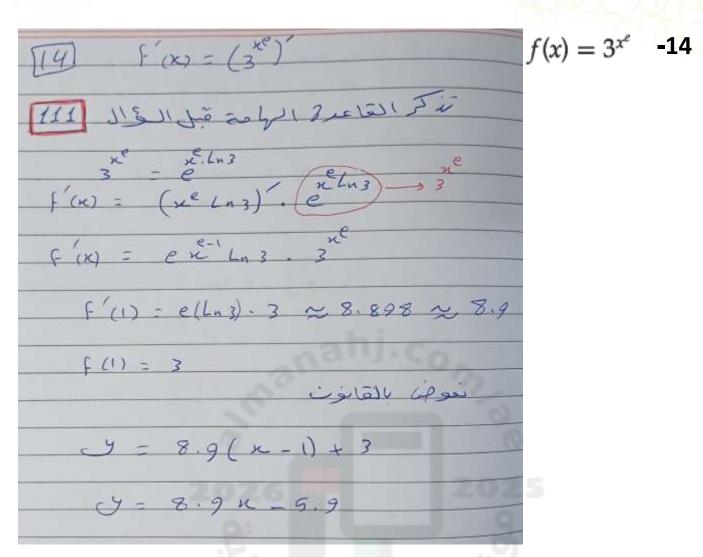
11- افترض أنّ سعر القطعة 14 AED، وأنّه قد بيعت 12,000 قطعة قطعة. تريد الشركة زيادة الكميّة المبيعة بمقدار 1200 قطعة في العام مع زيادة الإيراد بمقدار 20,000 AED في العام. فما المعدّل الذي يتعيّن زيادة السّعر به لتحقيق هذين الهدفين؟

-12 تُضرب كرة بيسبول كتلتها $0.15~{
m kg}$ وسرعتها $0.15~{
m kg}$ بمضرب بيسبول كتلته $m~{
m kg}$ وبسرعة $0.15~{
m kg}$ بعكس اتجاه حركة الكرة). بعد الاصطدام، بلغت السرعة الابتدائية للكرة u(m)>0 برهن أنّ $u(m)=\frac{82.5m-6.75}{m+0.15}~{
m m/s}$

$12 U(m) = \frac{82.5 m - 6.75}{m + 0.15}$
u(m) = (82.5 m - 6. 75) (m + 0.15) - (m + 0.15) (82.5 m - 6%)
$= \frac{82.5(m+0.15)-1(82.5m-6.75)}{(m+0.15)^2}$
$= \frac{19.125}{(m+0.15)^2} > 0$
$-\frac{u'(1)}{(1+0.15)^2} \approx \frac{(4.46)}{(1+0.15)^2} \approx \frac{(4.46)}{(1.2)} = \frac{(9.125)^2}{(1.2+0.15)^2} \approx \frac{(0.49)^2}{(1.2+0.15)^2}$
عند ا زدیاد مزن اطهزی مجتدا ، 2.0
- 1 me lu je de lit 3 SVI ac 0 16

x=1 عند y=f(x) السؤال التاسع عشر : أوجد معادلة المماس لمنحنى

توضيح هام جدا حول طريقة حل الاسئلة القادمة


لايجاد معادلة المماس لمنحني دالة تذكر دوما أن ميل المماس يساوي قيمة المشتق عند فاصلة تلك النقطة

- f'(x) نوجد اولا
- ثم نوجد f'(a) وذلك بتعويض كل χ بالعدد a ضمن عبارة المشتق \checkmark
- $y-y_a=m(x-a)$ وهي نفس العبارة y=f'(a)(x-a)+f(a) : ثم نعوض بالعبارة $rac{1}{2}$
 - ✓ اخيرا نبسط العبارة من خلال النشر والاختزال

سنطبق ما سبق في التمارين القادمة

$$f(x) = 3e^{x^2}$$
 -13

$$f(x) = x^2 \ln x \quad -15$$

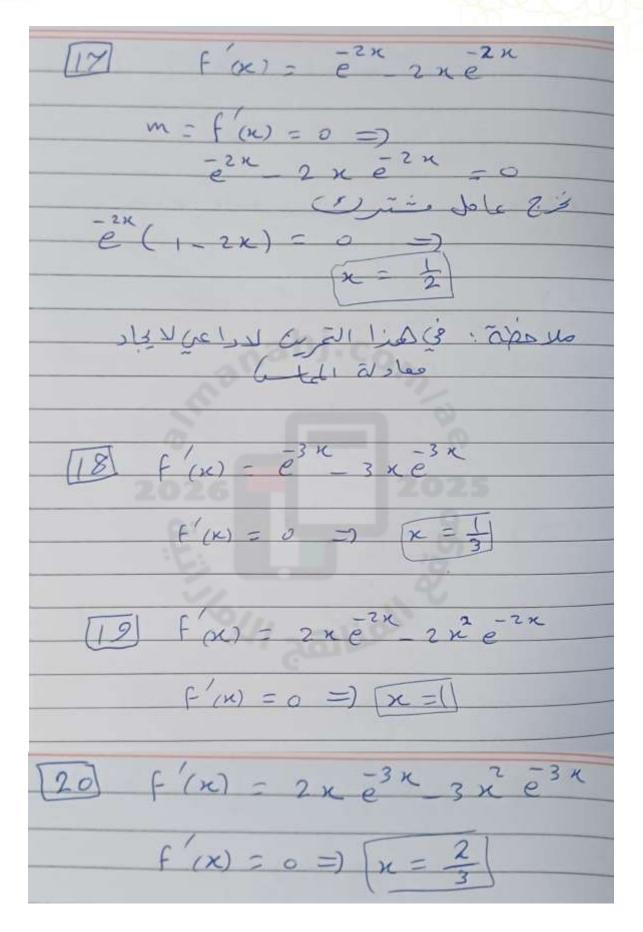
$$f(x) = 2 \ln x^3$$
 -16

السؤال العشرون: أوجد قيم x التي يكون عندها المماس افقيا لمنحني الدالة f في كل من التمارين التالية:

تذكر تذكر تذكر

m= an hetaزاوية المماس مع المحور الافقي وبعكس جهة دوران عقارب الساعة هي نفسها التي تحقق وm= an heta

سنطبق هذه القواعد على التمارين القادمة


$$f(x) = xe^{-2x} - 17$$

$$f(x) = xe^{-3x} - 18$$

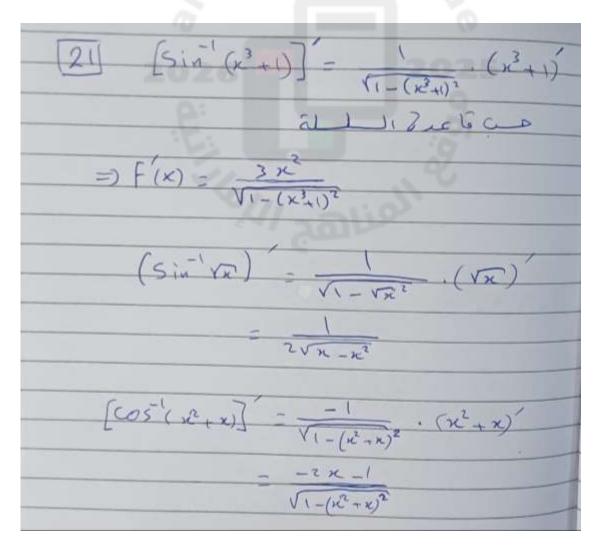
$$f(x) = x^2 e^{-2x} - 19$$

$$f(x) = x^2 e^{-3x}$$
 -20

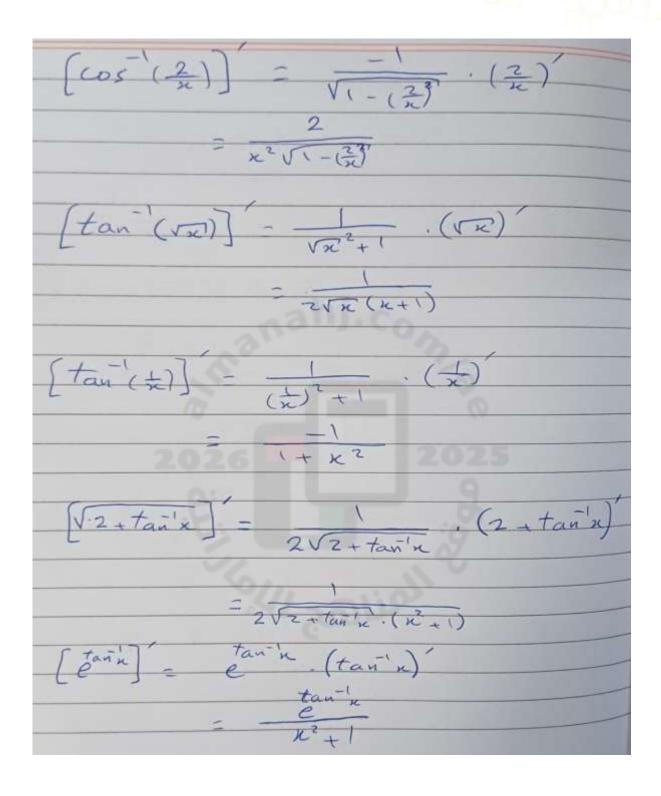
السؤال الحادي والعشرون:

$$y''(x)$$
 أوجد $y''(x)$ عند النقطة $y''(x)$ أوجد قيمة $y''(x)$ عند النقطة أوجد أوجد

مثال محلول في الكتاب صفحة 201


السؤال الثاني والعشرون: أوجد مشتق كل دالة من الدوال التالية:

(a)
$$f(x) = \sin^{-1}(x^3 + 1)$$
 (b) $f(x) = \sin^{-1}(\sqrt{x})$


(a)
$$f(x) = \cos^{-1}(x^2 + x)$$
 (b) $f(x) = \cos^{-1}(2/x)$

(a)
$$f(x) = \tan^{-1}(\sqrt{x})$$
 (b) $f(x) = \tan^{-1}(1/x)$

(a)
$$f(x) = \sqrt{2 + \tan^{-1} x}$$
 (b) $f(x) = e^{\tan^{-1} x}$

السؤال الثالث والعشرون: تحقق من فرضيات نظرية رول ونظرية القيمة المتوسطة، وجِدُ قيمة c الذي يجعل الاستنتاج الخاص بالنظريتين صحيحًا. اشرح الاستنتاج برسم تمثيل بياني.

1.
$$f(x) = x^2 + 1, [-2, 2]$$

2.
$$f(x) = x^2 + 1$$
, [0, 2]

3.
$$f(x) = x^3 + x^2$$
, [0, 1]

4.
$$f(x) = x^3 + x^2$$
, [-1, 1]

5.
$$f(x) = \sin x$$
, $[0, \pi/2]$

6.
$$f(x) = \sin x, [-\pi, 0]$$

العالثالث والعشرون
[-2,2] Kaleis (nj) 210 8 1/5 f(x) () (-2,2) 5/21 (rle citat x) culo.
$f(2) = 2^{2} = 5$, $f(-2) = 5$ f(2) = f(-2)
عدد عدد الفتر 3 [-2,2] كيت يفق €
f'(c) = 0 f'(x) = 2x = 2c = 0 = c = 0
(0.2) QUE XI ELE, [0,2] Q ale $f(x)$ [2] $f(0) = 1 + f(2) = 5$ $extends axel axe$
$\frac{-5-1}{2-0} = 2$ $f'(x) = 2x \Rightarrow f(c) = 2c$
$\frac{-)}{2} = 2 = 3 = 1$

(0,1) de (5 to 2 x 7 to 6 (0,1) de de f 3) F(c) = F(1) - F(0) = (2) $3c^{2}+2c=2$ 3sleb | ds=) $c=-1-\sqrt{3}$ (0,1) (1)C = -(+13 20.5 does (-41) che to ten w al to o [-41] our there is (4) F(-V = 0 + F(1) = 2 abject Total Take Centi $\frac{f(1) - f(-1)}{1 - (-1)} = \frac{2 - 0}{2} = 1$ c=-1. Ges C = 1 Jaão

(0, 1) de cita di, (0, 1) de aleo 2111	(5)
f(0) = 0 + f(=) = 1	
f(c) = cos (= f(\frac{\pi}{2}) - f(0)	
40sC - 2	
=) C = Cos (2)	
(-170) 40 C (-170) de ties 21 11	6
Sin(-TT) = 0 = Sin(0) = 0	
f(c)=0 OS (-Tro) co c rose	
f(x) = cosx	
F'(c) = cos C	
$\cos C = \alpha \Rightarrow C = -\frac{\pi}{2}$	
ملافظة تقرم قم آغرى لى هم مل المعادلة	
(-TT,0) Rising Wat (0,TT-)	

انتهت الأسئلة

مع تمنياتنا لكم بالنجاح والتفوق