حل اختبار نهائي وفق الهيكل الوزاري المسار النخبة

تم تحميل هذا الملف من موقع المناهج الإماراتية

موقع المناهج ← المناهج الإماراتية ← الصف الثاني عشر المتقدم ← رياضيات ← الفصل الأول ← ملفات متنوعة ← الملف

تاريخ إضافة الملف على موقع المناهج: 21:53:44 2025-11-23

ملفات اكتب للمعلم اكتب للطالب ا اختبارات الكترونية ا اختبارات ا حلول ا عروض بوربوينت ا أوراق عمل منهج انجليزي ا ملخصات وتقارير ا مذكرات وبنوك ا الامتحان النهائي ا للمدرس المزيد من مادة || رياضيات:

إعداد: طارق علي

التواصل الاجتماعي بحسب الصف الثاني عشر المتقدم

صفحة المناهج الإماراتية على فيسببوك

الرياضيات

اللغة الانجليزية

اللغة العربية

التربية الاسلامية

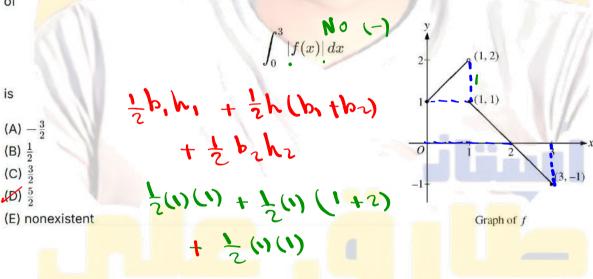
المواد على تلغرام

المزيد من الملفات بحسب الصف الثاني عشر المتقدم والمادة رياضيات في الفصل الأول	
حل اختبار نهائي وفق الهيكل الوزاري منهجي ريفيل وبريدج	1
حل تجميعة أسئلة وفق الهيكل الوزاري الجديد باللغتين العربية والانجليزية	2
نموذج تجريبي وفق الهيكل الوزاري الجديد للمنهجين بريدج وريفيل	3
التوقعات المرئية الامتحانات التجريبية وفق الهيكل الوزاري الجديد منهجي ريفيل وبريدج	4
التوقعات الذهبية وفق الهيكل الوزاري الجديد منهج ريفيل وبريدج	5

What is the area of the region in the first quadrant that is bounded by the graph of $y=2^x$, the

horizontal line y=4, and the y-axis?

$$\frac{y-4}{2} = \frac{1}{2}$$

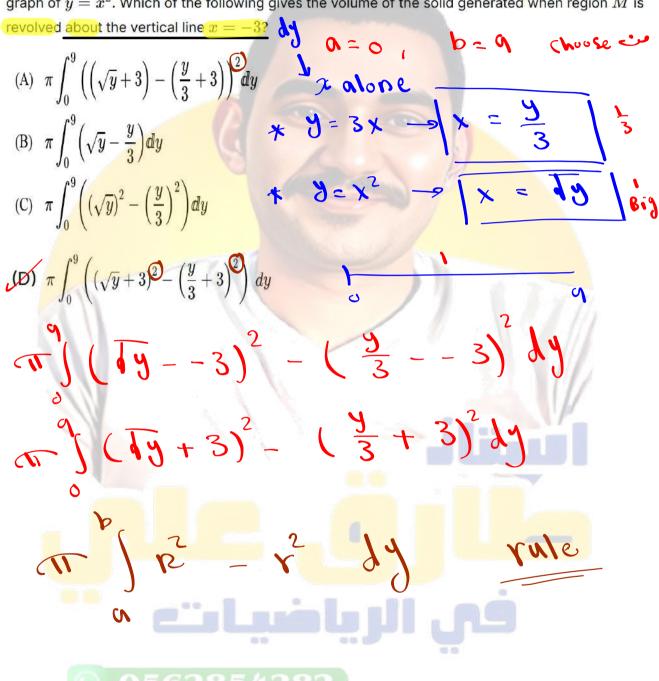

$$4A)8 - \frac{3}{\ln 2}$$

(B)
$$\frac{3}{\ln 2}$$
 (C) $\frac{22}{2}$

(D)
$$\frac{15}{\ln 2}$$

$$\frac{x}{x} = \frac{2}{x}$$

The graph of the function f consists of two line segments, as shown in the figure above. The value of


في الرياضيات

0562854282

⊞ mrtarekacademy.com **□ ② 1 ○** 037637703 **○** 0562854282

صف 12 نخبة - منصة طارق أكاديمي - Mr Tarek Ali

Let M be the region in the first quadrant bounded above by the graph of y=3x and below by the graph of $y=x^2$. Which of the following gives the volume of the solid generated when region M is

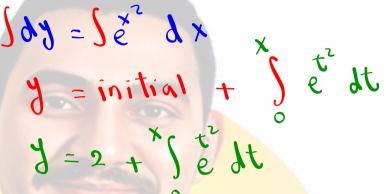
mrtarekacademy.com

Q 037637703

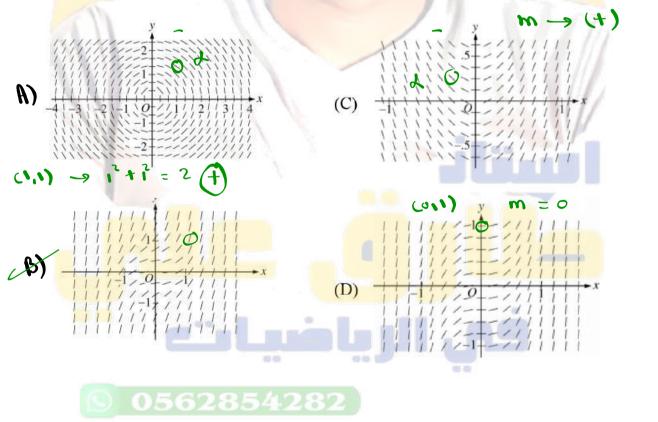
صف 12 نخبة - منصة طارق أكاديمي - Mr Tarek Ali سلسلة الطارق في الرياضيات ځ

If y=f(x) is a solution to the differential equation $\frac{dy}{dx}=e^{x^2}$ with the initial condition f(0)=2,

which of the following is true?


$$\text{(A) } f(x) = 1 + e^{x^2}$$

(B)
$$f(x)=2xe^{x^2}$$


(C)
$$f(x) = \int_1^x e^{t^2} dt$$

$$\text{LOS} f(x) = 2 + \int_0^x e^{t^2} dt$$

(E)
$$f(x) = 2 + \int_2^x e^{t^2} dt$$

Which of the following is a slope field for the differential equation $\frac{dy}{dx} = x^2 + y^2$?

mrtarekacademy.com

Q 037637703

سلسلة الطارق في الرياضيات عليه صف 12 نخبة - منصة طارق أكاديمي - Mr Tarek Ali

If
$$f'(x) = 3x^2 + 2x$$
 and $f(2) = 3$, then $f(1) =$

(A)
$$-10$$
 $f(H = \int 3x^2 + 2x \, dx$

$$(B)-7$$

(C) 10
$$F(x) = \frac{3x^3}{3} + \frac{2x^2}{2} + C$$

(D) 13
$$y(x) = y^3 + y^2 + c$$
 $y = 3$ $y = 2$ $y = 3$

$$C = 3 - 12 = \boxed{-9}$$

$$F(1) = 9^{3} + 9^{2} - 9 = \boxed{3} + 1^{2} - 9 = \boxed{-1}$$

What is the average value of y for the part of the curve $y = 3x - x^2$, which is the first quadrant?

(A)
$$-6$$

(B) -2
 $y = 0$
 $y = 0$
 $y = 0$
 $y = 0$

(B)
$$-2$$

(D) $\frac{9}{4}$

(E) $\frac{9}{2}$

$$\frac{1}{3-0}$$
 $^{3}\int 3x - x^{2} dx$

$$\frac{1}{80^{-6}} \int_{0}^{8} 3x - x^{2} dx - 9 - x^{2} + 3x = 0$$

$$\frac{1}{30^{-6}} \int_{0}^{3} 3x - x^{2} dx - x^{2} dx$$

$$x = 0$$

$$x = 3$$

صف 12 نخبة - منصة طارق أكاديمي - Mr Tarek Ali سلسلة الطارق في الرياضيات

t (hours)	4	7	12	15
R(t) (liters/hour)	6.5	6.2	5.9	5.6

$$\Delta x_1 = 7 - 4 = 3$$

$$\Delta x_2 = 12 - 7 = 5$$

$$\Delta x_3 = 15 - 12 = 3$$

A tank contains 50 liters of oil at time t=4 hours. Oil is being pumped into the tank at a rate R(t) where R(t) is measured in liters per hour, and t is measured in hours. Selected values of R(t) are given in the table above. Using a right Riemann sum with three subintervals and data from the table, what is the approximation of the number of liters of oil that are in the tank at time t = 15 hours?

- (A) 64.9
- (B) 68.2
- (e) 114.9
- (D) 116.6
- (E) 118.2

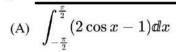
+3(56)

An object moves along a straight line so that at any time $t \ge 0$ its velocity is given by $v(t) = 2\cos(3t)$. What is the distance traveled by the object from t = 0 to the first time that it stops?

- (A) 0
- (B)

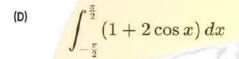
- (le)
- (D)

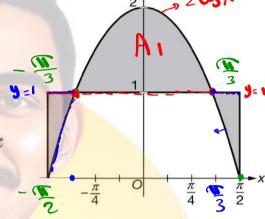
(E)


mrtarekacademy.com

- (5

037637703


صف 12 نخبة - منصة طارق أكاديمي - Mr Tarek Ali

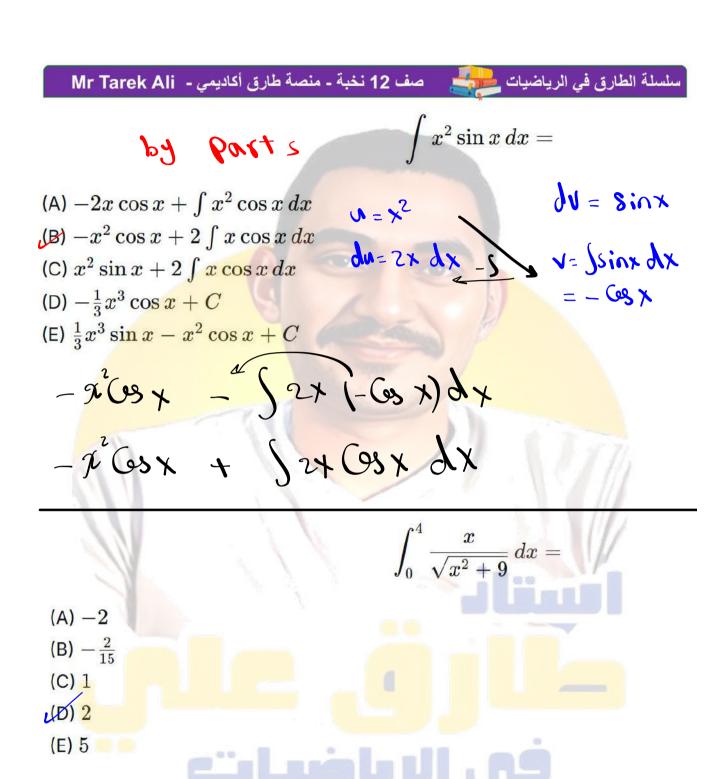

The figure above shows the graph of $y=2\cos x$ and the line y=1 for $-\frac{\pi}{2}\leq x\leq \frac{\pi}{2}$. Which of the following gives the sum of the areas of the shaded regions?

(B)
$$\int_{-\frac{\pi}{2}}^{-\frac{\pi}{3}} 2\cos x dx + \int_{-\frac{\pi}{2}}^{\frac{\pi}{3}} 1 dx + \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{2\cos x dx}{2}$$

Let y=f(x) be the solution to the differential equation $\frac{dy}{dx}=x(y+1)$ with initial condition f(2)=1. What is the approximation for f(3) obtained by using Euler's method, starting at x=2

with a step si	ze of 0.53	7 515	o 🧎 🗎 🗎	
	7h	2	2.5	3
(A) -1	019		3	
(B) 5		`	3	8
JC/8	m	2(111) =	2.5(3+1)	_
(D) 20		2(2) = 4	25(4)	
			= 10	
m . D %	new	4(0.5)+1	10 (0.5) + 3	
m.D7 +y,	8	= 3	= 8	
	056	2854282	- 0	

mrtarekacademy.com



037637703

صف 12 نخبة - منصة طارق أكاديمي - Mr Tarek Ali

$$(a+b)^2 = a^2 + 2ab + b^2 \int (x^2+1)^2 dx =$$

(A)
$$\frac{(x^2+1)^3}{3} + C$$

(B) $\frac{(x^2+1)^3}{6x} + C$

(C)
$$\left(\frac{x^3}{3} + x\right)^2 + C$$
 $\frac{x^5}{7} + \frac{x^5}{7} + C$

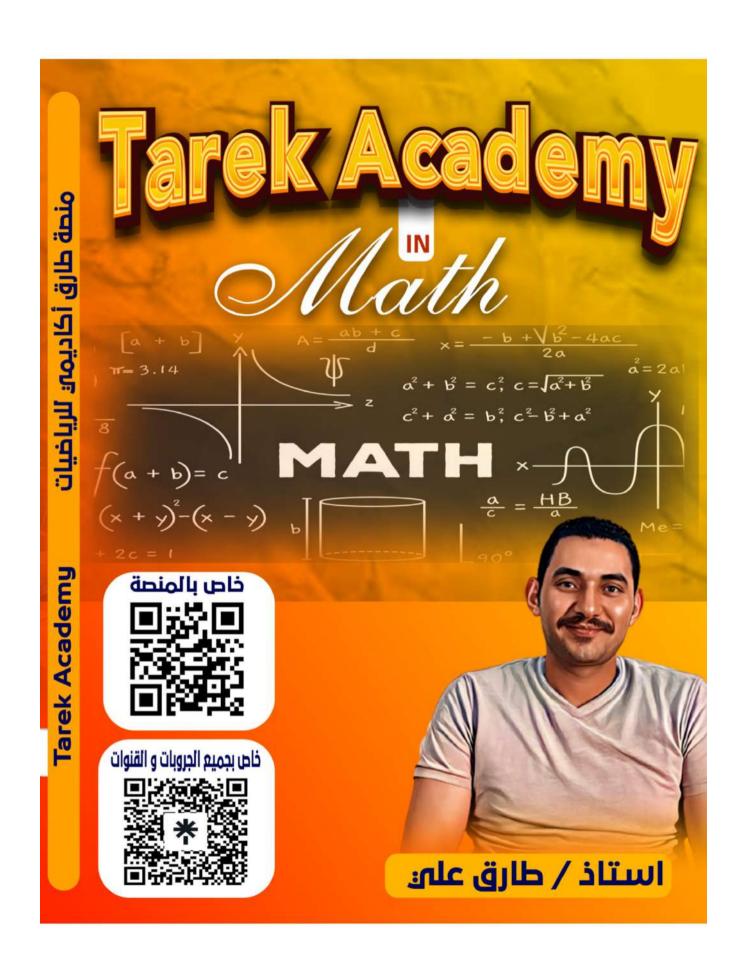
$$\begin{array}{c} \text{(D)} \ \frac{2x(x^2+1)^3}{3} + C \\ \text{(E)} \ \frac{x^5}{5} + \frac{2x^3}{3} + x + C \end{array}$$

If
$$f(x) = \int_0^{x^3} \cos(t^2) dt$$
, then $f'(\sqrt{\pi}) = \int_0^{x^3} \cos(t^2) dt$

(B)
$$\cos(\pi^3)$$

(C)
$$3\pi \cos \pi$$

$$\sqrt{D}$$
 $3\pi \cos(\pi^3)$



037637703

