

ملخص وتدريبات الوحدة 12 حالات المادة Matter of States باللغتين العربية والإنجليزية

تم تحميل هذا الملف من موقع المناهج الإماراتية

موقع المناهج ← المناهج الإماراتية ← الصف الثاني عشر المتقدم ← فيزياء ← الفصل الثاني ← ملفات متنوعة ← الملف

تاريخ إضافة الملف على موقع المناهج: 20-02-2026 12:23:10

ملفات اكتب للمعلم اكتب للطالب ا اختبارات الكترونية ا اختبارات ا حلول ا عروض بوربوينت ا أوراق عمل
منهج انجليزي ا ملخصات وتقارير ا مذكرة وبنوك ا الامتحان النهائي للدرس

المزيد من مادة
فيزياء:

إعداد: Ata Bani Luay

التواصل الاجتماعي بحسب الصف الثاني عشر المتقدم

صفحة المناهج
الإماراتية على
فيسبوك

الرياضيات

اللغة الانجليزية

اللغة العربية

التربيـة الاسلامـية

المـواد على تـلـغرـام

المزيد من الملفات بحسب الصف الثاني عشر المتقدم والمادة فيزياء في الفصل الثاني

ملخص وتدريبات الوحدة 11 الطاقة الحرارية Energy Thermal باللغتين العربية والإنجليزية

1

ملف مراجعة نهائية وحدة Energy Thermal ووحدة Matter of States وفق الهيكل منهج انسباير Inspire

2

تجميعة أسئلة اختبارات وزارة سابقة القسم الخامس

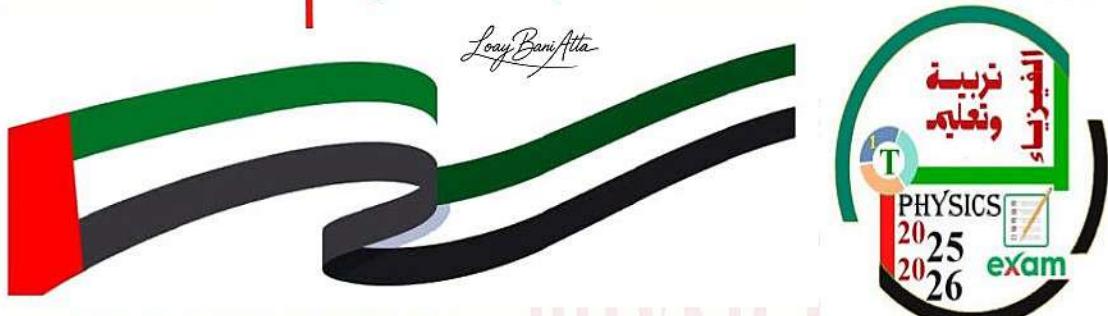
3

تجميعة أسئلة اختبارات وزارة سابقة القسم الرابع

4

تجميعة أسئلة اختبارات وزارة سابقة القسم الثالث

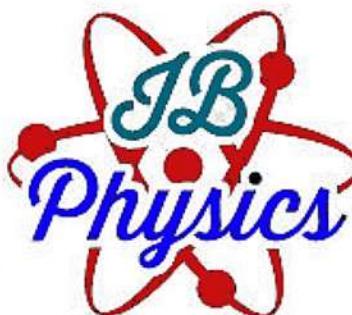
5


SECOND TRIMESTER
Inspire Physics

الفصل الدراسي الثاني
Inspire Physics

من المهارة الى الصدارة | طريقك الى التميز والتفوق

عام المجتمع
YEAR OF COMMUNITY
PEI UAE


Loay Bani Atta

States of Matter

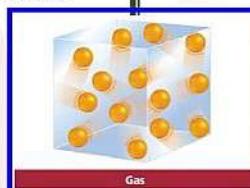
حالات المادة

20₂₅ 20₂₆
Inspire Physics

Loay Bani Atta

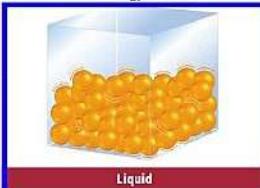
LUAY ATA 0505369567

States of matter

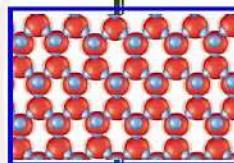

حالات المادة

States of matter

حالات المادة


1- Gas State

Gases do not have a fixed volume or shape. Therefore, they can spread far apart or contract to fill the container that they are in


2- Liquid state

Particles in the liquid state have less kinetic energy than in the gas state. Thus, the particles in the liquid state are less able to overcome their attractions to each other. The particles cling together, giving liquids a definite volume. The particles can slide past each other, allowing liquids to flow and take the shape of their container

3- Solid State

The type of geometric arrangement formed by a solid is important. Chemical and physical properties of solids often can be attributed to the type of geometric arrangement that the solid forms

1- حالة الغاز

الغازات ليس لها حجم ثابت ولا شكل ثابت. لذلك يمكنها أن تنتشر بعيداً أو تنكمش لملء الوعاء الذي توجد فيه.

Loay Bani Atta

2- الحالة السائلة

تمتلك الجسيمات في الحالة السائلة طاقة حرارية أقل مما في الحالة الغازية. لذلك تكون الجسيمات في الحالة السائلة أقل قدرة على التغلب على قوى التجاذب بينها. تتماسك الجسيمات معًا، مما يمنح السوائل حجمًا ثابتًا. ويمكن للجسيمات الانزلاق فوق بعضها البعض، مما يسمح للسوائل بالجريان واتخاذ شكل الوعاء الذي توجد فيه.

Loay Bani Atta

3- الحالة الصلبة

إن نوع الترتيب الهندسي الذي يتبعه الجسم الصلب يُعد أمراً مهماً. فكثير من الخصائص الكيميائية والفيزيائية للمواد الصلبة يمكن إرجاعها إلى نوع الترتيب الهندسي الذي يتبعه الصلب.

Loay Bani Atta

Compare between: Solid, Liquid and gas as in the table

فَارِنْ بَيْنَ الصَّلْبِ – السَّائِلُ – الْغَازُ كَمَا فِي الْجَدْوَلِ

	Solid	Liquid	Gas
shape			
volume			
flow			
Forces between particles			
compress			
Kinetic energy			

[1]

Which state of matter is the most common in the universe?

ما هي أكثر حالة للمادة شيوعاً في الكون؟

A	Solids	B	Gas
C	Liquid	D	Plasma

[2]

What are the four stages of matter in order from least kinetic energy to most kinetic energy?

ما هي حالات المادة الأربع مرتبة من الأقل طاقة حركية إلى الأعلى؟

A	Plasma, gas, liquid, solid	B	Solid, liquid, gas, plasma
C	Plasma, solid , gas, liquid	D	Solid, liquid, plasma, gas

SECTION 1 : Properties of Fluids

Fluids are materials that can flow and have no definite shape of their own (gas or a liquid).

- Both liquids and gases are considered fluids because they can flow and change shape
- Liquids have a definite volume; gases do not

خصائص الموائع

الموائع : هي مواد يمكنها الجريان وليس لها شكل ثابت خاص بها (سواء كانت غازاً أو سائلًا).

- يُعد كل من السوائل والغازات من الموائع لأنها تستطيع الجريان وتغيير شكلها.
- السوائل لها حجم ثابت، بينما الغازات ليس لها حجم ثابت.

Pressure

الضغط

Pressure is the perpendicular component of a force on a surface divided by the area of the surface

$$P = \frac{F}{A}$$

Pressure is a scalar.

the unit of pressure is the pascal (Pa) which is

$$(1\text{Pa}) = \frac{1\text{N}}{m^2}$$

One pascal is a very small amount of pressure thus the kilopascal (kPa), equal to 1000 Pa, is usually used

Atmospheric pressure at sea level is

$$1.01 \times 10^5 \text{ Pa}$$

الضغط هو المركبة العمودية للفوقة المؤثرة على سطح ما مقسومة على مساحة ذلك السطح

$$P = \frac{F}{A}$$

- الضغط كمية قياسية.
- وحدة الضغط هي الباسكال (Pa) ، حيث :

$$1(\text{Pa}) = \frac{1\text{N}}{m^2}$$

الباسكال وحدة صغيرة جدًا، لذلك يُستخدم غالباً الكيلوباسكال (kPa) ، وهو يساوي 1000 باسكال.

الضغط الجوي عند مستوى سطح البحر هو

$$1.01 \times 10^5 \text{ Pa}$$

Some Typical Pressures

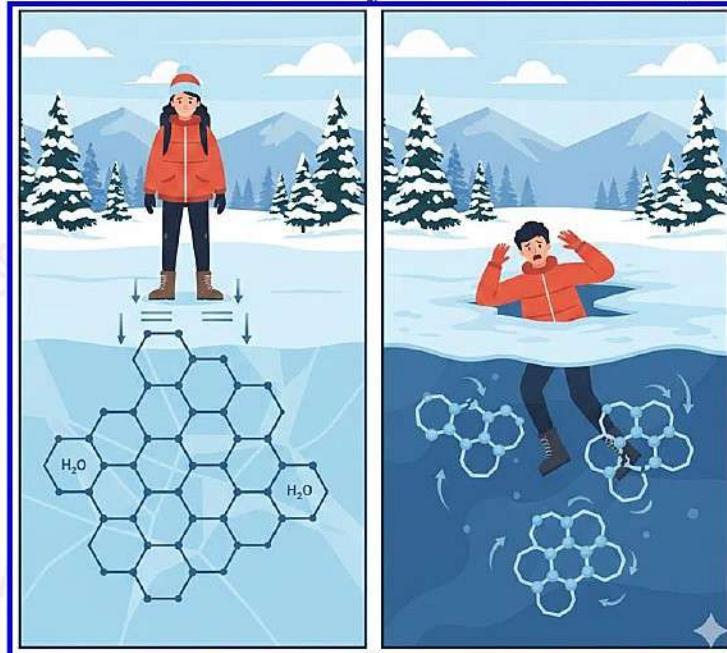
Location	Pressure (kPa)
The center of Earth	4×10^8
The deepest ocean trench	1.1×10^5
Standard atmosphere	1.01325×10^2
Blood pressure	1.6×10^1
Air pressure on top of Mt. Everest	3×10^1
The best vacuum	1×10^{-10}

Solids, liquids, and pressure

الصلبة والسوائل والضغط

Pressure: Created by your weight spread over your shoes.

Solid (Ice): Molecules are **locked** in a grid; they push back to support you

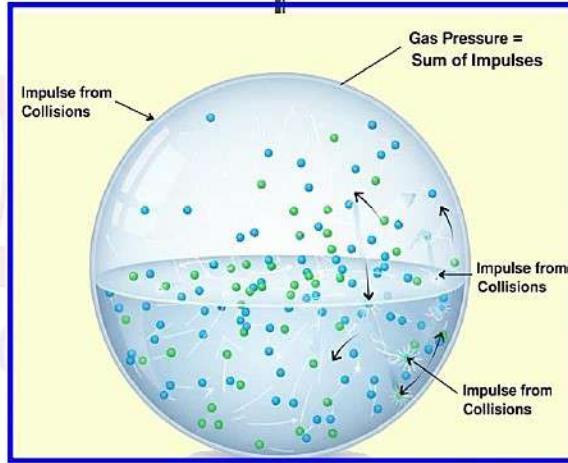

Liquid (Water): Molecules slide past each other; the structure "breaks," and you sink. Force: In water, molecules still push against you, but from all sides (buoyancy/fluid pressure).

الضغط : ينتج عن وزن جسمك الموزّع على حذائك .

الصلب (الجلد): الجزيئات تكون ثابتة في شبكة منتظمة، وتدفع عكس اتجاهك لتدعمك.

السائل (الماء) : الجزيئات تنزلق بجانب بعضها، فينها
البناء وتغوص:.

القوة :في الماء، ما تزال الجزيئات تدفعك، ولكن من جميع الاتجاهات (الطفو/ضغط السوائل).



Gases and pressure

Gas pressure comes from fast-moving particles colliding with surfaces. The ideal-gas model assumes particles have no volume and no attractions, yet it accurately describes real gases in most conditions.

الغازات والضغط

ينشأ ضغط الغاز من اصطدام الجزيئات السريعة بالأسطح ويفترض نموذج الغاز المثالي أن الجزيئات بلا حجم ولا قوى تجاذب، ومع ذلك يصف سلوك الغازات الحقيقية بدقة في معظم الظروف

[3]

Pressure is measures as

يعرف الضغط بـ

A	FA	B	A/F
C	F/A	D	$F + A$

[4]

The SI unit of pressure is

وحدة قياس الضغط هي :

A	newton	B	pascal
C	joule	D	watt

[5]

A child weighs **364 N** and sits on a three-legged stool, which weighs **41 N**. The bottoms of the stool's legs touch the ground over a total area of **19.3 cm²**.

طفل وزنه **364 N** يجلس على مقعد بثلاثة أرجل، ويزن المقعد **41 N**. تلامس قواعد أرجل المقعد الأرض بمساحة كافية مقدارها **19.3 cm²**

a. **What is the average pressure that the child and the stool exert on the ground?**

ما متوسط الضغط الذي يؤثر به الطفل والمقداد على الأرض؟

b. **How does the pressure change when the child leans over so that only two legs of the stool touches the floor??**

كيف يتغير الضغط عندما يملي الطفل بحيث تلامس الأرض رجلان فقط من أرجل المقعد؟

[6]

The atmospheric pressure at sea level is about **1.0×10^5 Pa**.

الضغط الجوي عند مستوى سطح البحر يساوي تقريرياً **1.0×10^5 Pa**

What is the force at sea level that air exerts on the top of a desk that is 152 cm long and 76 cm wide?

ما مقدار القوة التي يؤثر بها الهواء عند مستوى سطح البحر على سطح مكتب طوله **152 cm** وعرضه **76 cm**

[7]

A lead brick, $5.0\text{ cm} \times 10.0\text{ cm} \times 20.0\text{ cm}$, rests on the ground on its smallest face. Lead has a density of 11.8 g/cm^3 . What pressure does the brick exert on the ground?

طوبة من الرصاص أبعادها **5.0 cm × 10.0 cm × 20.0 cm** تستند إلى الأرض على أصغر وجه لها. كثافة الرصاص **11.8 g/cm³**.

ما مقدار الضغط الذي تؤثر به الطوبية على الأرض؟

[8]

A car tire makes contact with the ground on a rectangular area of 12 cm by 18 cm. If the car's mass is 925 kg, what pressure does the car exert on the ground as it rests on all four tires?

يُلامس إطار السيارة الأرض على مساحة مستطيلة
 مقدارها **18 cm × 12 cm**. إذا كانت كتلة السيارة **925 kg** ، فما مقدار الضغط الذي تؤثر به السيارة على الأرض عندما ترتكز على الإطارات الأربع؟

[9]

Suppose that during a storm, the atmospheric pressure suddenly drops by 15% outside.

What net force would be exerted on a front door to a house that is 195 cm high and 91 cm wide? In what direction would this force be exerted?

افترض أنه أثناء عاصفة انخفضت الضغط الجوي خارج المنزل بنسبة 15% ما مقدار القوة المحصلة المؤثرة على الباب الأمامي للمنزل إذا كان ارتفاعه 195 cm و 91 cm؟ وفي أي اتجاه ستؤثر هذه القوة؟

Loay Bani Atta

[10]

In industrial buildings, large pieces of equipment must be placed on wide steel plates that spread the weight of the equipment over larger areas. If an engineer plans to install a 454 kg device on a floor that is rated to withstand additional pressure of 5.0×10^4 Pa, How large should the steel support plate be?

في المباني الصناعية، يجب وضع المعدات الكبيرة على صفائح فولاذية عريضة لتوزيع وزنها على مساحات أكبر. إذا كان المهندس يخطط لتركيب جهاز كتلته 454 kg على أرضية مصنفة لتحمل ضغط إضافي مقداره

$$5.0 \times 10^4 \text{ Pa}$$

فكم يجب أن تكون مساحة الصفيحة الفولاذية الداعمة؟

Loay Bani Atta

The Gas Laws

Boyle's law: states that for a fixed sample of gas at constant temperature, the volume of the gas varies inversely with the pressure. Boyle's law can be written

$$PV = Costant$$

OR

$$P_1 V_1 = P_2 V_2$$

قانون بويل: ينص على أنه بالنسبة لعينة ثابتة من الغاز عند درجة حرارة ثابتة، فإن حجم الغاز يتغير عكسياً مع الضغط. ويمكن كتابة قانون بويل على الصورة التالية.

$$PV = Costant$$

OR

$$P_1 V_1 = P_2 V_2$$

Charles's law: state that under constant pressure, the volume of a sample of gas varies directly with its Kelvin temperature, Charles's law can be written

$$\frac{V}{T} = \text{costante}$$

Or

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

قانون شارل: ينص على أنه تحت ضغط ثابت، يتغير حجم عينة من الغاز طردياً مع درجة حرارتها المقاسة بالكلفن. ويمكن كتابة قانون شارل على الصورة التالية.

$$\frac{V}{T} = costante$$

Or

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

COMBINED GAS LAW

القانون العام للغازات

For a fixed amount of an ideal gas, the pressure times the volume, divided by the Kelvin temperature equals a constant

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} = \text{constant}$$

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$$

If temperature is constant

$$P_1 V_1 = P_2 V_2$$

Boyle's law

If pressure is constant

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

Charles's law

Ideal Gas Law: For an ideal gas, the pressure times the volume is equal to the number of moles multiplied by the constant R and the Kelvin temperature

$$PV = nRT$$

قانون الغاز المثالي: بالنسبة للغاز المثالي، فإن حاصل ضرب الضغط في الحجم يساوي عدد المولات مضروباً في الثابت R ودرجة الحرارة بالكلفن.

$$PV = nRT$$

[11]

states that the volume of a sample of gas varies directly as its Kelvin temperature.

ينص على أن حجم عينة من الغاز يتغير طردياً مع درجة حرارته المقاسة بالكلفن.

A	Boyle's law	B	Archimedes' principle
C	Charles's law	D	Pascal's principle

[12]

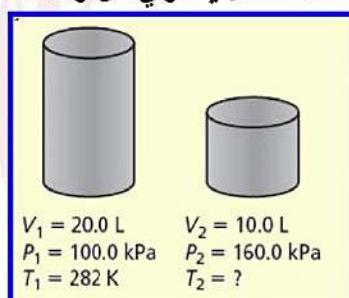
Gas with a volume of **10.0 L** is trapped in an expandable cylinder. If the **pressure** is **tripled** and the **temperature** is **increased by 80.0 percent** (as measured in Kelvin scale), what will be the new volume of the gas?

غاز حجمه **10.0 L** محصور داخل أسطوانة قابلة للتمدد. إذا تضاعف **الضغط** **ثلاث مرات**، وازدادت درجة الحرارة **بنسبة 80 %** (مقاسة بمقاييس كلفن)، فما **الحجم الجديد للغاز**؟

A	2.70 L	B	16.7 L
C	8.00 L	D	54.0 L

[13]

Nitrogen gas at standard **atmospheric pressure**, **101.3 kPa**, has a **volume of 0.080 m³**. If there are **3.6 mol** of the gas, what is the temperature?

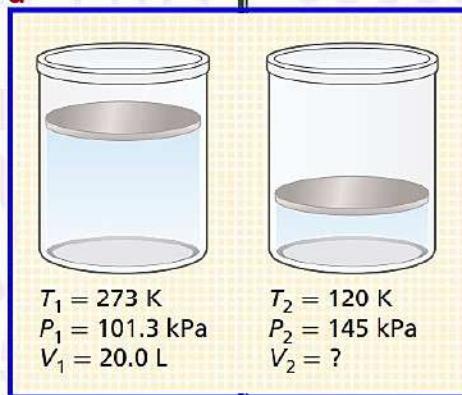

غاز النيتروجين عند **الضغط الجوي القياسي** (**101.3 kPa**) له **حجم مقداره 0.080 m³**. إذا كان هناك **3.6 mol** من هذا الغاز، فما درجة الحرارة؟

A	0.27 K	B	270 K
C	0.27 °C	D	270 °C

[14]

The figure below shows two canisters filled with different gases. Each container has the **same number of gas particles**. What is the temperature of the second gas?

يوضح الشكل أدناه أسطوانتين مملوءتين بغازات مختلفة. يحتوي كل واحدة على العدد نفسه من جسيمات الغاز. ما درجة حرارة الغاز الثاني؟



A	176 K	B	353 K
C	226 K	D	451 K

[15]

A **20.0 L** sample of argon gas at **273 K** is at atmospheric pressure (**101.3 kPa**). The temperature is lowered to **120 K**, and the pressure is increased to **145 kPa**

عينة حجمها **20.0 L** من غاز الأرجون عند درجة حرارة **273 K** تكون تحت الضغط الجوي (**101.3 kPa**). يتم خفض درجة الحرارة إلى **120 K** ، ويزداد الضغط إلى **145 kPa**.

1-What is the new volume of the argon sample?

ما هو الحجم الجديد لعينة غاز الأرجون؟

2-Find the number of moles of argon atoms in the argon sample

احسب عدد مولات ذرات الأرجون في عينة الأرجون.

3-Find the mass of the argon sample. The molar mass (M) of argon is **39.9 g/mol**.

احسب كتلة عينة الأرجون . الكتلة المولية (M) لعنصر الأرجون هي **39.9 g/mol**

[16]

A tank of helium gas used to inflate toy balloons is at a pressure of $15.5 \times 10^6 \text{ Pa}$ and a temperature of 293 K . The tank's volume is 0.020 m^3 . How large a balloon would it fill at 1.00 atmosphere and 323 K ?

خزان من غاز الهيليوم يستخدم لنفخ بالونات اللعب يكون عند ضغط مقداره 15.5×10^6 باسكال ودرجة حرارة 293 K . حجم الخزان هو 0.020 m^3 . ما حجم البالون الذي يمكنملؤه عند ضغط 1.00 ضغط جوي ودرجة حرارة 323 K ؟

What is the mass of the helium gas? The molar mass of helium gas is 4.00 g/mol

ما كتلة غاز الهيليوم؟ الكتلة المولية لغاز الهيليوم هي 4.00 g/mol.

[17]

A tank containing **200.0 L** of hydrogen gas at **0.0°C** is kept at **156 kPa**. The temperature is raised to **95°C**, and the volume is decreased to **175 L**. What is the new pressure of the gas?

خزان يحتوي على **200.0 L** من غاز الهيدروجين عند درجة حرارة **0.0°C** محفوظ تحت ضغط **156 kPa**. تم رفع درجة الحرارة إلى **95°C** ، وتم تقليل الحجم إلى **175 L** . ما هو الضغط الجديد للغاز؟

[18]

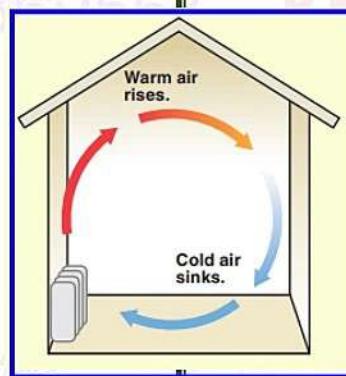
The average molar mass of the components of air (mainly diatomic oxygen gas and diatomic nitrogen gas) is about **29 g/mol**. What is the volume of **1.0 kg** of air at atmospheric pressure and **20.0°C**?

متوسط الكتلة المولية لمكونات الهواء (خاصة غاز الأكسجين الثنائي وغاز النيتروجين الثنائي) هو حوالي **29 g/mol**. ما حجم **1.0 kg** من الهواء عند الضغط الجوي ودرجة حرارة **20.0°C** ؟

Thermal Expansion

Thermal expansion is a property of all forms of matter that causes the matter to expand, becoming less dense, when heated. Thermal expansion has many useful applications, such as circulating air in a room.

التمدد الحراري


التمدد الحراري هو خاصية تمتلكها جميع أشكال المادة، حيث يؤدي إلى تمدد المادة وانخفاض كثافتها عند تسخينها. وللتمدد الحراري العديد من التطبيقات المفيدة، مثل المساعدة في تدوير الهواء داخل الغرفة.

Convection Currents

Convection currents are the circular movements of fluids (liquids or gases) caused by differences in temperature and density. Warm, less dense fluid rises, while cooler, denser fluid sinks, creating a continuous cycle.

تيارات الحمل الحراري

وهي حركة دائرة للسوائل أو الغازات تحدث بسبب اختلاف الكثافة الناتج عن التسخين والتبريد. عندما يسخن جزء من السائل أو الغاز تقل كثافته فيرتفع، بينما يبرد الجزء الآخر فتزداد كثافته وينخفض، مما يخلق حركة مستمرة تسمى تيارات الحمل.

Why ice floats

- When water freezes, its molecules arrange themselves in a crystal structure that spreads them farther apart.
- This spacing makes solid water (ice) less dense than liquid water.
- Since objects with lower density float on substances with higher density, ice stays on the surface.

It's a small detail of physics with huge importance — it helps lakes and oceans freeze from the top down, protecting life under water

لماذا يطفو الجليد

- عندما يبرد الماء ويتجدد، ترتيب جزيئاته نفسها في بنية بلورية تجعلها متباينة أكثر.
- هذا التباعد يزيد حجم الجليد، وبالتالي تقل كثافته.
- ولأن الأجسام الأقل كثافة تطفو فوق الأجسام الأعلى كثافة، فإن الجليد يطفو فوق الماء.

هذه الخاصية مهمة جداً للحياة في البحار والبحيرات، لأنها تجعل السطح يتجمد بينما يبقى الماء الدافئ في الأسفل.

Plasma

Plasma is the fourth state of matter, formed when extremely high temperatures cause atoms to lose their electrons, creating a mixture of free electrons and positive ions. It is the most common state of matter in the universe, found in stars and in the space between galaxies. Plasma conducts electricity, unlike ordinary gases. Examples on Earth include lightning, neon signs, and fluorescent lamps

البلازما

البلازم هو حالة رابعة من حالات المادة تتكون عندما ترتفع الحرارة كثيراً فتفتكاك الذرات إلى إلكترونات حرية وأيونات موجة. توجد البلازم بكثرة في الكون مثل النجوم والفضاء بين المجرات، وتمتاز عن الغاز بأنها توصل الكهرباء. من أمثلتها على الأرض: البرق، لاقفات النيون، والمصابيح الفلورية.

[19]

When air is a conductor, it is in the state.

عندما يكون الهواء موصلاً للكهرباء، فإنه يكون في حالة

A	solid	B	gaseous
C	liquid	D	plasma

[20]

Which of the following is an example of plasma?

أيّ ممّا يلي يُعدّ مثلاً على البلازما؟

A	Lightning during a storm	B	Steam from boiling water
C	Fog in the morning	D	Ice in a freezer

Luay Bani Ata

Page | 16

0505369567

Forces within Liquids

القوى داخل السوائل

Forces within Liquids

القوى داخل السوائل

Cohesive Forces is the tendency of the surface of a liquid to contract to the smallest possible.

- **Cohesive forces** pull liquid molecules toward each other
- At the surface, molecules are pulled downward and sideways, creating surface tension.
- Surface tension makes the liquid surface act like a tight film, allowing light insects to stand on water.
- It also causes droplets to form spheres, the shape with the smallest surface area.
- Mercury has stronger cohesive forces than water, so its droplets are even more perfectly spherical.

Viscosity: the property of resistance to flow in any material with fluid properties

اللزوجة: خاصية مقاومة الجريان في أي مادة تمتلك خصائص الميوعة.

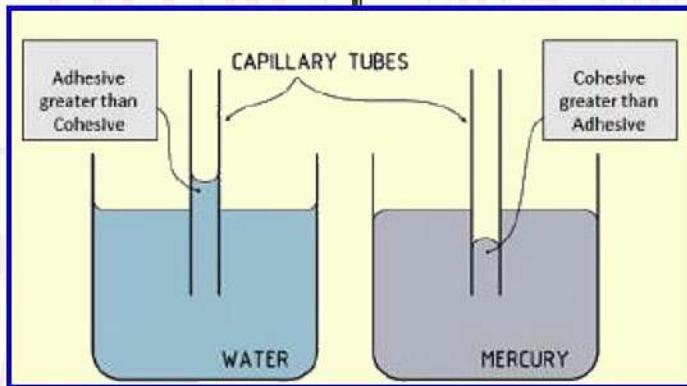
Adhesive Forces: are electromagnetic attractive forces that act between particles of different substances .

القوى اللاصقة: هي قوى تجاذب كهرمغناطيسية تؤثر بين جسيمات مواد مختلفة.

Evaporation and Condensation:

Evaporation: Physical change from liquid to a gas

Condensation: Physical change in matter from a gas to a liquid


التباخر والتكافف

التبخر: تغير فيزيائي من الحالة السائلة إلى الحالة الغازية.

التكافُف: تغير فيزيائي تتحول فيه المادة من الحالة الغازية إلى الحالة السائلة.

Evaporative cooling: is a device that cools air through the evaporation of water

التبريد التبخيري: هو جهاز يبرد الهواء من خلال تبخير الماء.

[21]

In the past, when a baby had a high fever, the doctor might have suggested gently sponging off the baby with rubbing alcohol. Why would this help?

لماذا كان الأطباء قد ينصحون بمسح جسم الطفل المصاب بحمى شديدة بالكحول؟

[22]

A paper clip, which has a density greater than that of water, can be made to stay on the surface of water. **What procedures** must you follow for this to happen? **Explain.**

يمكن جعل مشبك الورق، الذي تزيد كثافته عن كثافة الماء، يبقى على سطح الماء. **ما الإجراءات التي يجب اتباعها لتحقيق ذلك؟ فسر ".**

Loay Banifatwa

[23]

In terms of adhesion and cohesion, explain why alcohol clings to the surface of a glass rod but mercury does not."

من حيث قوى الالتصاق والتماسك، **فسر** لماذا يتتصق **الكحول** بسطح قضيب زجاجي بينما لا يفعل **الزئبق** ذلك.

Joe Bonita

Loay Bani

Solids

المواد الصلبة

Solids

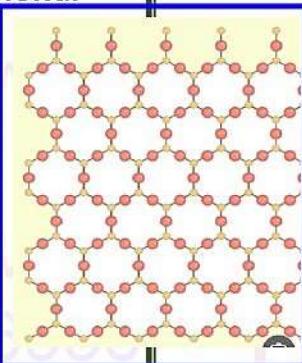
المواد الصلبة

Solids differ from liquids in that they retain their shape and rigidity, while liquids flow and do not maintain a fixed form. However, distinguishing between them can be difficult in certain cases, such as glass when it is gradually heated. As a liquid cools, its particles lose kinetic energy, allowing cohesive forces to organize them into a fixed crystal lattice where they vibrate in place. Some materials, like butter and glass, do not form a regular crystalline structure. These are called amorphous solids, which have definite shape and volume despite lacking an ordered internal arrangement.

تختلف المواد الصلبة عن السوائل في كونها تحافظ على
شكلها وصلابتها، بينما تتدفق السوائل ولا تمتلك شكلاً
ثابتاً. ومع ذلك، قد يصعب التمييز بينهما في بعض
الحالات، مثل الزجاج عند تسخينه تدريجياً. عند تبريد
السوائل، تنخفض الطاقة الحركية لجزيئاتها فتزداد قوى
التماسك، مما يؤدي إلى ترتيب الجزيئات في شبكة بلورية
ثابتة تهتز حول مواقعها. أما بعض المواد مثل الزبدة
والزجاج فلا تكون بنية بلورية منتظمة، وتُعرف بالمواد
الصلبة اللا بلورية، وهي تمتلك شكلاً وحجمًا ثابتين رغم
غياب الترتيب البلوري.

Increasing pressure generally raises the freezing point of most liquids because the particles are forced closer together, making solid formation easier. Water is an exception, as increasing pressure actually lowers its freezing point.

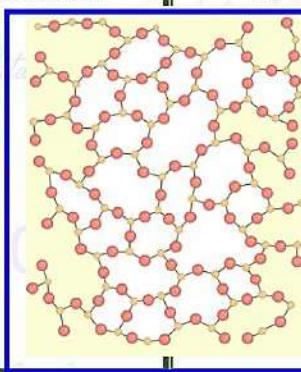
تؤدي زيادة الضغط عادةً إلى رفع نقطة تجمد معظم السوائل، لأن الجزيئات تدفع للتقارب من بعضها مما يسهل تكون الحالة الصلبة. ويُعد الماء استثناءً، إذ إن زيادة الضغط تُخفض نقطة تجمده بدلاً من رفعها.


Effect of Increasing Pressure تأثير زيادة الضغط على درجة التجمد	Density of Solid Vs Liquid كثافة الصلب مقارنة بالسائل	Substance Type نوع المادة
Freezing point increases ترتفع درجة التجمد	Solid is denser الصلب أكثر كثافة	Most liquids معظم السوائل
Freezing point decreases تنخفض درجة التجمد	Solid is <i>less</i> dense (الثلج يطفو)الصلب أقل كثافة	Water الماء

[24]

Define crystalline solid

A crystalline solid is a solid in which the particles are arranged in a regular, repeating, and orderly three-dimensional pattern called a crystal lattice.


المادة الصلبة البلورية هي مادة تكون جزيئاتها مرتبة في نمط ثلاثي الأبعاد منتظم ومتكرر ومرتب يسمى الشبكة البلورية.

Define an amorphous solid

its ability to return to its original shape or form after being deformed by an external force.

هي مادة صلبة لا تمتلك ترتيباً داخلياً منتظماً أو نمطاً بلوريّاً متكرّراً، بل تكون جزيئاتها موزعة بشكل غير منتظم، ومع ذلك تحفظ بشكل وحجم ثابتين.

[26]

Define the elasticity of a solid material

its ability to return to its original shape or form after being deformed by an external force.

تعريف مرونة المادة الصلبة

قدرة المادة على العودة إلى شكلها أو هيئتها الأصلية بعد أن تتعرض لتشوه بفعل قوة خارجية.

[27]

Describe malleability and ductility as properties that depend on the structure and elasticity of a substance, giving examples from metallic substances.

صف قابلية الطرق (malleability) وقابلية السحب (ductility) باعتبارهما خاصيتين تعتمدان على البنية والمرونة في المادة، مع إعطاء أمثلة من المواد الفنزية.

Malleability is the ability of a substance—especially a metal—to be hammered, pressed, or rolled into thin sheets without breaking.

Why does this happen

- In metals, the positive ions are arranged in layers surrounded by a “sea” of delocalized electrons.
- When a compressive force is applied, these layers can slide over one another without breaking the metallic bond.
- This elastic and structural flexibility allows metals to be shaped into thin sheets.

Examples:

- **Gold:** One of the most malleable metals; it can be hammered into extremely thin sheets.
- Aluminum: Highly malleable and commonly used to make aluminum foil.

Ductility is the ability of a material to be drawn into thin wires without breaking

Why does this happen?

- The same metallic structure allows atoms to move gradually under the effect of tensile force.
- As long as the deformation remains within the limits of elasticity, the metal continues to elongate without cracking

Examples:

قابلية الطرق (Malleability) هي قدرة المادة وخاصة الفلزات على أن تطرق أو تضغط أو تلف إلى صفات رقيقة دون أن تتكسر.

- في الفلزات، تكون الأيونات الموجبة مرتبة في طبقات محاطة بـ "بحر" من الإلكترونات غير المتمركزة.
- عند تطبيق قوة ضغط، يمكن لهذه الطبقات أن تنزلق فوق بعضها دون أن تكسر الرابطة الفلزية. هذه المرونة والبنية التركيبية تسمح للفلزات بأن تتشكل إلى صفائح رقيقة.
- **أمثلة:**
 - الذهب: من أكثر الفلزات قابلية للطرق؛ يمكن طرقه إلى صفائح رقيقة جداً.
 - الألومنيوم: ذو قابلية عالية للطرق ويُستخدم عادة في صناعة رقائق الألومنيوم.

قابلية السحب (Ductility) هي قدرة المادة على أن تُسحب إلى أسلاك رفيعة دون أن تتكسر.

لماذا بحث ذلك؟

- البنية الفلزية نفسها تسمح للذرات بأن تتحرك تدريجياً تحت تأثير قوة الشد.
- ما دام التشوه ضمن حدود المرونة، يستمر الفلز في الاستطالة دون أن يتشقق.

أمثلة.

- Copper:** One of the most ductile metals, which is why it is used in electrical wires.
- Iron:** It can be drawn into strong wires used in construction.

النحاس: من أكثر الفلزات قابلية للسحب، ولذلك يُستخدم في الأسانك الكهربائية.

الحديد: يمكن سحبه إلى أسلاك قوية تُستخدم في أعمال البناء.

Thermal Expansion of Solids

The expansion of solid bodies is the increase in a material's dimensions (length, area, or volume) as a result of a rise in temperature, which increases the kinetic energy of its particles and causes them to vibrate more rapidly, moving slightly farther apart. This expansion is small compared to that of liquids and gases, and it depends on the type of material and the temperature. It is calculated linearly using the appropriate thermal expansion relationship.

$$\Delta L = L_0 \alpha \Delta T$$

تمدد الأجسام الصلبة هو زيادة أبعاد المادة (طولاً، مساحة، أو حجماً) نتيجة ارتفاع درجة حرارتها، مما يزيد الطاقة الحرارية لجزيئاتها و يجعلها تهتز بسرعة أكبر متباعدة عن بعضها. هذا التمدد ضئيل مقارنة بالسوائل والغازات، ويعتمد على نوع المادة ودرجة الحرارة، ويناسب خطياً عبر العلاقة

Types of expansion in solid materials:

- Linear Expansion:** Occurs in long objects such as rods and wires, and appears as an increase in length.

$$\Delta L = L_0 \alpha \Delta T$$

- Volume Expansion:** Occurs in three-dimensional objects (such as cubes), where the total volume increases.

$$\Delta V = V_0 \beta \Delta T$$

أنواع التمدد في المواد الصلبة :

• **التمدد الطولي (Linear Expansion):** يظهر في الأجسام الطويلة مثل القضبان والأسانك، ويتمثل في زيادة الطول

• **التمدد الحجمي (Volume Expansion):** يحدث في الأجسام ثلاثية الأبعاد (مثل المكعبات)، حيث يزداد الحجم الكلي.

coefficient of linear expansion	معامل التمدد الخطي	
physical constant that measures how much the length of a material changes when its temperature changes by one degree.	هو ثابت فيزيائي يعبر عن مقدار تغير طول المادة عندما تتغير درجة حرارتها بمقدار درجة واحدة.	
	$\alpha = \frac{\Delta L}{L_1 \Delta T}$	
coefficient of volume expansion	معامل التمدد الحجمي	
physical constant that measures how much the <i>volume</i> of a material changes when its temperature increases by one degree.	هو ثابت فيزيائي يقاس مقدار تغير حجم المادة عندما ترتفع درجة حرارتها بمقدار درجة واحدة.	
	$\beta = \frac{\Delta V}{V_1 \Delta T}$	
Coefficients of Thermal Expansion at 20°C		
Material	Coefficient of Linear Expansion, α ($^{\circ}\text{C}^{-1}$)	Coefficient of Volume Expansion, β ($^{\circ}\text{C}^{-1}$)
Solids		
Aluminum	23×10^{-6}	69×10^{-6}
Glass (soft)	9×10^{-6}	27×10^{-6}
Glass (ovenproof)	3×10^{-6}	9×10^{-6}
Concrete	12×10^{-6}	36×10^{-6}
Copper	17×10^{-6}	51×10^{-6}
Liquids		
Methanol	Not Applicable	1200×10^{-6}
Gasoline	Not Applicable	950×10^{-6}
Water	Not Applicable	210×10^{-6}

[28]

A metal bar is **1.60 m** long at room temperature (**21°C**). The bar is put into an oven and heated to a temperature of **84°C**. It is then measured and found to be **1.7 mm** longer. What is the coefficient of linear expansion of this material?

قضيب معدني طوله **1.60 m** عند درجة حرارة الغرفة **21°C** وضع القضيب في فرن وسخن حتى درجة حرارة **84°C** ثم قيس فوجد أن طوله قد ازداد بمقدار **1.7 mm**. ما قيمة معامل التمدد الخطى لهذه المادة؟

[29]

A piece of aluminum house siding is **3.66 m** long on a cold winter day of **-28°C**. How much longer is it on the hot summer day shown in Figure

قطعة من ألواح الألمنيوم المستخدمة في تغطية المنازل طولها **3.66 m** في يوم شتوي بارد درجة حرارته **-28°C** - كم يزداد طولها في يوم صيفي حار كما هو موضح في الشكل؟

[30]

A piece of steel is 11.5 cm long at 22°C. It is heated to 1221°C, close to its melting temperature. How long is it?

قطعة من الفولاذ طولها **11.5 cm** عند درجة حرارة **22°C** تم تسخينها إلى **1221°C** ، وهي درجة قريبة من درجة انصهارها. ما طولها بعد التسخين؟

[31]

A **400 mL** glass beaker at room temperature is filled to the brim with cold water at **4.4°C**. When the water warms up to **30.0°C**, how much water will spill from the beaker?

كأس زجاجي سعته 400 mL عند درجة حرارة الغرفة
مُلئ حتى الحافة بماء بارد عند درجة 4.4°C عندما
ترتفع درجة حرارة الماء إلى 30.0°C ، كم كمية الماء
التي ستنتسب من الكأس؟

[32]

A steel ruler is marked in millimeters so that the ruler is absolutely correct at **30.0°C**. By what percentage would the ruler be incorrect at **-30.0°C**?

مسطرة مصنوعة من الفولاذ ومدرجة بالمليمترات بحيث تكون قراءتها صحيحة تماماً عند درجة حرارة 30.0°C بنسبة كم ستكون قراءة المسطرة غير صحيحة عند درجة حرارة 30.0°C ؟

[33]

A tank truck takes on a load of **45,725 L** of gasoline in Houston, where the temperature is **28.0°C**. The truck delivers its load in Minneapolis, where the temperature is **-12.0°C**

شاحنة صهريج تحمل شحنة مقدارها 45,725 L من البنزين في مدينة هيوستن، حيث تبلغ درجة الحرارة 28.0°C تقوم الشاحنة بتسليم حمولتها في مدينة مينيابوليس، حيث تبلغ درجة الحرارة 12.0°C.

كم لترًا من البنزين تقوم الشاحنة بتسليمها؟ How many liters of gasoline does the truck deliver?

What happened to the gasoline?

ماذا حدث للبنزين؟

[34]

A hole with a diameter of **0.85 cm** is drilled into a steel plate. At **30.0°C**, the hole exactly accommodates an aluminum rod of the same diameter. **What is the spacing between the plate and the rod when they are cooled to 0.0°C?**

ثقب صفيحة فولاذية بثقب قطره 0.85 cm عند درجة حرارة 30.0°C ، يتاسب الثقب تماماً مع قضيب من الألومنيوم له القطر نفسه. ما مقدار الفراغ بين الصفيحة والقضيب عند تبريدهما إلى 0.0°C ؟