تجميعة أسئلة وحدتي الطاقة والتغيرات الكيميائية وسرعة التفاعلات وفق الهيكل الوزاري الجديد منهج بريدج

تم تحميل هذا الملف من موقع المناهج الإماراتية

موقع المناهج ← المناهج الإماراتية ← الصف الثاني عشر المتقدم ← كيمياء ← الفصل الأول ← ملفات متنوعة ← الملف

تاريخ إضافة الملف على موقع المناهج: 11-47:54 2025-11-10

ملفات اكتب للمعلم اكتب للطالب ا اختبارات الكترونية ا اختبارات ا حلول ا عروض بوربوينت ا أوراق عمل منهج انجليزي ا ملخصات وتقارير ا مذكرات وبنوك ا الامتحان النهائي ا للمدرس

المزيد من مادة كيمياء:

إعداد: مدرسة الشروق الخاصة

التواصل الاجتماعي بحسب الصف الثاني عشر المتقدم

صفحة المناهج الإماراتية على فيسببوك

الرياضيات

اللغة الانجليزية

اللغة العربية

التربية الاسلامية

المواد على تلغرام

المزيد من الملفات بحسب الصف الثاني عشر المتقدم والمادة كيمياء في الفصل الأول حل تجميعة أسئلة من الكتاب واختبارات وزارية وفق الهيكل الوزاري الجديد منهج بريدج تجميعة أسئلة من الكتاب واختبارات وزارية وفق الهيكل الوزاري الجديد منهج بريدج كراسة تدريبية مراجعة وفق الهيكل الوزاري الجديد الخطة C101 منهج بريدج مراجعة وفق الهيكل الوزاري الجديد المسار C منهج انسباير مع الإجابات حل تجميعة صفحات الكتاب وفق الهيكل الوزاري المسار C منهج بريدج

مدرسة الشروق الخاصة قسم العلوم

Chemistry

هيكل الفصل الدراسي الأول للصف الحادى عشر متقدم

الطاقة والتغيرات الكيميائية - سرعة التفاعلات

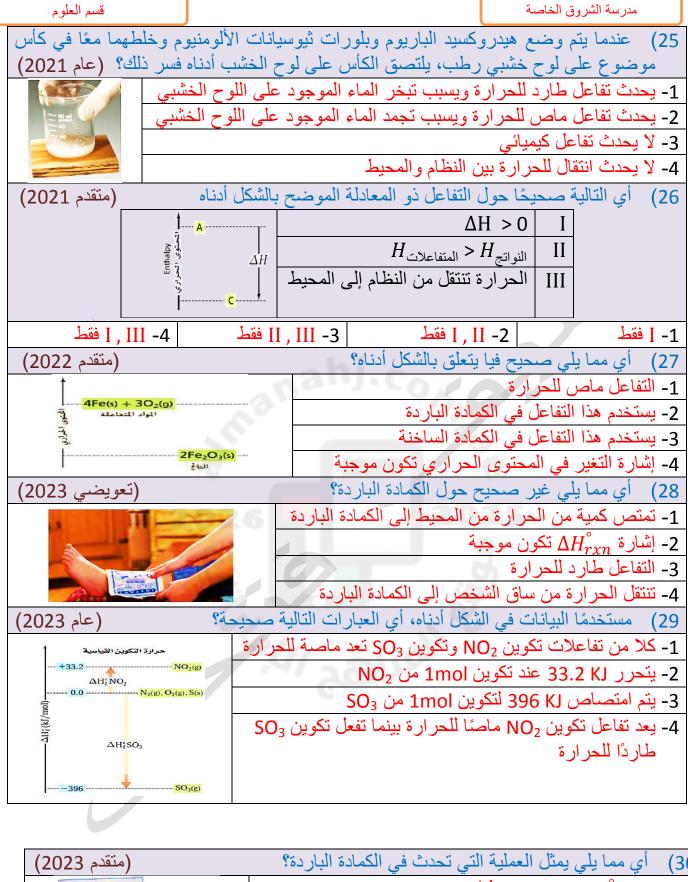
مدرسة الشروق الخاصة قسم العلوم

هيكل لمادة الكيمياء للصف الثاني عشر طبقا للمعايير لعام 2025/ 2026

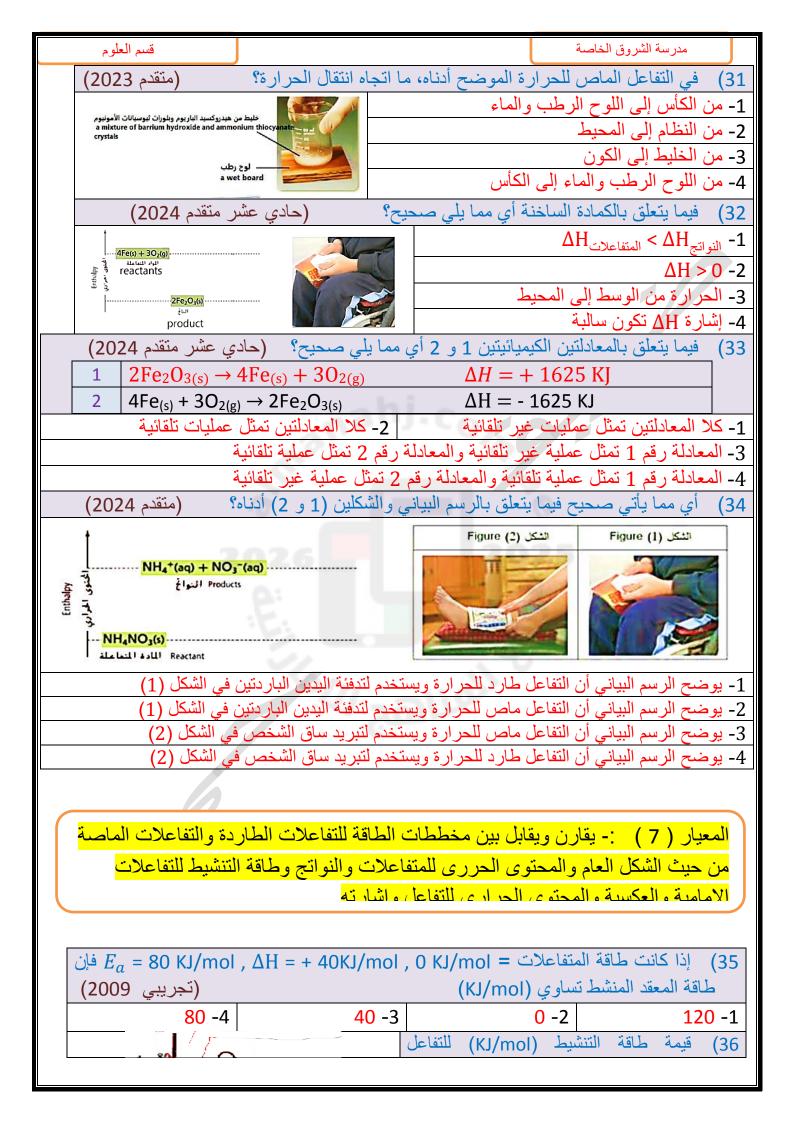
المعيار (1):- يجرى التحويل ما بين وحدات الحرارة و درجة الحرارة

(تدريبي مجلس 2017)		1) أي الوحدات التالية هي الأكبر
KJ -4	J -3	cal -2 Cal -1
ل؟ (متقدم 2020)	95 ما مقدار هذه الطاقة بوحدة الجوا	2) وجبة إفطار تمنح طاقة مقدار ها Cal
2.	$27 \times 10^{1} - 4 3.97 \times 10^{2} - 3$	$2.27 \times 10^4 - 2 3.97 \times 10^5 - 1$
(متقدم 2023)	ن السعرات الغذائية Cal؟	3) أي مما يلي يحتوي على أكبر كمية م
1000 cal -4	86.5 J -3	9600 J -2 10 Cal -1
(عام 2024)	ن الطاقة بوحدة J?	4) أي مما يأتي يحتوي على أقل كمية مر
$4 \times 10^5 \text{ J} - 4$		100 KJ -2 200 Cal -1
	ر بالشكلين المقابلين:	5) أي العبارات التالية صحيح فيما يتعلق
Y	الطاقة في X تساوي 355Cal	1- الطاقة في Y أكبر منها في X
150 Cal 5.0 x10 ⁵ J	الطاقة في Y تساوي 35.8cal	3- الطاقة في X أكبر منها في Y

المعيار (2): - يحسب كمية الحرارة المنطلقة من مادة عند تغير درجة حرارتها

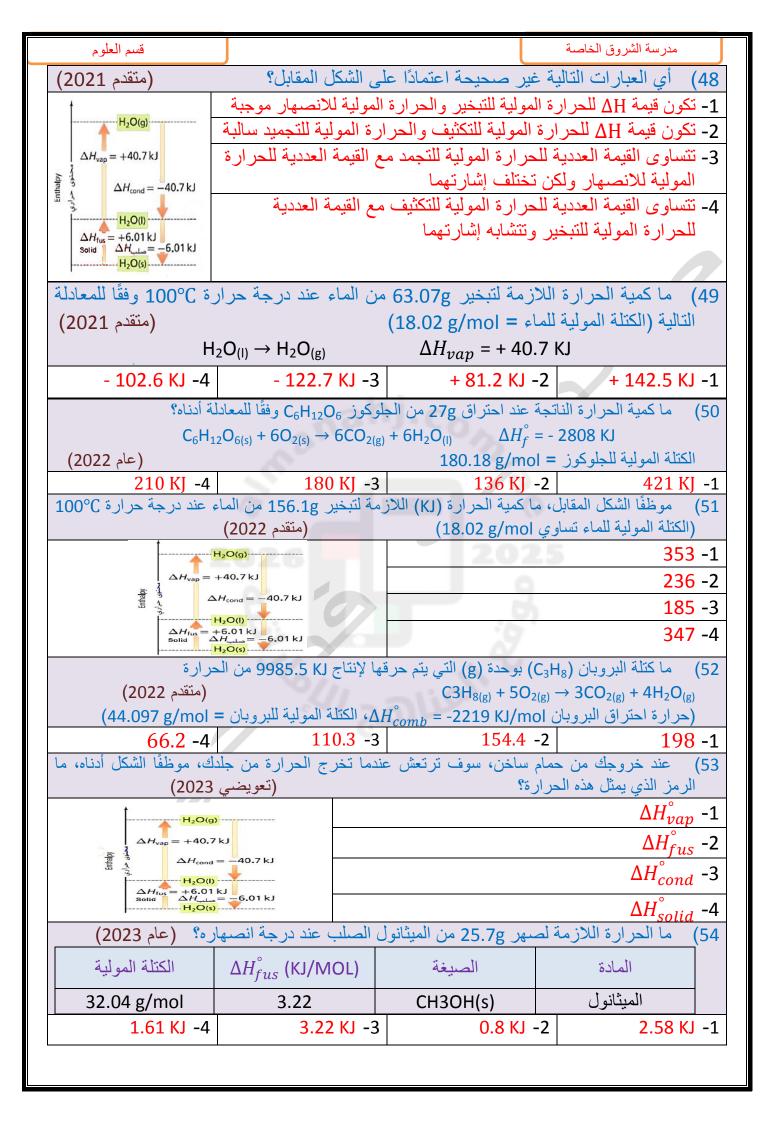

6) ما الطاقة اللازمة (KJ) لرفع درجة حرارة 50g من الأومنيوم من 27.7°C إلى 72.7°C?						
(الحرارة النوعية للأومنيوم J/g.°C) (مؤجل 2016)						
20.3 -4	2.03 -3	40.5 -2	4.05 -1			
7) ما الطاقة (J) التي يمتصها 20g من الذهب على صورة حرارة إذا سخنت من درجة						
حرارة C°C إلى درجة حرارة C°C (الحرارة النوعية للذهبC (0.43 J/g.°C) (نهائي 2018)						
-215 -4	301 -3	215 -2	86 -1			
8) ما مقدار الحرارة التي يتم امتصصها عندما يتم تسخين 5.5g من الحديد من درجة 2°C إلى						
°95°C (الحرارة النوعية للحديد = 0.449 J/g.°C) (حادي عشر متقدم 2024)						
173 J -4	62 J -3	385 J -2	235 J -1			
9) ما كمية الحرارة التي تمتصها صخرة من الجرانيت كتلتها 3Kg عندما تتغير درجة حرارتها من						
(عام 2024) (0.803	بة للجرانيت = J/g.°C و	(الحرارة النوعب	10°C إلى 45°C؟			
11 J -4	84 J -3	$1.1 \times 10^5 \mathrm{J}$ -2	$8.4 \times 10^4 \text{J} - 1$			

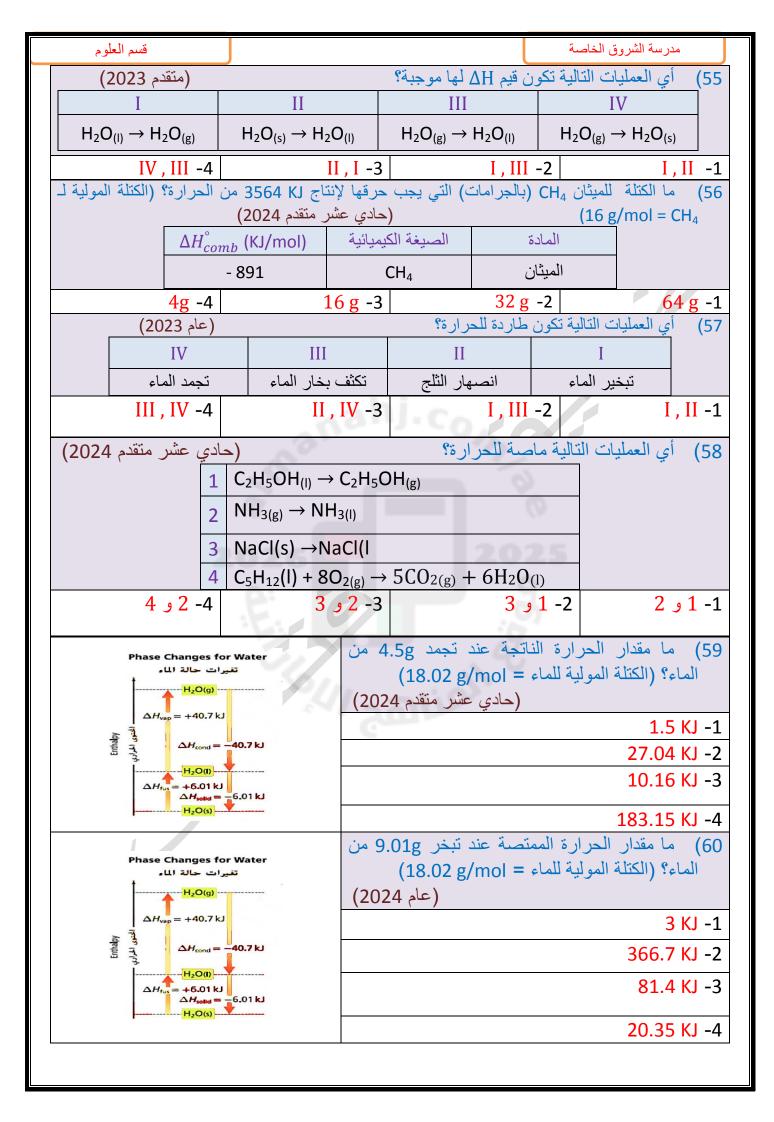

المعيار (3):- يصف كيف توثر نفس كمية الحرارة على درجة حرارة مواد مختلفة لها نفس الكتلة

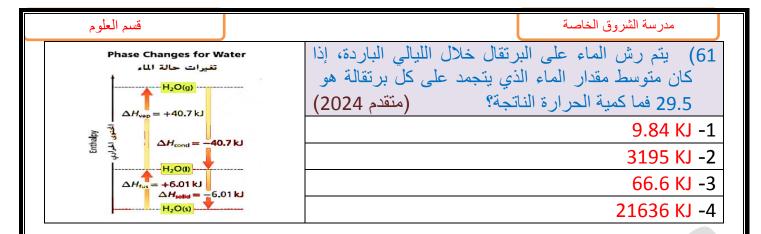

هما الكتلة نفسها، ولكنهما يختلفان بحرارتيهما النوعيتين، يمتصان الكمية نفسها من	10) فلزان لـ
بما الكتلة نفسها، ولكنهما يختلفان بحرارتيهما النوعيتين، يمتصان الكمية نفسها من من الفلزين يحدث لهما التغير الأصغر في درجة الحرارة (تدريبي 1 2009)	الحرارة، أي
رارة النوعية العليا 2- الفلز ذو الحرارة النوعية الدنيا	1- الفلز ذو الح
معان للتغير نفسه في درجة الحرارة 4- لا يمكن تحديد ذلك من المعلومات المعطاة	- 3- كلاهما يخط

قسم العلوم				مدرسة الشروق الخاصة		
نفس التوقيت ونفس المدة	ي في الشمس في			11) تم ترك كتل متساوية مر		
(عام 2024)				الزمنية، أي الفلزات له أعلى		
الذهب	الفضية		الألومنيوم			
0.129				الحرارة النوعية		
	<u> </u>			1- الألومنيوم 2-		
		'	1	12) تركت كتل متساوية		
ریادهٔ درجهٔ حرارتهم	ت الأربعة وقفا ا العنيد الرصاص		tsh	الوقت ولنفس المدة الزمني		
	Lead Iron	Strontium Calc	element	التصر		
	0.235 0.449	0.301 0.6	J/(g.ºC) 4	الحرارة النوحي		
(2021 10)	V			pecific heat		
(عام 2021)	من عالمين	من 2 الدمرا	الحديد عاليجيا			
				$\begin{array}{ccc} -1 & \text{ National Results } & National Resu$		
	19.	iani.	Co.			
لة حرارتها	ا والتغير في درج	ة بمعلومية كتلته	ارة النوعية لماد	المعيار (4) :- يحسب الحر		
) 40°C وامتصت هذه	ن من 25°C إلى	دة غير معلومة	155g من ما	13) م تسخين عينة كتلتها		
(عام 2023)	عية لهذه المادة؟	ما الحرارة النوء	لية من الطاقة، م	المادة J 5696 خلال العما		
0.235 J/g.°C -4	4.18 J/	′ <mark>g.°C -</mark> 3	2.45 J/g.°C	-2 2.03 J/g.°C -1		
**		_		14) عند وضع قطعة من		
حراري، تقل درجة حرارة السبيكة بمقدار °205، بينما تزداد درجة حرارة الماء بمقدار						
18.7°C م الحرارة النوعية لهذه السبيكة؟						
0.235 J/g.°C -4 0.129 J/g.°C -3 0.45 J/g.°C -2 0.38 J/g.°C -1 0.3						
			_	المادة خلال العملية 75 KJ		
				المادة		
				الحرارة النوعية		
	1- الذهب 2- الفضة 3- الألومنيوم 4- الحديد 16- الألومنيوم 4- الحديد 16- الألومنيوم 25g من الماء في 108° 108 في 125g من الماء في					
كوب رغوي درجة حرارته °22.3 أصبحت درجة الحرارة النهائية °24، ما الحرارة						
النوعية لهذا الفلز؟ (حادي عشر متقدم 2024)						
0.449 J/g.°C -4	0.897 J/	′g.°C -3	1.825 J/g.°C	-2 1.023 J/g.°C -1		
17) تضاف نفس كمية الحرارة إلى عينة كتلتها 10g من كل الفلزات التالية، إذا كانت درجة الحرارة						
الابتدائية لكل فلز °200 ما الفلز الذي يصل إلى أعلى درجة حرارة؟ (حادي عشر متقدم 2024)						
الذهب	النحاس	كالسيوم	·			
0.129	3.85	0.653	1.82	الحرارة النوعية		
4- الذهب	يوم	3- الكالس	النحاس	1- البريليوم 2-		

قسم العلوم 18) عند وضع قطعة من سبيكة ساخنة كتتها 88.2g في 175g من الماء البارد في مسعر حراری، تقل درجة حرارة السبيكة بمقدار °76.4°، بينما ترتفع درجة حرارة الماء بمقدار 15.6°C ما الحرارة النوعية لهذه السبيكة؟ (متقدم 2024) 0.809 J/g.°C -3 2.4 J/g.°C -2 0.38 J/g.°C -4 1.7 J/g.°C -1 المعيار (5): - يميز بين النظام والمحيط والكون واتجاه سريان الحرارة (تدریبی مجلس 2017) ماذا يحدث عند تلامس جسمين مختلفين في درجة حرارتهما؟ 1- تنتقل طاقة حرارية من الجسم الأبرد إلى الجسم الأسخن 2- تنتقل طاقة حرارية من الجسم الأسخن إلى الجسم الأبرد 3- تنتقل طاقة حركية من الجسم الأبرد إلى الجسم الأسخن 4- تنتقل طاقة حركية من الجسم الأسخن إلى الجسم الأبرد 20) في الشكل التالي يتم خلط هيدروكسيد الباريوم وبلورات ثيوسيانات الألومنيوم معًا، ما سبب التصاق الكأس على لوح الخشب المبلل بالماء (نهائي وزارة 2017) 1- التفاعل طارد للحرارة ويسبب تبخر الماء على اللوح الخشبي 2- تنتقل الحرارة من النظام (الكأس) إلى المحيط (الماء واللوح) 3- التفاعل ماص للحرارة ويسبب تجمد الماء أسفل الكأس 4- النظام معزول حراريًأ المعيار (6): - يحدد اتجاه (سريان) الحرارة في كل من العمليات الطاردة والماصة للحرارة إذا علمت أن المحتوى الحراري لنواتج تفاعل يساوي 458KJ/mol والمحتوى الحراري للمتفاعلات 658KJ/mol فأي العبارات التالية صحيحة؟ (تدریبی 2012) 1- النواتج أكثر استقرارًا والتفاعل طارد للحرارة 2- النواتج أكثر استقرارًا والتفاعل ماص للحرارة -3- المتفاعلات أكثر استقرارًا والتفاعل طارد للحرارة | 4- المتفاعلات أكثر استقرارًا والتفاعل ماص للحرارة 22) افترض أن تفاعل كيميائي يتكون من مجموع تفاعلين آخرين فإذا كانت قيمتا ΔΗ للتفاعلين 658KJ- و 458KJ+ فما قيمة ΔΗ (KJ) للتفاعل الناتج عن جمعهما؟ (نهائي 2012) +200 -4 +1116 -3 -200 -2 عند استخدام مسعر حراري مصنوع من بلاستيك رغوي في الهواء الطلق أي التالية (نهائي وزارة 2017) 1- يصلح لتحديد الحرارة النوعية لفلز مجهول 2- يمنع تبادل الحرارة مع الوسط المحيط (نظام معزول) 3- مقدار الحرارة المكتسبة بالماء يساوي مقدار الحرارة التي يفقدها الفلز 4- جميع التفاعلات التي تحدث بداخله لا تتم تحت ضغط ثابت 24) أي مخطط مما يلي يصف تفاعل الكمادة الساخنة التالي؟ (متقدم 2019) $4Fe + 3O_2 \rightarrow 2Fe_2O_3 + 1625 \text{ KJ}$ $\Delta H = +1625$ kJ







قسم العلوم			رق الخاصة	مدرسة الشرو		
		ر (نهائي	بالشكل المجاو	العكسي الممثل		
				(2010		
		+ 10	00 -2	+ 20 -1		
		- {	80 -4	- 20 -3		
(2014 ८	حرارة؟ (تدريبي	علق بتفاعل ماص للـ	ي صحيح فيما يت	37) أي مما يل <u>ج</u>		
النشط > E للمتفاعلات	2- E للنواتج > E للمعقد ا	E للمعقد النشط	> E للنواتج > إ	E -1 للمتفاعلات		
نواتج > E للمتفاعلات	4- E للمعقد النشط > E لل	• E للمتفاعلات	ل > E للنواتج >	3- E للمعقد النشو		
"	، أقل من طاقة النواتج في ت	ئون طاقة المتفاعلات	حدوثه عندما تك	38) ماذا تتوقع		
ې مجلس 2017)	. ,	1				
	2- ثابت السرعة يزداد		#	1- تقل سرعة التق		
	4- يكون التفاعل ماص للـ	ا څه ا ا د د ا		3- يكون التفاعل		
(تدريبي مجلس 2017)		ر عن التفاعل الأمام	إشكال التاليه تعب	(39) اي من الا		
-8 £	S -7	120 120 100 100 100 100 100 100 100 100	-6	-5		
H أدرس الشكل وأجب عن	أكسيد الهيدروجين 202	تفاعل تفكك فوق أ	ني يمثل سير	40) الرسم البيا		
(إعادة 2008)				الأسئلة التالية:		
tc	.020	A?	, الرموز B, C	أ- على ماذا تدل		
ب-هل التفاعل في المسار (1) ماص أم طارد للحرارة؟						
سير التفاعل		عص ام صارد للحرار	ي المسار (1) م	ب-هن اللقاعل و		
ج- أي المسارين (1 أم 2) يكون التفاعل فيه أسرع ولماذا؟						
41) الرسم البياني الآتي يمثل تفكك فوق أكسيد الهيدروجين في الحالتين (1 و 2) أدرسه وأجب عن الأسئلة التالية:						
C	أسرع ؟	ط للتفاعل الأمامي الأ	مثل طاقة التنشيم	أ- أ <i>ي</i> الرموز يد		
1 2 B						
KJ/mole ištal			، الرمز C؟	ب-ما الذي يمثله		
EX mug. Iliálab	أبطأ؟	ط للتفاعل العكسي الأ	مثل طاقة التنشيد	ج- أي الرموز يد		
	ه د ا	t 1 mt s	(0 (4) : 1	ti i ·		
	ل اکبر؟	تكون سرعة التفاعا	ارین (1 ام ک)	د- في اي المسا		

قسم العلوم 42) الرسم البياني التالي، يوضح تغير طاقة أحد التفاعلات، ادرسه ثم أجب عما يلي: (نهائي 2011) أ- ما قيمة طاقة التنشيط للتفاعل الأمامي؟ (पिक् low/fx ب- احسب قيمة ΔH للتفاعل العكسي؟ ج-عما تعبر الرموز؟ 43) تأمل الشكلين البيانيين للطاقة A و B و أجب عما يليهما: (مؤجل 2011) أ- احسب قيمة AH للتفاعل الأمامي في الشكل B. 년 50 ب- ما التفاعلات الماصان للحرارة في الشكلين A و B ؟ A للتفاعل العكسى في الشكل E_{a} للتفاعل العكسى المعيار (8): - يكتب معادلة كيميايئة حرارية لتغيرات الحالة (التبخير والانصهار والتكثيف و التجمد) <mark>المعيار (</mark> 9):- يحسب كمية الحرارة المنطلقة او الممتصة من خلال تغيرات الحالة من خلال الحرارة المولية للانصهار والتبخر والتكثف و التجمد المعيار (10):-يجرى حسابات باستخدام حرارة الاحتراق $C_6H_{12}O_{6(s)} + 6O_{2(g)} \rightarrow 6CO_{2(g)} + 6H_2O_{(I)}$, $\Delta H_{comb} = -2808 \, \text{KJ}$ موظفًا التفاعل الت ما كمية الحرارة الناتجة عن احتراق 9.01g من الجلوكوز C₆H₁₂O₆؟ (الكتلة المولية للجلوكوز 180.18g/mol) (نهائي وزارة 2017) 14KJ -4 140KJ -3 210KJ -2 45) أي المعادلات التالية تفسر سبب شعورك بالبرودة والارتعاش عند خروجك من حمام ساخن؟ (نهائي وزارة 2017) $\rm H_2O_{(g)} \rightarrow \rm H_2O_{(I)}$, ΔH_{cond} = - 40.7 KJ $\,$ -1 $H_2O_{(s)} \to H_2O_{(l)}$, $\Delta H_{fus} = -6.01 \text{ KJ} -2$ $H_2O_{(1)} + 40.7 \text{ KJ} \rightarrow H_2O_{(g)}$ -3 $H_2O_{(1)} \rightarrow H_2O_{(s)} + 6.01 \text{ KJ} -4$ أي من العمليات التالية ماصة للحرارة؟ (عام 2021) (46 $H_2O_{(g)} \to H_2O_{(l)}$ -2 $H_2O_{(I)} \to H_2O_{(s)}$ -1 $NaCl_{(s)} \rightarrow NaC_{(l)}$ -3 $C_3H_{8(g)} + 5O_{2(g)} \rightarrow 2CO_{3(g)} + 4H_2O_{(g)} -4$ موظفًا الشكل المقابل، ما مقدار التغير في المحتوى الحراري لتجمد 0.75 mol من الماء (عام 2021) + 30.5 KJ -1 - 4.51 KJ -2 - 30.5 KJ **-**3 + 4.51 KJ -4


```
المعيار (11):- يحسب التغير في المحتوى الحرارى لتفاعل باستخدام قانون هس المعيار (12):- يذكر قانون هس و القواعد المتبعة عند تطبيق قانون هس المعيار (13):- يستخدم قانون هس في حساب حرارة التفاعل
```

```
إذا علمت أن حرارة تكوين المركب X هي 110.5 KJ/mol وحرارة تكوين الناتج الوحيد
لاحتراقه هي 393.5 KJ/mol) X (مؤجل 2012)؟ (مؤجل 2012)
                                            + 283 -3
                   + 504 -4
                                                                      - 283 -2
                                    63) باستخدام المعادلتين (1) و (2) ما قيمة ΔH للتفاعل التالي
(عام 2021)
               2CO_{(g)} + 2NO_{(g)} \rightarrow 2CO_{2(g)} + N_{2(g)} \Delta H = ???
                                                                    \Delta H = -566 \text{ KJ}
                    2CO_{(g)} + O_{2(g)} \rightarrow 2CO_{2(g)}
                                                                     \Delta H = -180.6 \text{ KJ}
               | N_{2(g)} + O_{2(g)} 2NO_{(g)} |
                                - 385.4 KJ -3 + 192.7 KJ -2
       - 770.8 KJ -4
                                                                                          + 265.5 KJ -1
                                    CO_{(g)} + 2H_{2(g)} \rightarrow CH_3OH_{(I)} ما قيمة \Delta H للتفاعل التالي: (64
                                    استخدم المعادلات الكيميائية الحرارية c, b, a الموضحة أدناه؟
(متقدم 2021)
            c. CO_{(g)} + \frac{1}{2}O_{2(g)} \rightarrow CO_{2(g)}
                                                                 \Delta H = -284 \text{ KJ}
            d. H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow H_2O_{(l)}
                                                                    \Delta H = -286 \text{ KJ}
            e. CH_3OH_{(I)} + \frac{3}{2}O_{2(g)} \rightarrow CO_{2(g)} + 2H_2O_{(I)}
                                                                 \Delta H = -727 \text{ KJ}
                           - 129 KJ -3 | - 1297 KJ -2 | + 15 / KJ -1 ما مقدار التغير في المحتوى الحراري ΔΗ للتفاعل أدناه؟
       + 1051 KJ -4
(متقدم 2022)
                      مستخدمًا المعادلات التالية: 2H_2S_{(g)} + 3O_{2(g)} \rightarrow 2H_2O_{(g)} + 2SO_{2(g)}
   S_{(s)} + O_{2(g)} \rightarrow SO_{2(g)}
                                                              \Delta H_f^{\circ} = -296.8 \text{ KJ/mol}
   H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow H_2O_{(g)}
                                                             \Delta H_f^{\circ} = -285.8 \text{ KJ/mol}
                                                           , \Delta H_f^{\circ} = - 20.6 KJ/mol
   H_{2(g)} + S_{(s)} \rightarrow H_2S_{(g)}
       - 1124 KJ -4 | - 1206.4 KJ -3
                                                                - 562 KJ -2 | - 603.2 KJ -1
```

```
قسم العلوم
66) مستخدمًا قانون هس و التغيرات في المحتوى الحراري للتفاعلات التالية؟ (تعويضي 2023)
                               , \Delta H = -35 KJ 2) A + D \rightarrow E + F , \Delta H = 20 KJ
    1) A + B \rightarrow C
                               , \Delta H = + 15 \text{ KJ}
   3) F \rightarrow C + E
                                      2A + B + D \rightarrow 2F \Delta H = ????? ما قيمة للتفاعل التالي:
                                      + 30 KJ -3 | - 15 KJ -2 |
          + 35 KJ -4
                         67) مستخدمًا قانون هس والتغير في المحتوى الحراري للتفاعلين التاليين:
(عام 2023)
                                                   \Delta H = -1874 \text{ KI}
                 1 2A + \frac{3}{2}C_2 \rightarrow A_2C_3
                     2B + \frac{3}{2}C_2 \rightarrow B_2C_3
                                                    \Delta H = -285 \text{ KI}
                                                2A + B_2C_3 \rightarrow 2B + A_2C_3 ما قيمة للتفاعل التالي
                                        - 2159 -3
            + 2159 -4
                                                                    - 1222 -2
68) مستخدمًا المعادلات الكيمائية الحرارية I و II و III أدناه ما قيمة للتفاعل التالي؟ (متقدم 2023)
                                         ClF_{(g)} + F_{2(g)} \rightarrow ClF_{3(g)}
                    2OF_{2(g)} \rightarrow O_{2(g)} + 2F_{2(g)} \Delta H = -49.9 \text{ KJ}
              II 2CIF_{(g)} + O_{2(g)} \rightarrow CI_2O_{(g)} + OF_{2(g)} \Delta H = + 205.6 \text{ KJ}
             III CIF_{3(g)} + O_2 \rightarrow \frac{1}{2}CI_2O_{(g)} + \frac{3}{2}OF_{2(g)} \Delta H = +266.7 \text{ KJ}
                                       - 139 -3
                                                                    + 394 -2
   مستخدمًا قانون هس والتغيرات في المحتوي الحراري للتفاعلات التالية (حادي عشر متقدم 2024)
                                                                 \Delta H = -393.5 \text{ KJ/mol}
    • C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)}
    • H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow H_2O_{(g)}
                                                          \Delta H = -285.8 \text{ KJ/mol}
                                                      \Delta H = -890.8 \text{ KJ}
    • CH_{4(g)} + 2O_{2(g)} \rightarrow CO_{2(g)} + 2H_2O_{(I)}
                                             C_{(s)} + 2H_{2(g)} 
ightarrow CH_{4(g)} التفاعل التالي \Delta H_f^{\circ}ما قيمة
                               70) مستخدمًا قانون هس والتغيرات في المحتوى الحراري للتفاعلات التالية
    (عام 2024)
                                                                    \Delta H = -566 \text{ KJ}
    • 2CO_{(g)} + O_{2(g)} \rightarrow 2CO_{2(g)}
    • N_{2(g)} + O_{2(g)} 2NO_{(g)}
                                                                    \Delta H = -180.6 \text{ KJ}
                             2CO_{(g)} + 2NO_{(g)} 
ightarrow 2CO_{2(g)} + N_{2(g)} عا قيمة \Delta H ما قيمة \Delta H
                                                              مستخدمًا التفاعلات الكيميائية التالية
(متقدم 2024)
                                                                      \Delta H_f^{\circ} = -296.8 \text{ KJ/mol}
       • S_{(s)} + O_{2(g)} \rightarrow SO_{2(g)}
       • H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow H_2O_{(g)}
                                                                     , \Delta H_f^{\circ} = -285.8 \text{ KJ/mol}
                                                                     , \Delta H_f^{\circ} = - 20.6 KJ/mol
       • H_{2(g)} + S_{(s)} \rightarrow H_2S_{(g)}
                   2H_2S_{(g)} + 3O_{2(g)} \rightarrow 2H_2O_{(g)} + 2SO_{2(g)} ما قيمة \Delta H للتفاعل التالي؟
        - 1124 J -4
                                                                   - 562 I -2
                                     - 1206 J -3
                                                                                            - 603.2 J -1
      المعيار (14): - يحسب التغير في المحتوى الحراري لتفاعل باستخدام حرارات التكوين
المعيار ( 15 ) :- يعرف حرارة التكوين القياسية للمركبات والعناصر ويقارن بين حرارة
                                                          التكوين القياسية وحرارة الاحتراق القياسية
```

مدرسة الشروق الخاصة

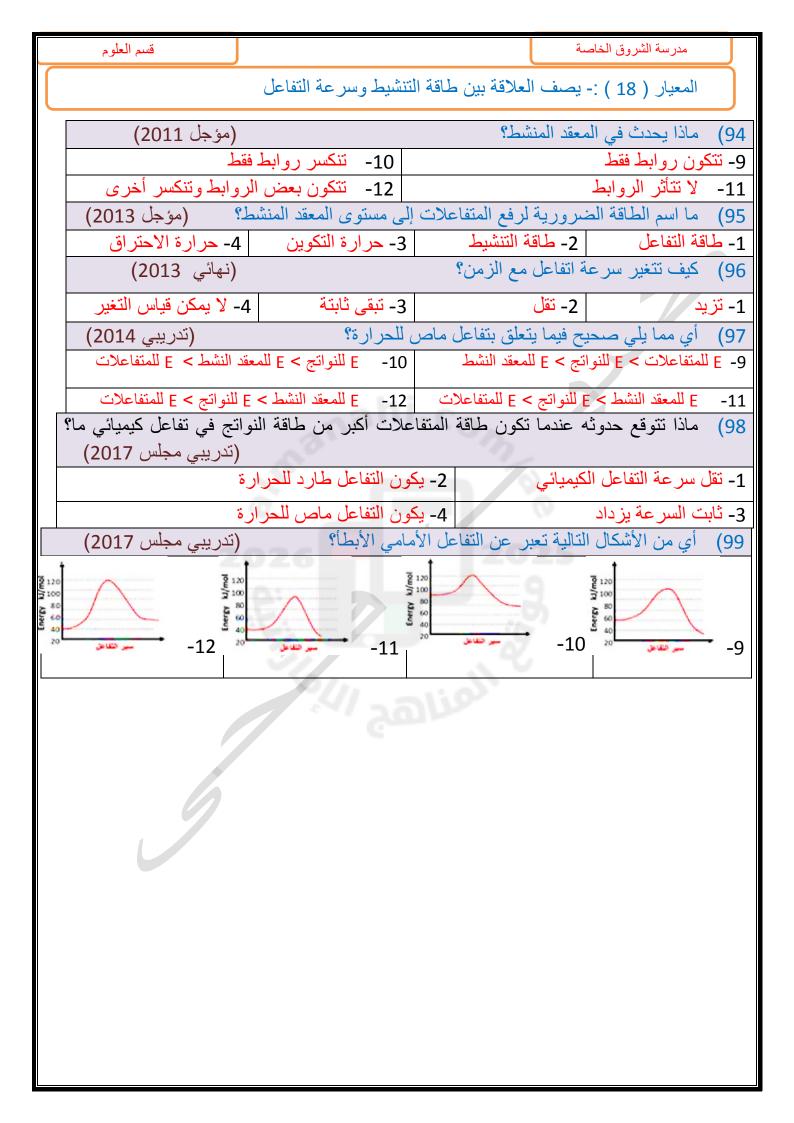
```
(2010 أي العبارات التالية تنطبق على التفاعل 2S_{(g)} + 3O_{2(g)} \rightarrow 2SO_{3(g)} \Delta H = -722K (نهائي 2010) أي العبارات التالية تنطبق على التفاعل 2S_{(g)} + 3O_{2(g)} \rightarrow 2SO_{3(g)} \Delta H = -722K (نهائي 1010) أي العبارات التالية تنطبق على التفاعل 2S_{(g)} + 3O_{2(g)} \rightarrow 2SO_{3(g)} \Delta H = -722K (نهائي 1010) أي العبارات التالية تنطبق على التفاعل 2S_{(g)} + 3O_{2(g)} \rightarrow 2SO_{3(g)} \Delta H = -722K (نهائي 1010) أي العبارات التالية تنطبق على التفاعل 2S_{(g)} + 3O_{2(g)} \rightarrow 2SO_{3(g)} \Delta H = -722K (نهائي 1010) أي العبارات التالية تنطبق على التفاعل 2S_{(g)} + 3O_{2(g)} \rightarrow 2SO_{3(g)} \Delta H = -722K
        S - C حرارة تكوين S - C = حرارة احتراق S - C التفاعل S - C التكوين المعطاة بـ (KJ/mol) أي الغازات الآتية أكثر استقرارًا اعتمادًا على قيم حرارة التكوين المعطاة بـ (KJ/mol)
 (مؤجل 2011)
                                     HF (-273.3) -7 HBr (-36.29) -6 C<sub>2</sub>H<sub>2</sub> (+228.2) -5
        H<sub>2</sub>S (-20.6) -8
    ما اسم الطاقة المنطلقة أو الممتصة على صورة حرارة عندما ينتج 1mol من مركب باتحاد عناصره؟
            1- الطاقة الحرارية | 2- طاقة التنشيط | 3- حرارة التكوين | 4- حرارة الاحتراق
  75) ما قيمة حرارة التكوين (KJ/mol) التي تمثل المركب الأقل استقرارًا (نهائي 2014)
                                                                                            226.7 -2
              - 393.5 -4 | 26.6 -3 |
                                                                       76) مستخدمًا قيم حرارة التكوين القياسية التالية
(عام 2022)
   \Delta H_{f(NH_3)}^{\circ} = - 45.9 KJ/mol , \Delta H_{f(NO_2)}^{\circ} = + 33.2 KJ/mol , \Delta H_{f(H_2O)}^{\circ} = - 286 KJ/mol
                                     4{
m NH_{3(g)}}+7{
m O_{2(g)}}
ightarrow4{
m NO_{2(g)}}+6{
m H2O_{(l)}}ما \Delta H_{rxn}^{\circ} للتفاعل التالي:
        + 1716 KJ -4 | + 1584 KJ -3 | - 2032 KJ -2 | - 1400 KJ -1
                 \Delta H_f^{\circ} أي من التغيرات في المحتوى الحراري في التفاعلات التالية يمثل حرارة تكوين قياسية (77
    (متقدم 2022)
1- \frac{1}{2}N_{2(g)} + O_{2(g)} \rightarrow NO_{2(g)}
                                                                                              \Delta H = +33.2 \text{ KJ}
2- CO_{(g)} + \frac{1}{2}O_{2(g)} \rightarrow CO_{2(g)}
                                                                                          \Delta H = -283 \text{ KI}
3- 2S_{(s)} + 3O_{2(g)} \rightarrow 2SO_{3(g)}
                                                                                            \Delta H = -792 \text{ KJ}
                                                                                  \Delta H = + 1625 \text{ KI}
4- 2\text{Fe}_2\text{O}_{3(s)} \rightarrow 4\text{Fe}_{(s)} + 3\text{O}_{2(g)}
                                        إذا كان التغير في المحتوى الحراري للتفاعل التالي هو 1368.4 KJ -
                                 C_2H_5OH_{(I)} + 3O_{2(g)} \rightarrow 2CO_{2(g)} + 3H_2O_{(g)} فما مقدار حرارة تكوين
                              H_2O_{(I)}(\Delta H_f^{\circ} = -286 \text{ KJ/mol}), CO_{2(g)}(\Delta H_f^{\circ} = -394 \text{ KJ/mol})
 + 173.8 KJ/mol -4 | + 142.9 KJ/mol -3 | - 102.1 KJ/mol -2 | - 277.6 KJ/mol -1
                            فيما يتعلق بالمعادلات التالية، أي العبارات التالية غير صحيحة؟ (تعويضي 2023)
               CH_{4(g)} + 2O_{2(g)} \rightarrow CO_{2(g)} + 2H_2O_{(I)} , \Delta H_{comb}^{\circ} = -891 \text{ KJ}
 1
              C_8H_{18(I)} + \frac{25}{2}O_{2(g)} \rightarrow 8CO_{2(g)} + 9H_2O_{(I)} + 5471 \text{ KJ}
              C_6H_{12}O_{6(s)} + 6O_{2(g)} \rightarrow 6CO_{2(g)} + 6H_2O_{(l)}, \Delta H_{comb}^{\circ} = -2808 \text{ KJ/mol}
 3
             H_{2(g)} + \frac{1}{2} O_{2(g)} \rightarrow H_2 O_{(I)} + 286 \text{ KJ}
   1- جميع المعادلات تمثل تفاعلات احتراق 2- جميع المعادلات تمثل تفاعلات طاردة للحرارة
                                                      3- حرارة احتراق الهيدروجين H<sub>2</sub> تساوي 286 KJ/mol + 286 KJ/mol
 4- احتراق 1mol من الأوكتان C<sub>8</sub>H<sub>18</sub> ينتج كمية من الحرارة أكبر من الكمية التي ينتجها احتراق
                                                                                            1mol من الجلوكوز C<sub>6</sub>H<sub>12</sub>O<sub>6</sub>
```

```
قسم العلوم
                                                                                                                                                                               مدرسة الشروق الخاصة
                                                                                                                       أي المعادلات التالية (لا) تمثل تفاعل احتراق؟
                       (عام 2023)
                                                                                                                   CH_{4(g)} + 2O_{2(g)} \rightarrow CO_{2(g)} + 2H_2O_{(I)} + 891 \text{ KJ} -1
                                                                                                       C_8H_{18(I)} + \frac{25}{2}O_{2(g)} \rightarrow 8CO_{2(g)} + 9H_2O_{(I)} + 5471 \text{ KJ} -2
                                                                                                                                   H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow H_2O_{(g)} + 286 \text{ KJ} -3
27 KJ + NH<sub>4</sub>NO<sub>3</sub> \rightarrow NH^{+4} + NO_3^- -4
(2023) مستخدمًا جدول قيم حرارة التكوين القياسية أدناه للتفاعل التالى ما قيمة \Delta H_{rxn}^{\circ} (عام 2023)
                                                                  4NH_{3(g)} + 7O_{2(g)} \rightarrow 4NO_{2(g)} + 6H2O_{(I)}
                                                                                                                                                                                                - 1397 KJ -1
                المادة
                                                 \Delta H_f^{\circ} (KJ/mol)
                                                                                                                                                                                                - 1767 KJ -2
                                                          - 46.19
               NH_{3(g)}
                                                                                                                                                                                               + 1767 KJ -3
                                                          - 285.8
               H_2O_{(I)}
               NO_{2(I)}
                                                           +33.2
                                                                                                                                                                                                 + 299 KJ -4
مستخدمًا جدول قيم حرارة التكوين القياسية أدناه ما قيمة \Delta H_{rxn}^{\circ} للتفاعل التالي؟ (متقدم 2023)
                                                                                                           3\mathsf{NO}_{2(g)} + \mathsf{H}_2\mathsf{O}_{(I)} \to 2\mathsf{HNO}_{3(aq)} + \mathsf{NO}_{(g)}
                                                                    HNO<sub>3(aq)</sub>
                                                                                                                                               NO_{2(g)}
                                     NO_{(g)}
                                                                                                     H_2O_{(I)}
                                                                                                                                                 33.2 \Delta H_f^{\circ} (KJ/mol)
                                                              - 207.4
                                                                                                       - 285.8
                                     91.3
                                                                                                                                                                                                 - 137 KJ -1
                                                                                                                    - 506 KJ -2
                 + 368 KJ -4 | + 136 KJ -3
مستخدمًا قيم حرارة التكوين القياسية أدناه، ما قيمة \Delta H_{rxn}^{\circ} للتفاعل التالي؟ (حادي عشر متقدم 2024)
                                                            2ZnS_{(s)} + 3O_{2(g)} \rightarrow 2ZnO_{(s)} + 2SO_{2(g)}
                                                                      ZnO<sub>(s)</sub>
                                                                                                                                                              المادة
                                            SO_{2(g)}
                                                                                                            ZnS_{(s)}
                                                                                                                 - 206
                                                                                                                                                \Delta H_f^{\circ} (KJ/mol)
                                           - 296.8
                                                                          - 348.3
               - 878.2 KJ -4 - 270.6 KJ -3 - 59.37 KJ -2
                                                                                                                                                                                           - 901.3 KJ -1
(عام 2024) مستخدمًا قيم حرارة التكوين القياسية أدناه، ما قيمة \Delta H_{rxn}^{\circ} للتفاعل التالي (عام 2024)
                                                                  C_6H_{12}O_{6(s)} + 6O_{2(g)} \rightarrow 6CO_{2(g)} + 6H_2O_{(I)}
                                                                           المادة
                                                                         CO_{2(g)}
                                                                                                                               - 394 KJ/mol
                                                                                                                               - 286 KJ/mol
                                                                         H_2O_{(I)}
                                                                    C_6H_{12}O_{6(s)}
                                                                                                                                     -1273.3
- 5349 KJ/mol -4 | - 2803 KJ/mol -3 | - 594 KJ/mol -2 | - 1901 KJ/mol -1
                                                                                                      ^{\circ} ما حرارة التكوين القياسية ^{\circ} للمركب ^{\circ} التكوين القياسية عرارة التكوين القياسة عرارة التكوين التكوين القياسة عرارة التكوين ال
(عام 2024)
                                         2S_{(s)} + 3O_{2(g)} \rightarrow 2SO_{3(g)} \Delta H = -792 \text{ KJ}
                 + 792 KJ -4 - 396 KJ -3
                                                                                                                           + 1584 KJ -2
                                                                                                                                                                                                  - 792 KJ -1
```

قسم العلوم قسم العلوم (KJ/mol) ΔH_f° رتب ترتيبًا تصاعديًا المواد التالية تبعًا لاستقرارها اعتمادًا على قيم $_f^\circ$ (86 (2013) $_f^\circ$ $_f^\circ$ (2013) $_f^\circ$ $_f^$

(2014 تدريبي NO₂ HBr C₆H₆ NaBr + 33.2 - 36.29 + 82.8 - 361.8

المعيار (16): - يحسب متوسط سرعة التفاعل من خلال البانات التجريبية


(مجلس 2017) في التفاعل الآتي: $CH_3OH_{(aq)} + HCI_{(aq)} \rightarrow CH_3CI_{(aq)} + H_2O_{(1)}$ (مجلس 2017) وي التفاعل الآتي: HCI في بداية التفاعل هو 1.85M وتركيزه بعد مرور الهيدروكلوريك HCI في بداية التفاعل هو 340 ثانية على التفاعل هو 0.58M احسب متوسط سرعة التفاعل باستعمال التغير في تركيز حمض الهيدروكلوريك خلال هذه الفترة؟

 $3.74 \times 10^{-3} \text{ mol/L.s}$

3.74 × 10 11101/E.8					
(تدریبي مجلس 2017)	عة التفاعل؟	للتعبير عن سر	نالية لا تستعمل	89) أي الوحدات الذ	
mol/l	4 M	/s -3	mol/L.s -2	mol/mL.s -1	
90) ما متوسط سرعة التفاعل بين الجزيئات الافتراضية A و B إذا كان تركيز A يتغير من M 1					
إلى 0.5 M في زمن قدره 2s؟					
0.125 mol/(IL.s) -8	0.25 mol/(IL.s) -7	0.75 mo	I/(IL.s) -6	0.5 mol/(IL.s) -5	
وضع 6g من Mg في بداية التفاعل، وبعد $Mg_{(s)} + 2HCl_{(aq)} \rightarrow H_{2(g)} + MgCl_{2(aq)}$ وفعد (91					
مرور 3min بقي منه 4.5g، فما متوسط سرعة استهلاك Mg بالمولات في الدقيقة؟ (Mg = 24 g/mol)					
4.2 >	< 10 ⁻² mol/min -6		6.3 ×	10 ⁻² mol/min -5	
2.1 >	< 10 ⁻² mol/min -8	عناه	8.3 ×	10 ⁻² mol/min -7	

المعيار (17) :- يذكر الشرطين (طبقا لنظرية التصادم) التي يجب توفرهم بين الجزيئات حتى تكون فعالة في انتاج مواد جديدة

(نهائي مجلس 2017)			ماذا يلزم لكي يكور	
4- طاقة كافية واتجاه مناسب	3- طاقة كافية فقط	2- آلية التفاعل	ي اتجاه مناسب فقط	1- ف
(تدریبي مجلس 2017)	تكون الجزيئات؟	ن الجزيئات ضعيفًا،	إذا كان التصادم بير	(93
سب	6- في الاتجاه غير المناه		ي الاتجاه المناسب	5- فې
لعل	8- قابلة للارتداد دون تف		ابلة للتفاعل	7- قا

