حل أوراق عمل الدرس الثاني Inequalities and Equations Exponential Solving من الوحدة الخامسة منهج ريفيل

تم تحميل هذا الملف من موقع المناهج الإماراتية

موقع المناهج ← المناهج الإماراتية ← الصف الحادي عشر المتقدم ← رياضيات ← الفصل الأول ← ملفات متنوعة ← الملف

تاريخ إضافة الملف على موقع المناهج: 18-10-2025 12:30:33

ملفات اكتب للمعلم اكتب للطالب ا اختبارات الكترونية ا اختبارات ا حلول ا عروض بوربوينت ا أوراق عمل منهج انجليزي ا ملخصات وتقارير ا مذكرات وبنوك ا الامتحان النهائي ا للمدرس

المزيد من مادة || رياضيات:

إعداد: محمد زياد

التواصل الاجتماعي بحسب الصف الحادي عشر المتقدم

صفحة المناهج الإماراتية على فيسببوك

الرياضيات


اللغة الانجليزية

اللغة العربية

التربية الاسلامية

المواد على تلغرام

المزيد من الملفات بحسب الصف الحادي عشر المتقدم والمادة رياضيات في الفصل الأول	
تجميعة أسئلة الكتاب وفق الهيكل الوزاري الجديد منهج بريدج	1
تجميعة أسئلة وفق الهيكل الوزاري الجديد منهج ريفيل	2
حل أوراق عمل مراجعة الوحدة الثانية الدوال الأسية واللوغاريتمية	3
أوراق عمل مراجعة الوحدة الثانية الدوال الأسية واللوغاريتمية	4
مراجعة الدرس الرابع اللوغاريتمات والدوال اللوغاريتمية من الوحدة الخامسة منهج ريفيل	5

G

5

G

Solving Exponential Equations and Inequalities

Channels

Learn Solving Exponential Equations

In an exponential equation, the independent variable is an exponent.

Key Concept • Property of Equality for Exponential Equations

If b > 0 and $b \ne 1$, then $b^x = b^y$ if and only if x = y.

Exponent Rules	
For $a \neq 0, b \neq 0$	
Product Rule	$a^x \times a^y = a^{x+y}$
Quotient Rule	$a^x \div a^y = a^{x-y}$
Power Rule	$\left(a^{x}\right)^{y}=a^{xy}$
Power of a Product Rule	$(ab)^x = a^x b^x$
Power of a Fraction Rule	$\left(\frac{a}{b}\right)^x = \frac{a^x}{b^x}$
Zero Exponent	$a^{0} = 1$
Negative Exponent	$a^{-x} = \frac{1}{a^x}$
Fractional Exponent	$a^{\frac{x}{y}} = \sqrt[y]{a^x}$

96

Ex: Solve the following equations:

1)
$$2^{x+3} = 8^{3x-10}$$

G

G

G G 5 9

9

99

G

99

9

9

9 5 5

o popula popula

$$2^{x+3} = (2^{3})^{3x-16}$$

$$(x^n)^m : x^{n \cdot m}$$

$$(2)^{x+3} = (2)^{9x-30}$$

$$\chi + 3 = 9x - 30$$

$$\chi_{-9x} = -30 - 3$$

$$\frac{-8x}{-8} = \frac{-33}{-8} \Rightarrow$$

$$9^{5-x} = 27^{5x+2}$$

$$(3^2) = (3^3)^{\frac{1}{5}\times +2}$$

$$\frac{10-2\times}{3} = \frac{15\times + 6}{3}$$

$$\chi = \frac{4}{17}$$

Learn Solving Exponential Inequalities

An exponential inequality is an inequality in which the independent variable is an exponent.

Key Concept • Property of Inequality for Exponential Equations

If b > 1, then $b^x > b^y$ if and only if x > y, and $b^x < b^y$ if and only if x < y.

Ex: Solve the following inequalities:

1)
$$25^{2x+1} > 125^{5x+3}$$

G 5

G

G

G

6

9

9 9

9

5 G

G 5

9

5

G 5 G

$$(5^{2})^{2x+1}$$
 $7(5^{3})^{5x+1}$

$$4x+2$$
 > 5^{15x+9}

$$4x + 2 > 15x + 9$$

$$4x - 15x > 9 - 2$$

2)
$$(\frac{1}{64})^{5-x} \le 16^{3x+2}$$

$$\left(\frac{1}{4^3}\right)^{5-X} \leq \left(4^2\right)^{3\times +2}$$

$$(4^{-3})^{s-x} \leq (4^{2})^{s+1}$$

$$4^{-15+3x} \leq 4^{6x+4}$$

$$-15+3x \leq 6x +4$$

$$3x - 6x \le 4 + 15$$

$$\frac{-3x}{3} \stackrel{?}{=} \frac{19}{3} \Rightarrow x \geqslant \frac{-19}{3}$$

$$SS = \left\{ x \mid x \right\} = \frac{19}{3}, \quad (or) \quad \left[-\frac{19}{3}, \quad \infty \right]$$

$$\left[-\frac{19}{3}, \infty\right)$$

G

5

999999

9

99999

9999

G

99

G

995

Solve the following equations and inequalities:

1)
$$243^{4-3x} = 81^{2x+5}$$

 $(3^{5})^{4-3x} = (3^{4})^{2x+5}$
 $3^{20-15x} = 3^{8x+20}$
 $20-15x = 8x + 20$
 $-15x - 8x = 20 - 20$
 $-23x = 0$
 $-23x = 0$
 $-23x = 0$
 $-23x = 0$
 $-23x = 0$

2)
$$36^{1-5x} < (\frac{1}{216})^{2x+4}$$

$$(6^{2})^{1-5x} < (6^{-3})^{2x+4}$$

$$(6^{2})^{1-5x} < (6^{-3})^{2x+4}$$

$$(6^{2})^{1-5x} < (6^{-3})^{2x+4}$$

$$2^{-10x} < 6^{-6x-12}$$

$$2^{-10x} < 6^{-6x-12}$$

$$2^{-10x} < 6^{-6x-12}$$

$$-10x + 6x < -12 - 2$$

$$-4x < -14$$

$$x > \frac{7}{2}$$

$$s. S = \{x \mid x > \frac{7}{2}\} \text{ (or) } (\frac{7}{2}, \infty)$$

Q44) P231: Write an exponential function with a graph that passes through the points (0,3), (3,375)

Use
$$(3, 375)$$
: $f(0) = 0.26 = 3$

Use $(3, 375)$: $f(3) = 0.6 = 375$

Use $(3, 375)$: $f(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) = 375$
 $(3) =$

Compound interest:

$$y(t) = P(1 + \frac{r}{n})^{nt}$$

Where y(t): Total amount

P: Principal (First balance)

r : annual rate

t: number of years

n : number of times interest applied per year

Mr. Mohammed Ziad

11AD (12) CH 5

Abu Dhabi Secondary School

INTEREST Bianca invested \$5000 in an account that pays 5% annual interest.

a. Write a function that represents the value in Bianca's account y after x years.

b. After how many years will the value in Bianca's account be \$25,000? Round to the nearest tenth if necessary.

a)
$$P = 5000$$
, $r = 0.05$, $n = 1$, $t = x$
 $y(t) = P(1 + \frac{r}{n})^{nt}$
 $y(x) = 5000(1 + \frac{0.05}{1})^{1.x}$
 $y(x) = 5000(1.05)^{x}$

b)
$$y(x) = 25000$$
 $\Rightarrow x = ?$

$$\frac{5000 (1.05)^{x}}{5000} = \frac{25000}{5000}$$

$$(1.05)^{x} = 5 \qquad take \log 1.05$$

$$\log (1.05)^{x} = \log 5$$

$$\log (1.05)^{x} = \log 5$$

x = 32.98 ×