تجميعة أسئلة وفق مخرجات الهيكل الوزاري الجديد منهج ريفيل

تم تحميل هذا الملف من موقع المناهج الإماراتية

موقع المناهج ← المناهج الإماراتية ← الصف الحادي عشر المتقدم ← رياضيات ← الفصل الأول ← ملفات متنوعة ← الملف

تاريخ إضافة الملف على موقع المناهج: 22:01:46 2025-10-26

ملفات اكتب للمعلم اكتب للطالب ا اختبارات الكترونية ا اختبارات ا حلول ا عروض بوربوينت ا أوراق عمل منهج انجليزي ا ملخصات وتقارير ا مذكرات وبنوك ا الامتحان النهائي ا للمدرس

المزيد من مادة || رياضيات:

إعداد: عماد عودة

التواصل الاجتماعي بحسب الصف الحادي عشر المتقدم

صفحة المناهج الإماراتية على فيسببوك

الرياضيات

اللغة الانجليزية

اللغة العربية

التربية الاسلامية

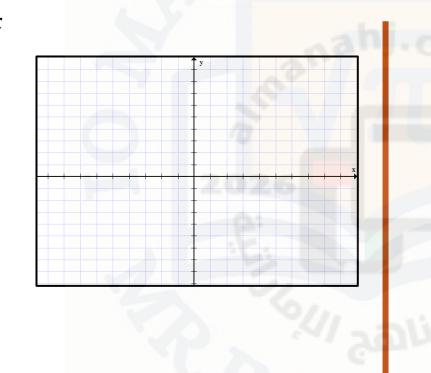
المواد على تلغرام

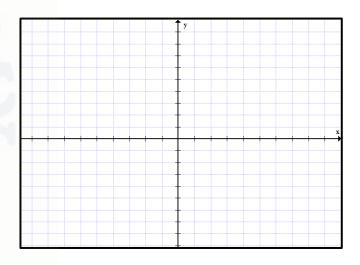
المزيد من الملفات بحسب الصف الحادي عشر المتقدم والمادة رياضيات في الفصل الأول	
أسئلة وزارية وملخص الفصل وفق الهيكل الوزاري منهج بريدج	1
تجميعة أسئلة وحدة الدوال الأسية واللوغاريتمية وفق الهيكل الوزاري الجديد منهج بريدج	2
تجميعة الأسئلة الموضوعية وفق الهيكل الوزاري الجديد	3
تجميعة أسئلة مراجعة وفق الهيكل الوزاري الجديد منهج ريفيل	4
عرض بوربوينت الدرس الثالث Function Exponential Special من الوحدة الخامسة منهج ريفيل	5

أسئلة هيكل الرياضيات **EoT1 Mathematics** الحادي عشر متقدم 11 Advanced الفصل الأول 2025-2026

الأستاذ عماد عودة Mr. Imad Odeh

هيكل أسئلة الرياضيات الفصل الأول EoT1 11Advanced

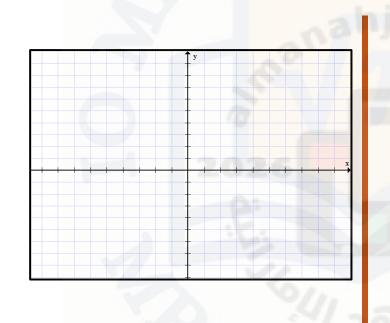

القسم الالكتروني (اختيار من متعدد)
MCQ

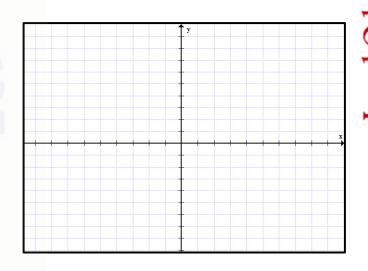

Q1	Learning Outcome/Performance Criteria**	Lesson 5-1	Exercise	Page
MCQ	Graph exponential growth functions	Graphing Exponential Functions	1-10 1	221 254

Graph each function. Find the domain, range, y-intercept, asymptote, and end behavior.

$$f(x) = (3)^x$$

$$f(x) = (5)^x$$

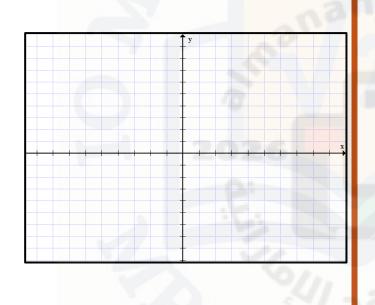


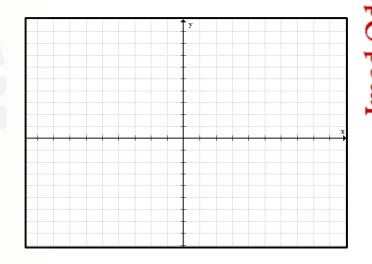

Q1	Learning Outcome/Performance Criteria**	Lesson 5-1	Exercise	Page
MCQ	Graph exponential growth functions	Graphing Exponential Functions	1-10 1	221 254

Graph each function. Find the domain, range, y-intercept, asymptote, and end behavior.

$$f(x) = 1.5^x$$

$$f(x) = \left(\frac{5}{2}\right)^{x}$$

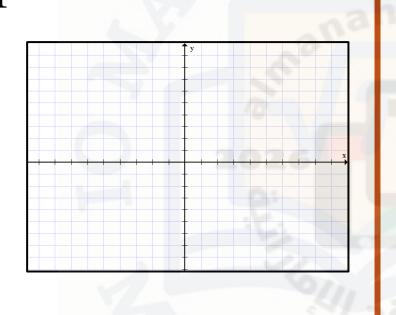


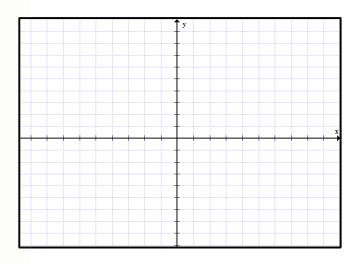

Q 1	Learning Outcome/Performance Criteria**	Lesson 5-1	Exercise	Page
MCQ	Graph exponential growth functions	Graphing Exponential Functions	1-10 1	221 254

Graph each function.

$$f(x) = 2(3)^x$$

$$f(x) = -2(4)^x$$

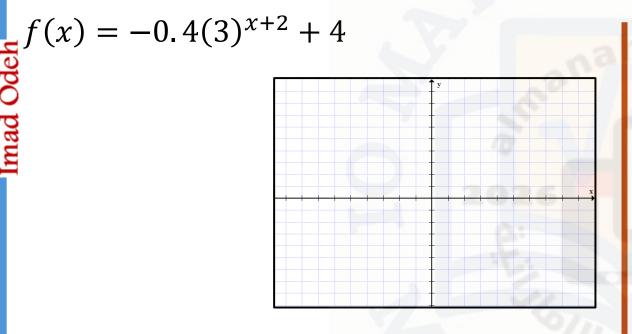


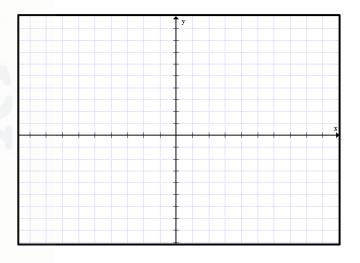

Q 1	Learning Outcome/Performance Criteria**	Lesson 5-1	Exercise	Page
MCQ	Graph exponential growth functions	Graphing Exponential Functions	1-10 1	221 254

Graph each function.

$$f(x) = 3^{2x} + 1$$

$$f(x) = 4^{x+1} - 5$$

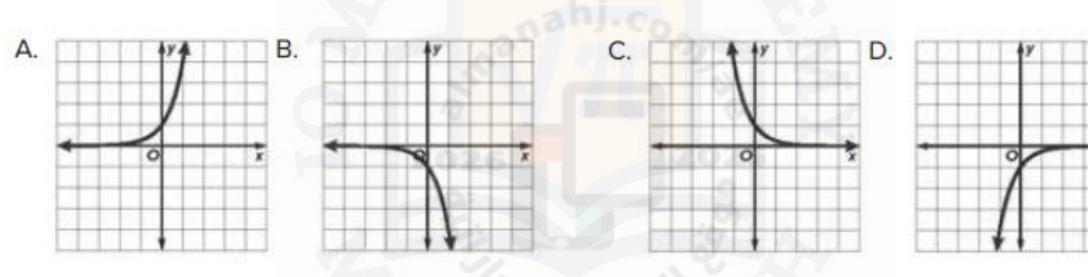



Q 1	Learning Outcome/Performance Criteria**	Lesson 5-1	Exercise	Page
MCQ	Graph exponential growth functions	Graphing Exponential Functions	1-10 1	221 254

Graph each function.

$$f(x) = -0.4(3)^{x+2} + 4$$

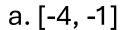
$$f(x) = 1.5(2)^x + 6$$



Q 1	Learning Outcome/Performance Criteria**	Lesson 5-1	Exercise	Page
MCQ	Graph exponential growth functions	Graphing Exponential Functions	1-10 1	221 254

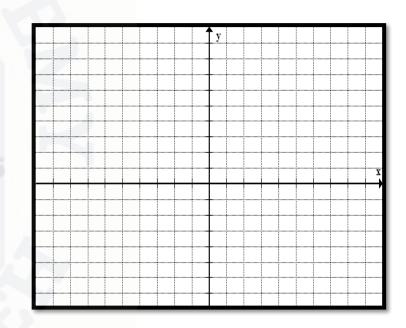
Select the graph of

$$f(x) = 4^x$$


Q 2	Learning Outcome/Performance Criteria**	Lesson 5-3	Exercise	Page
MCQ	Analyze expressions and functions involving the natural base e.	Special Exponential Functions	Example 2 10-12	234 237

$$f(x) = -2 e^{x-3} + 2$$

Part A Graph the function.

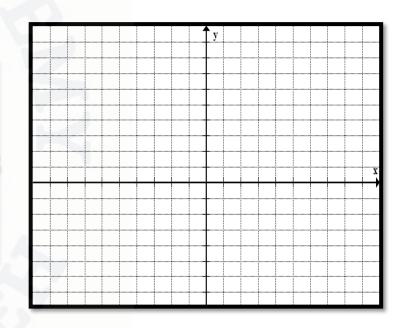

Part B Determine the domain and range.

Part C Find the average rate of change. Determine the average rate of change of g(x) over each interval.

b. [0, 3]

c. [4, 8]

Q 2	Learning Outcome/Performance Criteria**	Lesson 5-3	Exercise	Page
MCQ	Analyze expressions and functions involving the natural base e.	Special Exponential Functions	Example 2 10-12	234 237


$$f(x) = 3 e^{x-1} + 3$$

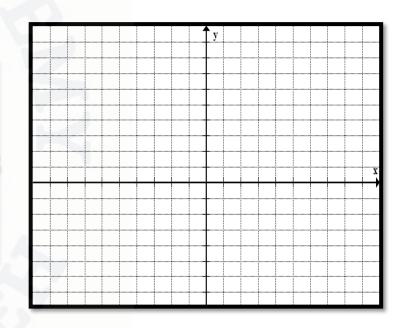
Part A Graph the function.

Part B Determine the domain and range.

Part C Find the average rate of change. Determine the average rate of change of g(x) over each interval.

[-5, -2].

Q 2	Learning Outcome/Performance Criteria**	Lesson 5-3	Exercise	Page
MCQ	Analyze expressions and functions involving the natural base e.	Special Exponential Functions	Example 2 10-12	234 237


$$f(x) = 4 e^{2x-1} - 1$$

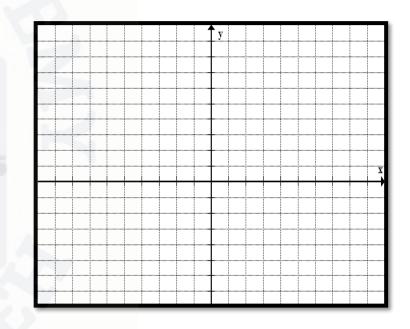
Part A Graph the function.

Part B Determine the domain and range.

Part C Find the average rate of change. Determine the average rate of change of g(x) over each interval.

a. [-3, -1]

Q 2	Learning Outcome/Performance Criteria**	Lesson 5-3	Exercise	Page
MCQ	Analyze expressions and functions involving the natural base e.	Special Exponential Functions	Example 2 10-12	234 237


$$f(x) = -2 e^{x+3} + 2$$

Part A Graph the function.

Part B Determine the domain and range.

Part C Find the average rate of change. Determine the average rate of change of g(x) over each interval.

a. [-7, -4]

2) $\log_3 \frac{1}{27} = -3$

4) $\log_3 243 = 5$

 $5) \log_4 64 = 3$

5) $\log_4 32 = \frac{5}{2}$

3) $\log_5 \frac{1}{25} = 2$

http://www.youtube.com/@imaths2022

الأستاذ عماد عودة 0507614804

https://t.me/lomaths11Advanced

Q 3	Learning Outcome/Performance Criteria**	Lesson 6-1	Exercise	Page
MCQ	Write logarithmic expressions in exponential form and write exponential expressions in logarithmic form	Logarithms and Logarithmic Functions	1-12	265
Write each e	equation in logarithmic form.			

7)
$$2^7 = 128$$

Imad Odeh

$$10)\left(\frac{1}{7}\right) = \frac{1}{343}$$

Imad Odeh

8)
$$3^4 = \frac{1}{81}$$

11)
$$2^9 = 512$$

Imad Ode

Imad Odeh

9)
$$7^{-2} = \frac{1}{49}$$

Imad Odeh

$$12) 64^{\frac{2}{3}} = 16$$

lmad Odeh

Q 4	Learning Outcome/Performance Criteria**	Lesson 6-1	Exercise	Page
MCQ	Evaluate logarithmic expressions by using the Change	Logarithms and	Example 5	279
	of Base Formula.	Logarithmic Functions	(21-26)	282

Express logarithm in terms of common logarithms. Then approximate its value to the nearest ten-thousandth.

log₂ 11

 log_830

Q 4	Learning Outcome/Performance Criteria**	Lesson 6-1	Exercise	Page
MCQ	Evaluate logarithmic expressions by using the Change of Base Formula.	Logarithms and Logarithmic Functions	Example 5 (21-26)	279 282
Express each logarithm in terms of common logarithms. Then approximate its				

value to the nearest ten-thousandth.

21) log₄ 22

22) log₁₂ 200

23) log₂ 50

•		
($\overline{\mathbf{c}}$	

Q 4	Learning Outcome/Performance Criteria**	Lesson 6-1	Exercise	Page
MCQ	Evaluate logarithmic expressions by using the Change of Base Formula.	Logarithms and Logarithmic Functions	Example 5 (21-26)	279 282

Express each logarithm in terms of common logarithms. Then approximate its value to the nearest ten-thousandth.

24) log₈ 15

25) log₃ 2

26) log₅ 0.4

Write each expression as a single logarithm.

$$\frac{1}{3}\ln 8 - \ln 3 + \ln 9$$

Q 5	Learning Outcome/Performance Criteria**	Lesson 6-4	Exercise	Page
MCQ	Simplify expressions with natural logarithms.	Natural Logarithms	Example 3 (19-27)	286 291

Write each expression as a single logarithm.

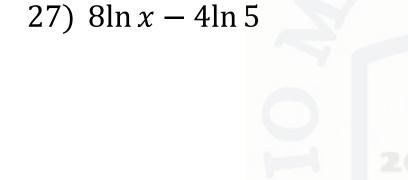
19) $3 \ln 3 - \ln 9$

20) 4ln 16 – ln 256

21)
$$2 \ln x - 2 \ln 4$$

22)
$$3\ln 4 + 3\ln 3$$

23)
$$\ln 25 - 2 \ln 5$$


Write each expression as a single logarithm.

25)
$$4\ln\frac{1}{3} - 6\ln\frac{1}{9}$$

26)
$$7 \ln \frac{1}{2} + 5 \ln 2$$

27)
$$8 \ln x - 4 \ln 5$$

Page

286

291

Page

(295 - 297)

301

Exercise

Example 1, check

(1,2)

Lesson 6-5

Using Exponential and

Logarithmic Functions

of bacteria A cells y after t minutes. Round the value of k to the nearest thousandth.

Learning Outcome/Performance Criteria**

Simplify expressions with natural logarithms.

Q6

MCQ

Part B After how many minutes will there be 1000 bacteria A cells? Round to the nearest tenth if necessary.

Part C Bacteria B grows exponentially according to the model $y = 52e^{0.064t}$. After how many minutes will there be more bacteria A cells than bacteria B cells? Round to the nearest tenth if necessary.

Q 6	Learning Outcome/Performance Criteria**	Lesson 6-5	Exercise	Page
MCQ	Simplify expressions with natural logarithms.	Using Exponential and Logarithmic Functions	Example 1,check (1,2)	(295- 297) 301

Check SCIENCE An experiment starts with 20 bacteria A cells. After 45 minutes, there are 710 bacteria A cells.

Part A Write an exponential growth equation.

Part B Predict when the population will reach 25 million people.

Part C Compare the populations of Florida and California.

Q 6	Learning Outcome/Performance Criteria**	Lesson 6-5	Exercise	Page
MCQ	Simplify expressions with natural logarithms.	Using Exponential and Logarithmic Functions	Example 1,check (1,2)	(295- 297) 301

- 1. POPULATION In **2000**, the world population was estimated to be **6.124** billion people. In **2005**, it was **6.515 billion**.
- a. Write an exponential growth equation to represent the population y in billions t years after **2000**.
- b. Use the equation to predict the year in which the world population reached **7.5 billion** people.

the second management of the second management	Q 6	Learning Outcome/Performance Criteria**	Lesson 6-5	Exercise	Page
Logarithmic Functions (1,2) 301	MCQ	Simplify expressions with natural logarithms.		Example 1,check (1,2)	(295- 297) 301

- 2. CONSUMER AWARENESS Jason wants to buy a new HD television, but he thinks that if he waits, the quality of HD televisions will improve. The television he wants to buy costs **\$2500** now, and based on pricing trends, Jason thinks that the price will increase by **4%** each year.
- a. Write an exponential growth equation to represent the price y of a new HD television t years from now.
- b. Use the equation to predict when a new HD television will cost \$3000.
- c. Jason decides to wait to buy a new television and saves his money. He puts \$2200 in a savings account with **4.7**% annual interest compounded continuously. Determine when the amount in his savings will exceed the cost of a new television.

1)
$$\frac{x(x-3)(x+6)}{x^2+x-12}$$

$$2) \frac{y^2(y^2 + 3y + 2)}{2y(y - 4)(y + 2)}$$

Q 7	Learning Outcome/Performance Criteria**	Lesson 7-1	Exercise	Page
MCQ اختیار من متعدد	Simplify rational expressions.	Multiplying and Dividing Rational Expressions	(1-10)	315

Simplify each expression, and state when the original expression is undefined.

3)
$$\frac{(x^2-9)(x^2+z^2)}{4(x+z)(x-3)}$$

4)
$$\frac{(x^2 - 16x + 64)(x + 2)}{(x^2 - 64)(x^2 - 6x - 16)}$$

MCQ Simplify rational expressions. Multiplying and Dividing	Exercise	Page
اختیار من متعدد Rational Expressions	(1-10)	315

Simplify each expression, and state when the original expression is undefined.

5)
$$\frac{x^2(x+2)(x-4)}{6x(x^2+x-20)}$$

6)
$$\frac{3y(y-8)(y^2+2y-24)}{15y^2(y^2-12y+32)}$$

Q 7	Learning Outcome/Performance Criteria**	Lesson 7-1	Exercise	Page
MCQ اختيار من متعدد	Simplify rational expressions.	Multiplying and Dividing Rational Expressions	(1-10)	315

$$7) \ \frac{x^2 - 5x - 14}{28 + 3x - x^2}$$

$$8) \frac{9x^2 - x^3}{x^2 - 3x - 54}$$

Q 7	Learning Outcome/Performance Criteria**	Lesson 7-1	Exercise	Page
MCQ اختیار من متعدد	Simplify rational expressions.	Multiplying and Dividing Rational Expressions	(1-10)	315

9)
$$\frac{(x-4)(x^2+2x-48)}{(36-x^2)(x^2+4x-32)}$$

$$10) \frac{16 - c^2}{c^2 + c - 20}$$

1)
$$\frac{3}{x} + \frac{5}{2}$$

$$2)\frac{3}{8p^2r} + \frac{5}{4p^2r}$$

Q 8	Learning Outcome/Performance Criteria**	Lesson 7-2	Exercise	Page
MCQ اختیار من متعدد	Simplify rational expressions by adding and subtracting.	Adding and Subtracting Rational Expressions	(1-12)	323

3)
$$\frac{2c-7}{3}+4$$

$$4)\frac{2}{m^2p} + \frac{5}{p}$$

$$5) \ \frac{12}{5y^2} - \frac{2}{5yz}$$

6)
$$\frac{7}{4gh} + \frac{3}{4h^2}$$

Q 8	Learning Outcome/Performance Criteria**	Lesson 7-2	Exercise	Page
MCQ اختیار من متعدد	Simplify rational expressions by adding and subtracting.	Adding and Subtracting Rational Expressions	(1-12)	323

Simplify each expression

7)
$$\frac{3}{w-3} - \frac{2}{w^2-9}$$

$$(8)\frac{3t}{2-x} + \frac{5}{x-2}$$

Simplify each expression

$$9) \ \frac{k}{k-n} - \frac{k}{n-k}$$

$$10)\frac{4z}{z-4} + \frac{z+4}{z+1}$$

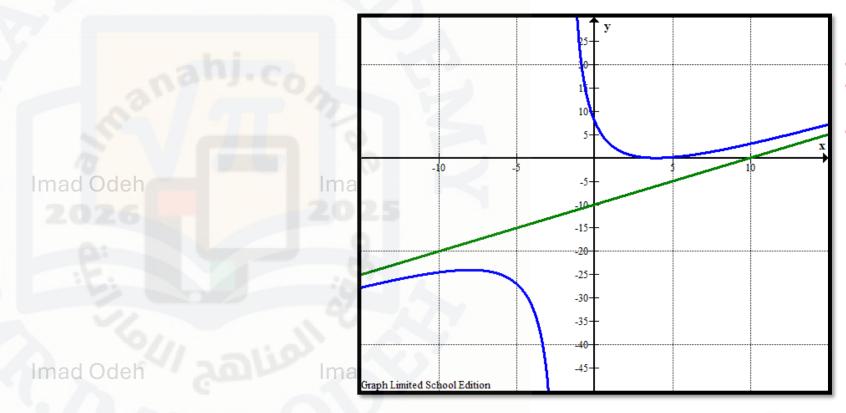
Simplify each expression

11)
$$\frac{n}{n-3} - \frac{2n+2}{n^2-2n-3}$$

$$12)\frac{3}{y^2+y-12} - \frac{2}{y^2+6y+8}$$

Q 9	Learning Outcome/Performance Criteria**	Lesson 7-4	Exercise	Page
FRQ کتابي	Graph rational functions with oblique asymptotes and point discontinuity	Graphing Rational Functions	11-16	344

11.
$$f(x) = \frac{(x-4)^2}{x+2}$$

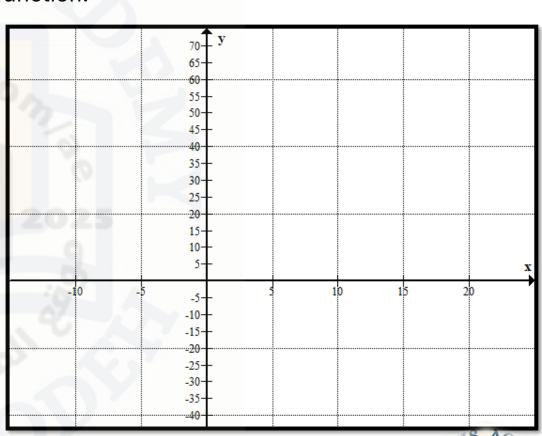

Zeros

Imad Odeh

Vertical asymptote

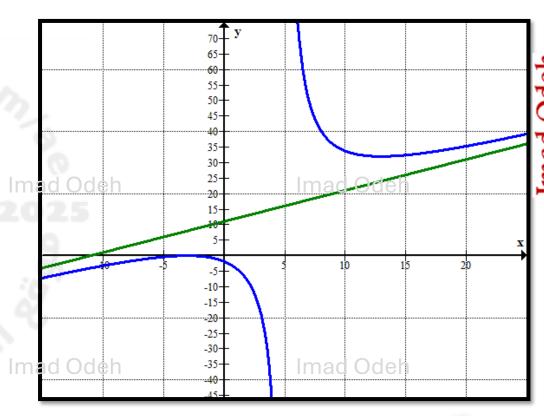
Horizontal asymptote

Imad Odel



Q 9	Learning Outcome/Performance Criteria**	Lesson 7-4	Exercise	Page	
FRQ کتابي	Graph rational functions with oblique asymptotes and point discontinuity	Graphing Rational Functions	11-16	344	
Find the ze	Find the zeros and asymptotes of each function. Then graph each function. $(v + 3)^2$				

12.
$$f(x) = \frac{(x+3)^2}{x-5}$$
Imad Odeh

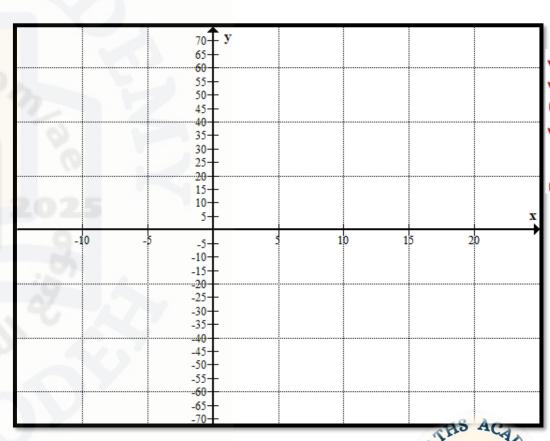


Imad Odeh

Q9	Learning Outcome/Performance Criteria**	Lesson 7-4	Exercise	Page
FRQ کتاب <i>ي</i>	Graph rational functions with oblique asymptotes and point discontinuity	Graphing Rational Functions	11-16	344

12.
$$f(x) = \frac{(x+3)^2}{x-5}$$
Imad Odeh

Q 3	Learning Outcome/Performance Criteria**	Lesson 7-4	Exercise	Page
FRQ کتابي	Graph rational functions with oblique asymptotes and point discontinuity	Graphing Rational Functions	11-16	344

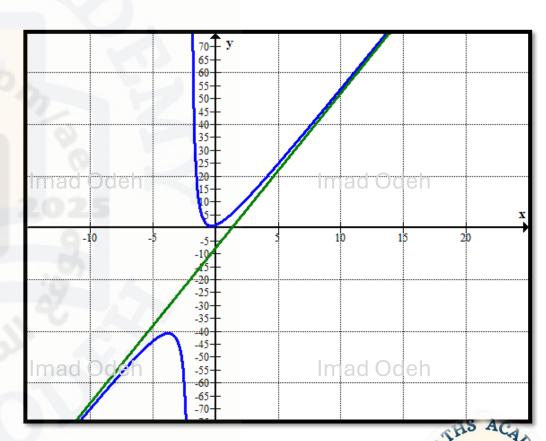

13.
$$f(x) = \frac{6x^2 + 4x + 2}{x + 2}$$

Imad Odeh

Imad Odeh

mad Odeh

Q 9	Learning Outcome/Performance Criteria**	Lesson 7-4	Exercise	Page
FRQ کتاب <i>ي</i>	Graph rational functions with oblique asymptotes and point discontinuity	Graphing Rational Functions	11-16	344

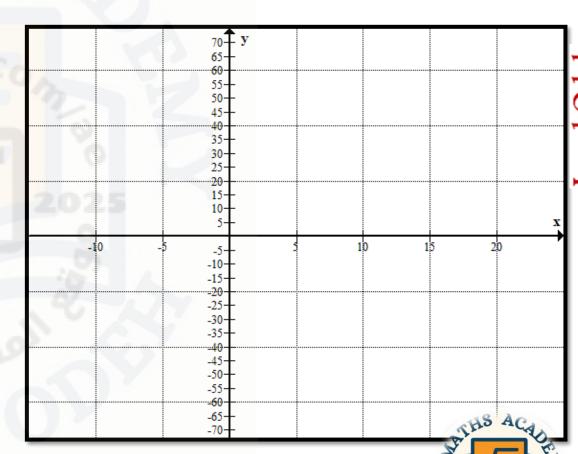

13.
$$f(x) = \frac{6x^2 + 4x + 2}{x + 2}$$

Imad Odeh

Imad Odeh

mad Odeh

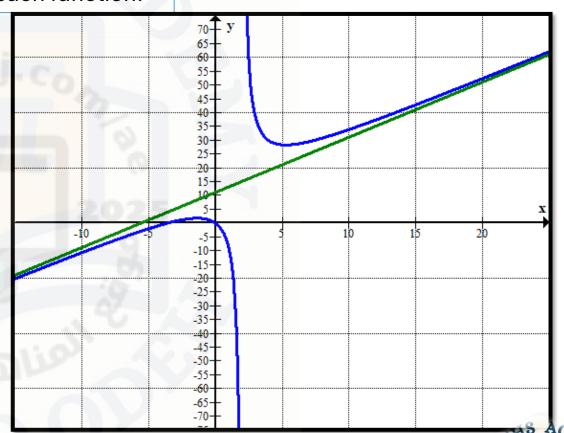
FRQ Graph rational functions with oblique asymptotes and Graphing Rational 11-16 344 عابي 344	Q 9	Learning Outcome/Performance Criteria**	Lesson 7-4	Exercise	Page
	•			11-16	344


14.
$$f(x) = \frac{2x^2 + 7x}{x - 2}$$

Imad Odeh

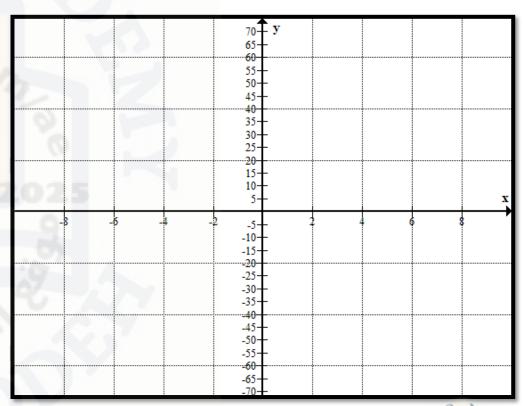
Imad Odeh

mad Odeh


Imad Odeh

Q 9	Learning Outcome/Performance Criteria**	Lesson 7-4	Exercise	Page
FRQ	Graph rational functions with oblique asymptotes and	Graphing Rational	11-16	344
كتابي	point discontinuity	Functions		

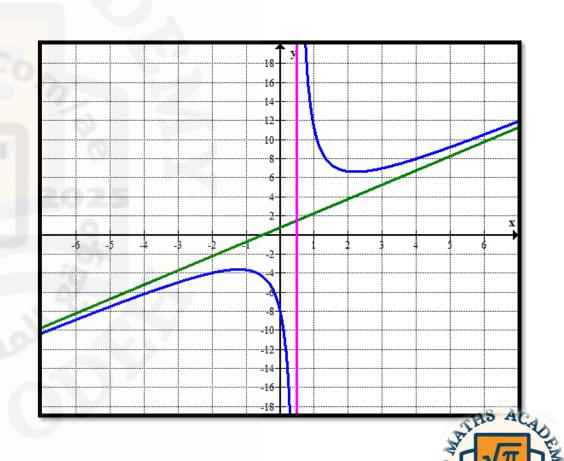
14.
$$f(x) = \frac{2x^2 + 7x}{x - 2}$$
Imad Odeh



Q 3	Learning Outcome/Performance Criteria**	Lesson 7-4	Exercise	Page
FRQ کتاب <i>ي</i>	Graph rational functions with oblique asymptotes and point discontinuity	Graphing Rational Functions	11-16	344

$$\frac{15. f(x)}{2x - 1} = \frac{3x^2 + 8}{2x - 1}$$
Imad Odeh

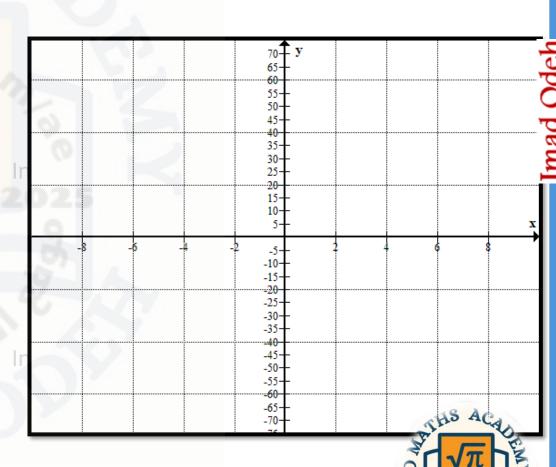
Q 9	Learning Outcome/Performance Criteria**	Lesson 7-4	Exercise	Page
FRQ کتابي	Graph rational functions with oblique asymptotes and point discontinuity	Graphing Rational Functions	11-16	344


15.
$$f(x) = \frac{3x^2 + 8}{2x - 1}$$

Imad Odeh

Imad Odeh

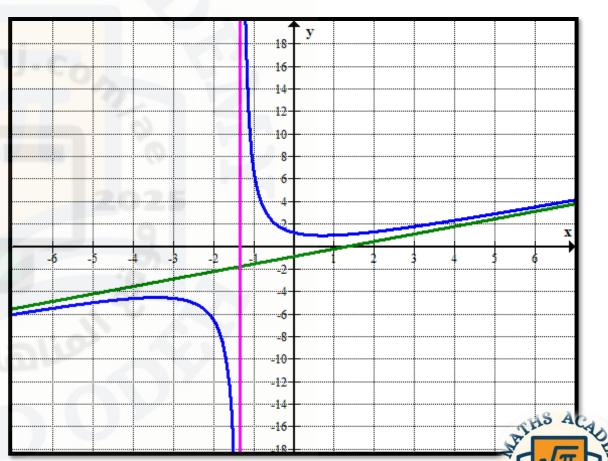
mad Odeh


الأستاذ عماد عودة 0507614804

https://t.me/lomaths11Advanced http://www.youtube.com/@imaths2022

Q 9	Learning Outcome/Performance Criteria**	Lesson 7-4	Exercise	Page	
FRQ کتابي	Graph rational functions with oblique asymptotes and point discontinuity	Graphing Rational Functions	11-16	344	
Find the zeros and asymptotes of each function. Then graph each function.					

16.
$$f(x) = \frac{2x^2 + 5}{3x + 4}$$
Imad Odeh



الأستاذ عماد عودة 0507614804

https://t.me/lomaths11Advanced http://www.youtube.com/@imaths2022

16.
$$f(x) = \frac{2x^2 + 5}{3x + 4}$$

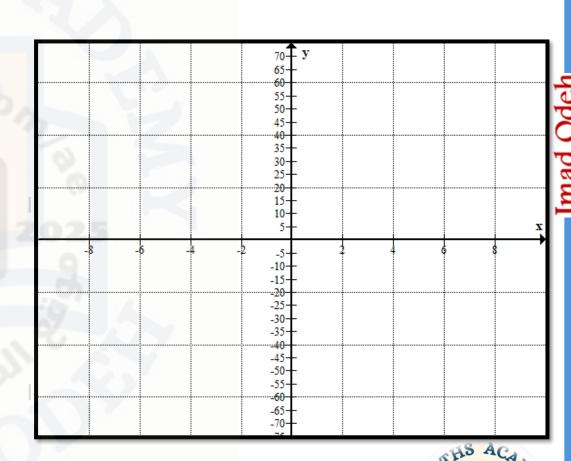
Page

344

الأستاذ عماد عودة 0507614804

https://t.me/lomaths11Advanced http://www.youtube.com/@imaths2022

Q 9	Learning Outcome/Performance Criteria**	Lesson 7-4	Exercise	Page
FRQ کتاب <i>ي</i>	Graph rational functions with oblique asymptotes and point discontinuity	Graphing Rational Functions	11-16	344

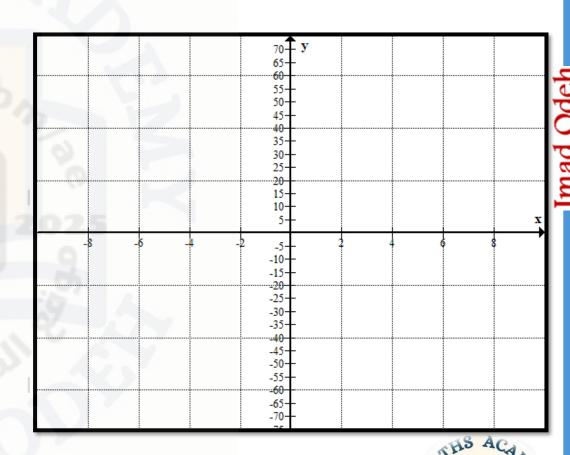

17.
$$f(x) = \frac{x^2 - 2x - 8}{x - 4}$$

Imad Odeh

Imad Odeh

nad Odeh

Q 3	Learning Outcome/Performance Criteria**	Lesson 7-4	Exercise	Page
FRQ کتاب <i>ي</i>	Graph rational functions with oblique asymptotes and point discontinuity	Graphing Rational Functions	11-16	344


18.
$$f(x) = \frac{x^2 + 4x - 12}{x - 2}$$

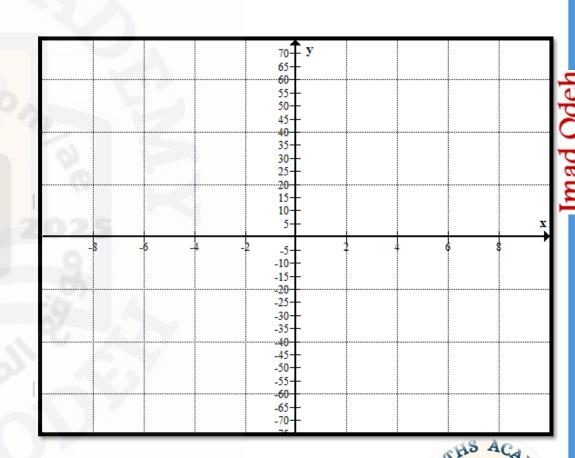
Imad Odeh

Imad Odeh

mad Odeh

Imad Odeh

FRQ Graph rational functions with oblique asymptotes and Graphing Rational 11-16 34	Q 9	Learning Outcome/Performance Criteria**	Lesson 7-4	Exercise	Page
point discontinuity Functions	_			11-16	344

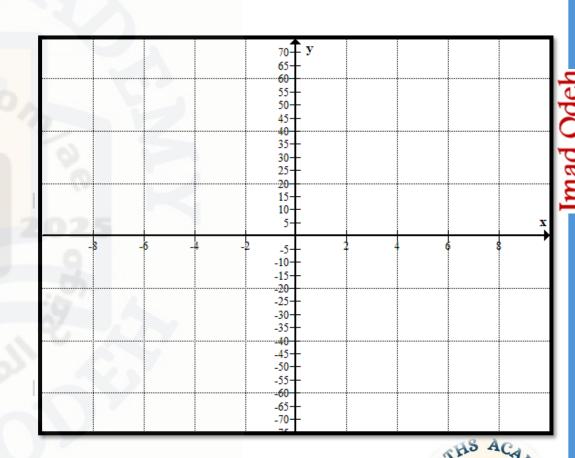

19.
$$f(x) = \frac{x^2 - 25}{x + 5}$$

Imad Odeh

Imad Odeh

mad Odeh

Q 9	Learning Outcome/Performance Criteria**	Lesson 7-4	Exercise	Page
FRQ کتابي	Graph rational functions with oblique asymptotes and point discontinuity	Graphing Rational Functions	11-16	344


20.
$$f(x) = \frac{x^2 - 64}{x - 8}$$

Imad Odeh

Imad Odeh

nad Odeh

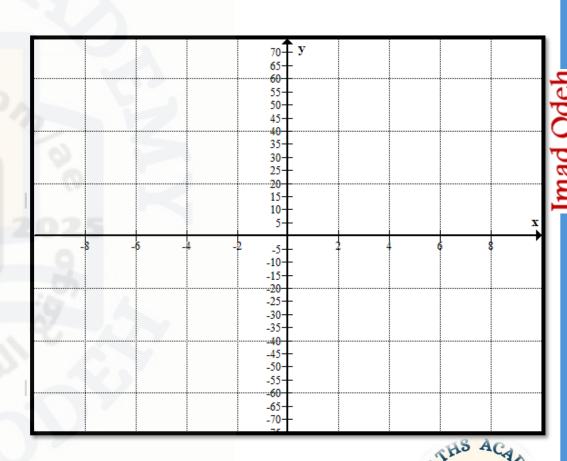
Q 9	Learning Outcome/Performance Criteria**	Lesson 7-4	Exercise	Page
FRQ کتابي	Graph rational functions with oblique asymptotes and point discontinuity	Graphing Rational Functions	11-16	344

21.
$$f(x) = \frac{(x-4)(x^2-4)}{x^2-6x+8}$$

Imad Odeh

Imad Odeh

mad Odeh


Q 9	Learning Outcome/Performance Criteria**	Lesson 7-4	Exercise	Page
FRQ کتاب <i>ي</i>	Graph rational functions with oblique asymptotes and point discontinuity	Graphing Rational Functions	11-16	344

Graph each function. Find the point dis

22.
$$f(x) = \frac{(x+5)(x^2+2x-3)}{x^2+8x+15}$$

Imad Odeh

Q 10	Learning Outcome/Performance Criteria**	Lesson 7-5	Exercise	Page
FRQ کتابي	Recognize and solve direct and joint variation equations.	Variation	(7-12)	351

7.
$$a = -96$$
 when $b = 3$ and $c = -8$

Q 10	Learning Outcome/Performance Criteria**	Lesson 7-5	Exercise	Page
FRQ	Recognize and solve direct and joint variation	Variation	(7-12)	351
كتابي	equations.			

9.
$$a = -108$$
 when $b = 2$ and $c = 9$

	Q 10	Learning Outcome/Performance Criteria**	Lesson 7-5	Exercise	Page
equations. کتابي	FRQ کتاب <i>ي</i>	Recognize and solve direct and joint variation equations.	Variation	(7-12)	351

10.
$$a = 24$$
 when $b = 8$ and $c = 12$

Q 10	Learning Outcome/Performance Criteria**	Lesson 7-5	Exercise	Page
FRQ کتابي	Recognize and solve direct and joint variation equations.	Variation	(7-12)	351

11. If y varies jointly as x and z, and y = 18 when x = 2 and z = 3, find y when x is 5 and z is 6.

Q 10	Learning Outcome/Performance Criteria**	Lesson 7-5	Exercise	Page
FRQ کتابی	Recognize and solve direct and joint variation equations.	Variation	(7-12)	351

12. If y varies jointly as x and z, and y = -16 when x = 4 and z = 2, find y when x is -1 and z is 7.

$$1)\frac{2x+3}{x+1} = \frac{3}{2}$$

$$2) - \frac{12}{y} = y - 7$$

Lesson 7-5

Exercise

Q 11	Learning Outcome/Performance Criteria**	Lesson 7-5	Exercise	Page
FRQ کتابي	Solve rational equations in one variable.	Variation	(1-12)	361

3)
$$\frac{9}{x-7} - \frac{7}{x-6} = \frac{13}{x^2 - 13x + 42}$$

4)
$$\frac{13}{y+3} - \frac{12}{y+4} = \frac{18}{y^2 + 7y + 12}$$

FRQ Solve rational equations in one variable. Variation (1-12) 361	Q 11	Learning Outcome/Performance Criteria**	Lesson 7-5	Exercise	Page
Ų.	FRQ کتابي	Solve rational equations in one variable.	Variation	(1-12)	361

5)
$$\frac{14}{x-2} - \frac{18}{x+1} = \frac{22}{x^2 - x - 2}$$

6)
$$\frac{2}{a+2} + \frac{10}{a+5} = \frac{36}{a^2 + 7a + 10}$$

Q 11	Learning Outcome/Performance Criteria**	Lesson 7-5	Exercise	Page
FRQ کتاب <i>ي</i>	Solve rational equations in one variable.	Variation	(1-12)	361

7)
$$\frac{x}{2x-1} + \frac{3}{x+4} = \frac{21}{2x^2 + 7x - 4}$$

8)
$$\frac{2}{y-5} + \frac{y-1}{2y+1} = \frac{2}{2y^2 - 9y - 5}$$

Q 11	Learning Outcome/Performance Criteria**	Lesson 7-5	Exercise	Page
FRQ کتابي	Solve rational equations in one variable.	Variation	(1-12)	361

9)
$$\frac{x-8}{2x+2} + \frac{x}{2x+2} = \frac{2x-3}{x+1}$$

10)
$$\frac{12p+19}{p^2+7p+12} - \frac{3}{p+3} = \frac{5}{p+4}$$

Q 11	Learning Outcome/Performance Criteria**	Lesson 7-5	Exercise	Page
FRQ کتابي	Solve rational equations in one variable.	Variation	(1-12)	361

11)
$$\frac{2f}{f^2 - 4} + \frac{1}{f - 2} = \frac{2}{f + 2}$$

12)
$$\frac{8}{t^2 - 9} + \frac{4}{t + 3} = 1$$

Q12	Learning Outcome/Performance Criteria**	Lesson 8-1	Exercise	Page
MCQ اختیار من متعدد	Classify and analyze samples	Random Sampling	4-10	375

Identify each sample or question as biased or unbiased. Explain your reasoning.

- 4. A random sample of eight people is asked to select their favorite food for a survey about Americans' food preferences.
- 5. Every tenth student at band camp is asked to name his or her favorite band for a survey about the campers.

6. Every fifth person entering a museum is asked to name his or her favorite type of book to read for a survey about reading interests of people in the city.

7. Do you think that the workout facility needs a new treadmill and racquetball court?

8. Which is your favorite type of music, pop, or country?

9. Are you a member of any after-school clubs?

10. Don't you agree that employees should pack their lunch?

Q13	Learning Outcome/Performance Criteria**	Lesson 8-2	Exercise	Page
MCQ اختيار من متعدد	Find and compare experimental and theoretical probabilities	Using Statistical Experiments	1-3	383 412

 A student spun a spinner with 4 equal sections 100 times and recorded the results.

mad Odeh

a. Find the theoretical probability of spinning blue. Write your answer as a percentage rounded to the nearest tenth, if necessary.

Spinner Section	Frequency
Red	35
Blue	38
Green	13
Yellow	14

b. Find the experimental probability of spinning blue.

Write your answer as a percentage rounded to the nearest tenth, if necessary.

Q13	Learning Outcome/Performance Criteria**	Lesson 8-2	Exercise	Page
MCQ اختیار من متعدد	Find and compare experimental and theoretical probabilities	Using Statistical Experiments	1-3	383 412

2. A student flipped a coin 125 times and recorded the results.

mad Odeh

Coin Result	Frequency
Heads	73
Tails	52

- a. Find the theoretical probability of the coin landing on heads. Write your answer as a percentage rounded to the nearest tenth, if necessary.
- **b.** Find the experimental probability of the coin landing on heads. Write your answer as a percentage rounded to the nearest tenth, if necessary.

- a. Find the theoretical probability of rolling a 3. Write your answer as a percentage rounded to the nearest tenth, if necessary.
- **b.** Find the experimental probability of rolling a 3. Write your answer as a percentage rounded to the nearest tenth, if necessary.

mad Odeh

Number on Die	Frequency
1	32
2	18
3	27
4	16
5	33
6	24

Q13	Learning Outcome/Performance Criteria**	Lesson 8-2	Exercise	Page
MCQ اختيار من متعدد	Find and compare experimental and theoretical probabilities	Using Statistical Experiments	1-3 4	383 412

4. Leonard randomly selected a card from a standard deck of playing cards, recorded the suit, and returned the card. He followed this set of steps 120 times. The results are shown.

Which statement about the results is true?

- A. The theoretical probability of selecting a heart is less than the experimental probability of selecting a heart.
- B. The theoretical probability of selecting a diamond is less than the experimental probability of selecting a diamond.
- C. The experimental probability of selecting a club is greater than the theoretical probability of selecting a club.
- D. The experimental probability of selecting a heart is equal to the experimental probability of selecting a diamond.

Suit	Frequency
Heart	28
Diamond	37
Spade	34
Club	21

Q14	Learning Outcome/Performance Criteria**	Lesson 8-3	Exercise	Page
MCQ	Describe distributions by finding their mean and	Analyzing Population	Example 1 & 1-3	388-391
اختيار من متعدد	standard deviation.	Data	7	413

Example 1 TRACK A coach recorded the times of each track member for a 400-meter race. Find and interpret the standard deviation of the data.

400m Race Times (seconds)				
57.1	55.9			
59.3	54.9			
54.6	50.3			
55.2	53.5			

Q14	Learning Outcome/Performance Criteria**	Lesson 8-3	Exercise	Page
MCQ اختیار من متعدد	Describe distributions by finding their mean and standard deviation.	Analyzing Population Data	Example 1 & 1-3 7	388-391 413

1. BARBER A barber wants to purchase new professional shears from a Web site. The prices of all of the shears are shown in the table. Use the standard deviation formula to find and interpret the standard deviation of the data. Round your answers to the nearest cent.

Cost of Shears (\$)					
50	165	55	79		
84	68	38	42		

Q14	Learning Outcome/Performance Criteria**	Lesson 8-3	Exercise	Page
MCQ اختیار من متعدد	Describe distributions by finding their mean and standard deviation.	Analyzing Population Data	Example 1 & 1-3 7	388-391 413

2. READING Ms. Sanchez keeps track of the total number of books each student in the book club reads during the school year. Use the standard deviation formula to find and interpret the standard deviation of the data. Round your answers to the nearest tenth.

Books Read						
9 6 12						
8	9	14				
10 13 8						

Q14	Learning Outcome/Performance Criteria**	Lesson 8-3	Exercise	Page
MCQ اختيار من متعدد	Describe distributions by finding their mean and standard deviation.	Analyzing Population Data	Example 1 & 1-3 7	388-391 413

7. Zain is analyzing two sets of data

Select all the true statements about each data set.

- A. Data set A has a higher average value.
- B. Data set B has a higher average value.
- C. Data set A is more varied.
- D. Data set B is more varied.

	V	Set A	31 N	
35	28	35	33	32
32	31	30	36	49
36	33	29	34	37

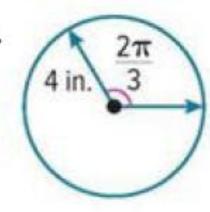
_		Set B	N	
22	26	26	24	27
38	35	31	22	30
24	33	30	25	38

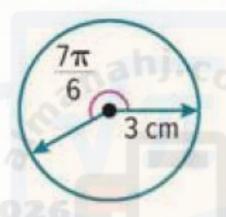
Q15	Learning Outcome/Performance Criteria**	Lesson 9-1	Exercise	Page
FRQ	Convert degree measures of angles to radian measures and vice versa and apply to finding arc length	Angles and Angle Measure	52-69	422

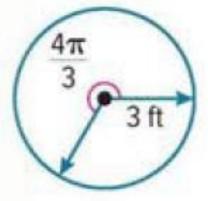
REGULARITY Rewrite each degree measure in radians and each radian measure in degrees.

60.
$$-\frac{91}{2}$$

51.
$$-\frac{7\pi}{12}$$


59.
$$\frac{5\pi}{2}$$


Find the length of each arc. Round to the nearest tenth.


63.

Imad Odeh

64.

Q16	Learning Outcome/Performance Criteria**	Lesson 9-2	Exercise	Page
MCQ اختیار من متعدد	Find values of trigonometric functions by using reference angles.	Trigonometric Functions of General Angles	40-45	434

Find the exact value of each trigonometric function.

41)
$$\cos\left(-\frac{11}{4}\pi\right)$$

43)
$$\csc\left(\frac{\pi}{4}\right)$$

45)
$$\tan\left(-\frac{\pi}{4}\right)$$

Q17	Learning Outcome/ Performance Criteria***	Lesson 9-3	Exercise	Page	
MCQ اختيار من متعدد	Find values of trigonometric functions given a point on a unit circle or the measure of a special angle.	Circular and Periodic Functions	(1-6)	441	
The terminal side of angle θ in standard position intersects the unit circle at each point P.					

Find $\cos \theta$ and $\sin \theta$.

$$1)P\left(-\frac{\sqrt{3}}{2},\frac{1}{2}\right)$$

$$2)P(0,-1)$$

$$(3)P\left(-\frac{2}{3},\frac{\sqrt{5}}{3}\right)$$

$$4)P\left(-\frac{4}{5},-\frac{3}{5}\right)$$

$$5)P\left(\frac{1}{6}, -\frac{\sqrt{35}}{6}\right)$$

$$6)P\left(\frac{\sqrt{7}}{4},\frac{3}{4}\right)$$

Q18	Learning Outcome/Performance Criteria**	Lesson 9-4	Exercise	Page
MCQ اختیار من متعدد	Model periodic real-world situations with sine and cosine functions. (No need for graphing calculator)	Graphing Sine and Cosine Functions	Example 5 & Example 6 (17-20)	449 & 450 452

Example 5 SPRINGS An object on a spring oscillates according to the function $y = 40 \cos \pi t$, where y is the distance in centimeters above its equilibrium position at time t in seconds.

Part A Find the period and frequency, and describe them in the context of the situation.

Part B Identify the domain and range in the context of the situation.

Q18	Learning Outcome/Performance Criteria**	Lesson 9-4	Exercise	Page
MCQ اختیار من متعدد	Model periodic real-world situations with sine and cosine functions. (No need for graphing calculator)	Graphing Sine and Cosine Functions	Example 5 & Example 6 (17-20)	449 & 450 452

Example 6 ELECTRICITY The voltage supplied by an electrical outlet can be represented by a periodic function. The voltage oscillates between -120 and 120 volts, with a frequency of 50 cycles per second. Write and graph a function for the voltage v as a function of time t.

b. Identify the domain and range in the context of the situation.

Page

449 & 450

452

Q18	Learning Outcome/Performance Criteria**	Lesson 9-4	Exercise	Page
MCQ اختیار من متعدد	Model periodic real-world situations with sine and cosine functions. (No need for graphing calculator)	Graphing Sine and Cosine Functions	Example 5 & Example 6 (17-20)	449 & 450 452

- 18. SWINGS Suppose a tire swing is rotated $\frac{\pi}{5}$ radians and released. The function $y = \frac{\pi}{5} \cos 2t$ represents the displacement of the swing at time t for a frequency of radians per second.
- a. Find the period and frequency and describe them in the context of the situation.
- b. Identify the domain and range in the context of the situation.

Q18 Learning Outcome/Performance Criteria**	Lesson 9-4	Exercise	Page
MCQ Model periodic real-world situations with sine and cosine functions. (No need for graphing calculator)	Graphing Sine and Cosine Functions	Example 5 & Example 6 (17-20)	449 & 450 452

19. REASONING A boat that is tied to a dock moves vertically up and down with the waves. Delray watches the boat for **30** seconds and notes that the boat moves up and down a total of **6** times. The difference between the boat's highest point and lowest point is **3** feet. Write and graph a trigonometric function that models the boat's vertical position x seconds after she began watching. Assume that when Delray began watching the boat, it was at its highest point and that its average vertical position was **0** feet.

Q18	Learning Outcome/Performance Criteria**	Lesson 9-4	Exercise	Page
MCQ اختیار من متعدد	Model periodic real-world situations with sine and cosine functions. (No need for graphing calculator)	Graphing Sine and Cosine Functions	Example 5 & Example 6 (17-20)	449 & 450 452

20. FERRIS WHEELS A Ferris wheel at a state fair has a diameter of $65 \ feet$ and makes 4 complete revolutions each minute. Santiago boards a car of the Ferris wheel at the car's lowest point, and he rides for 2 minutes. Write and graph a trigonometric function that models his height above or below the axle of the Ferris wheel θ minutes after the ride starts.

Q19	Learning Outcome/Performance Criteria**	Lesson 9-6	Exercise	Page
MCQ اختیار من متعدد	Graph vertical translations of trigonometric functions.	Translations of Trigonometric Graphs	(13-18)	469

State the amplitude, period, phase shift, vertical shift, and midline equation of each function. Then graph the function and state the domain and range.

$$13. y = \cos \theta + 3$$

$$15. y = \tan \theta + \frac{1}{2}$$

$$17. y = 2 \sin \theta - 4$$

$$14. y = \tan \theta - 1$$

$$16. y = 2 \cos \theta - 5$$

18.
$$y = \frac{1}{3}\sin\theta + 7$$

Q20	Learning Outcome/Performance Criteria**	Lesson 9-6	Exercise	Page
MCQ اختيار من متعدد	Find values of angle measures by using inverse trigonometric functions.	Translations of Trigonometric Graphs	Example 1 (1-9)	473 & 475

Example 1 Find $Tan^{-1}\sqrt{3}$. Write angle measures in degrees and radians.

MCQ Find values of angle measures by using inverse Inverse Trigonometric Example 1 473 & trigonometric functions. Functions (1-9) 475	Q20	Learning Outcome/Performance Criteria**	Lesson 9-7	Exercise	Page
	•		Ğ	•	

Find each value. Write angle measures in degrees and radians.

1)
$$cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$$
.

$$2) \sin^{-1}\left(-\frac{\sqrt{3}}{2}\right).$$

3)
$$arccos\left(-\frac{1}{2}\right)$$
.

4)
$$Arctan\sqrt{3}$$
.

5)
$$Arccos\left(-\frac{\sqrt{2}}{2}\right)$$
.

6)
$$Tan^{-1}(-1)$$

7)
$$sin^{-1}\left(\frac{\sqrt{2}}{2}\right)$$
.

8)
$$cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)$$
.

هيكل أسئلة الرياضيات الفصل الأول EoT1 11Advanced

القسم الكتابي (ورقي) FRQ

Page

Q21	Learning Outcome/Performance Criteria**	Lesson 5-2	Exercise
FRQ	Solve exponential equations in one variable.	Solving Exponential	(1-6)
كتابي ورقي		Equations and Inequalities	

$$1) 25^{2x+3} = 25^{5x-9}$$

$$2) 9^{8x-4} = 81^{3x+6}$$

Q21	Learning Outcome/Performance Criteria**	Lesson 5-2	Exercise	Page
FRQ كتابي ورقي	Solve exponential equations in one variable.	Solving Exponential Equations and Inequalities	(1-6)	229

$$3) 4^{x-5} = 16^{2x-31}$$

4)
$$4^{3x-3} = 8^{4x-4}$$

Q21	Learning Outcome/Performance Criteria**	Lesson 5-2	Exercise	Page
FRQ كتابي ورقي	Solve exponential equations in one variable.	Solving Exponential Equations and Inequalities	(1-6)	229

5)
$$9^{-x+5} = 27^{6x-10}$$

6)
$$125^{3x-4} = 25^{4x+2}$$

Q22	Learning Outcome/Performance Criteria**	Lesson 5-2	Exercise	Page
FRQ كتابي ورقي	a) Solve logarithmic equations using properties of equality.b) Simplify and evaluate expressions by using the properties of logarithms.	Solving Exponential Equations and Inequalities	(7-12) (13-24)	273

7)
$$\log_4(2x^2 - 4) = \log_4 2x$$

8)
$$\log_5(x^2 - 6) = \log_5 x$$

Q22	Learning Outcome/Performance Criteria**	Lesson 5-2	Exercise	Page
كتابي ورقي	a) Solve logarithmic equations using properties of equality.b) Simplify and evaluate expressions by using the properties of logarithms.	Solving Exponential Equations and Inequalities	(7-12) (13-24)	273

9)
$$\log_3(x^2 - 8) = \log_3 2x$$

10)
$$\log_4(2x^2 - 20) = \log_4 6x$$

Q22	Learning Outcome/Performance Criteria**	Lesson 5-2	Exercise	Page
FRQ كتابي ورقي	a) Solve logarithmic equations using properties of equality.b) Simplify and evaluate expressions by using the properties of logarithms.	Solving Exponential Equations and Inequalities	(7-12) (13-24)	273
~ .				

11)
$$\log_2(6x^2 + 1) = \log_2 5x$$

12)
$$\log_6(6x^2 - 3) = \log_6 7x$$

14) log₄ 20

$$4 \log_4 \frac{2}{3}$$

15)
$$\log_4 \frac{4}{3}$$

Q22	Learning Outcome/Performance Criteria**	Lesson 5-2	Exercise	Page
FRQ كتابي ورقي	a) Solve logarithmic equations using properties of equality.b) Simplify and evaluate expressions by using the properties of logarithms.	Solving Exponential Equations and Inequalities	(7-12) (13-24)	273
Use log ₂	$3 = 1.5850 \ and \approx 2.3219$ to approximate the value	ue of each expression.		

19) log₂ 25

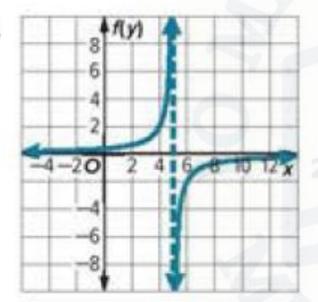
20) log₂ 27

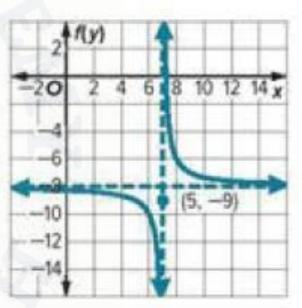
21) log₂ 125

22) log₂ 625

23) log₂ 81

24) log₂ 243

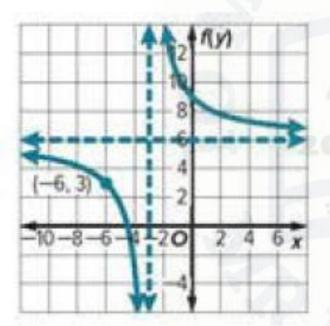


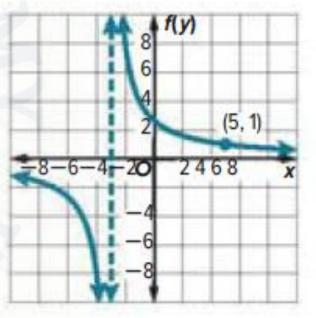

Q23	Learning Outcome/Performance Criteria**	Lesson 7-3	Exercise	Page
FRQ كتابي ورقي	Graph and write reciprocal functions by using transformations.	Graphing Reciprocal Functions	(17-22)	334

Identify the values of a, h, and k. Then write a function for the graph

$$g(x) = \frac{a}{x - h} + k$$

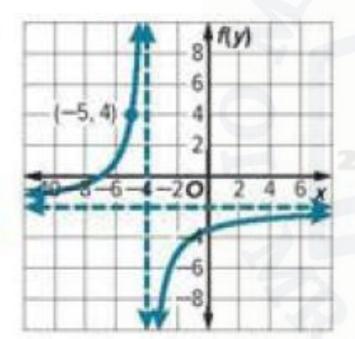
17.

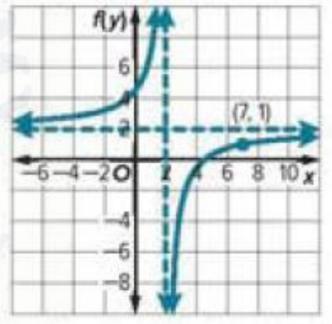



		Exercise	Page
FRQ Graph and write reciprocal functions by using Graph transformations.	raphing Reciprocal Functions	(17-22)	334

Identify the values of a, h, and k. Then write a function for the graph

$$g(x) = \frac{a}{x - h} + k$$




Q23	Learning Outcome/Performance Criteria**	Lesson 7-3	Exercise	Page
FRQ كتابي ورقي	Graph and write reciprocal functions by using transformations.	Graphing Reciprocal Functions	(17-22)	334

Identify the values of a, h, and k. Then write a function for the graph

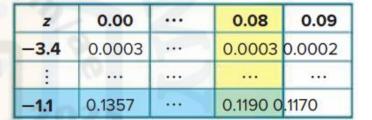
$$g(x) = \frac{a}{x - h} + k$$

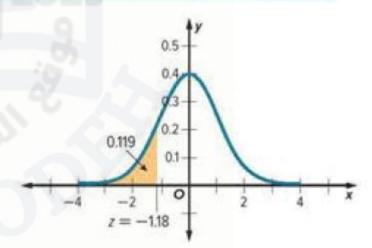
21.

Q24	Learning Outcome/Performance Criteria**	Lesson 7-3	Exercise	Page
FRQ كتابي ورقي	Analyze standardized data and distributions by using z-values .(The table will be provided in the question)	Graphing Reciprocal Functions	Example 6, Example 7 & Example 8 (8-13) & 14	399 & 400 401 & 402

Example 6 Find z if
$$X = 24$$
, $\mu = 19$, and $\sigma = 3.8$.

Check


Find z if X = 106.3, μ = 88.8, and σ = 9.6. Round your answer to the nearest thousandth. z =



Q24	Learning Outcome/Performance Criteria**	Lesson 7-3	Exercise	Page
FRQ كتابي ورقي	Analyze standardized data and distributions by using z-values .(The table will be provided in the question)	Graphing Reciprocal Functions	Example 6, Example 7 & Example 8 (8-13) & 14	399 & 400 401 & 402

Example 7

Use a Standard Normal Distribution Table to find the area under the normal curve within the interval z < -1.18.

Use a table to find the area under the normal curve within z < 0.19. Round your answer to the nearest ten thousandth. The area is

Q24	Learning Outcome/Performance Criteria**	Lesson 7-3	Exercise	Page
FRQ كتابي ورقي	Analyze standardized data and distributions by using z-values .(The table will be provided in the question)	Graphing Reciprocal Functions	Example 6, Example 7 & Example 8 (8-13) & 14	399 & 400 401 & 402

Example 8 INTERNET TRAFFIC The number of daily hits to a local news Web site is normally distributed with μ = 98,452 hits and σ = 10,325 hits.

Find the probability that the Web site will get at least 100,000 hits on a given day, P(X > 100,000).

Q24	Learning Outcome/Performance Criteria**	Lesson 7-3	Exercise	Page
FRQ كتابي ورقي	Analyze standardized data and distributions by using z-values .(The table will be provided in the question)	Graphing Reciprocal Functions	Example 6, Example 7 & Example 8 (8-13) & 14	399 & 400 401 & 402
ملط ام مراحا		Ai au		

Find the z-value for each standard normal distribution.

$$8. \sigma = 9.8, X = 55.4, and \mu = 68.34$$

9.
$$\sigma = 11.6, X = 42.80, and \mu = 68.2$$

10.
$$\sigma = 11.9, X = 119.2, and \mu = 112.4$$

Q24	Learning Outcome/Performance Criteria**	Lesson 7-3	Exercise	Page
FRQ كتابي ورقي	Analyze standardized data and distributions by using z-values .(The table will be provided in the question)	Graphing Reciprocal Functions	Example 6, Example 7 & Example 8 (8-13) & 14	399 & 400 401 & 402

Use a table to find the area under the normal curve for each interval.

$$12. z < -1.56$$

$$13. -2.29 < z < 2.76$$

Lesson 7-3

Exercise

a. What percent of the scores are between 70 and 80?

Learning Outcome/Performance Criteria**

b. What percent of the scores are over 115?

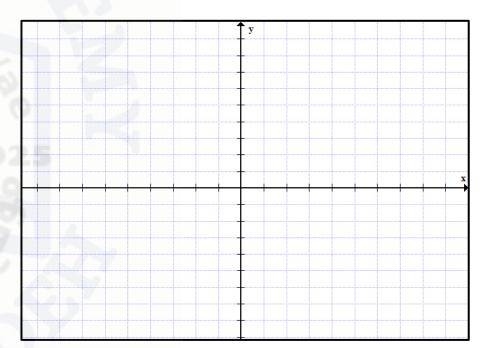
Q24

c. If 75 people take the test, how many would you expect to score lower than 75?

Page

399 & 400

401 & 402


Q25	Learning Outcome/Performance Criteria**	Lesson 7-5	Exercise	Page
FRQ کتابي ورقي	Graph and analyze tangent functions. (No need for graphing calculator)	Graphing Other Trigonometric Functions	Example 1 & Example 2 (1-6)	455,456 & 457 461

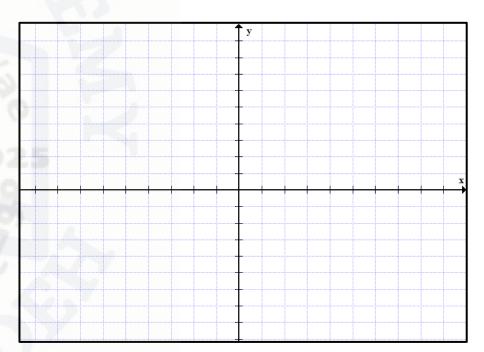
Example 1 Find the period, asymptotes, x-intercepts, midline, and transformations of Then graph the function.

$$y = tan 3x$$
.

period: asymptotes: x-intercepts:

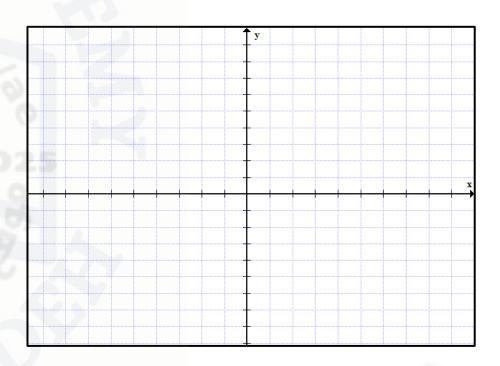
The function is in relation to the parent function.

Q25	Learning Outcome/Performance Criteria**	Lesson 7-5	Exercise	Page
FRQ كتاب <i>ي</i> ورق <i>ي</i>	Graph and analyze tangent functions. (No need for graphing calculator)	Graphing Other Trigonometric Functions	Example 1 & Example 2 (1-6)	455,456 & 457 461

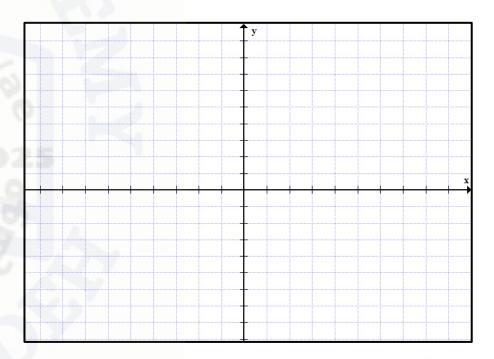

$$y = -\frac{1}{3} \tan 2x.$$

period:

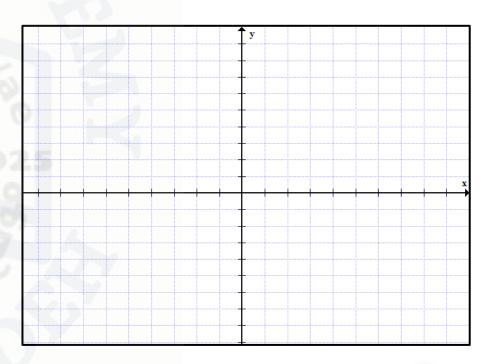
asymptotes:


x-intercepts:

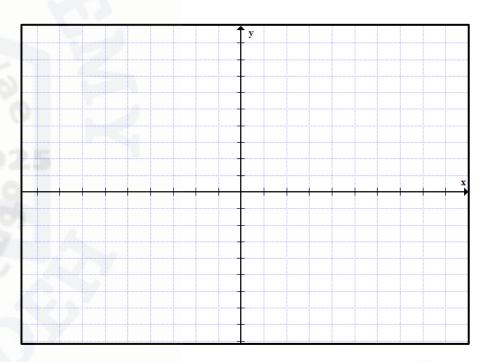
The function is in relation to the parent function.


1)
$$y = \tan 5x$$
.

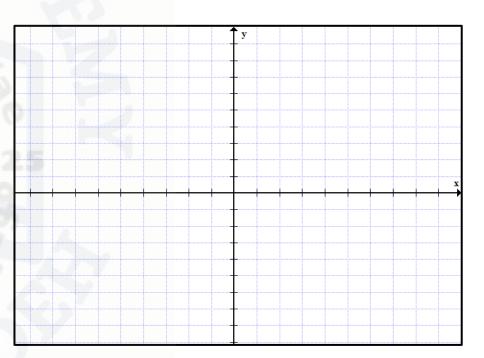
Q25	Learning Outcome/Performance Criteria**	Lesson 7-5	Exercise	Page
FRQ كتابي ورقي	Graph and analyze tangent functions. (No need for graphing calculator)	Graphing Other Trigonometric Functions	Example 1 & Example 2 (1-6)	455,456 & 457 461


$$2) y = \tan 4x.$$

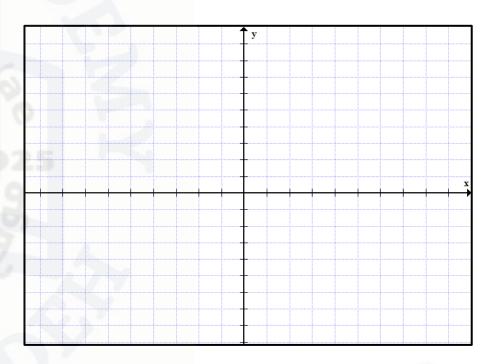
Q25	Learning Outcome/Performance Criteria**	Lesson 7-5	Exercise	Page
FRQ كتابي ورقي	Graph and analyze tangent functions. (No need for graphing calculator)	Graphing Other Trigonometric Functions	Example 1 & Example 2 (1-6)	455,456 & 457 461


3)
$$y = \tan 2x$$
.

Q25	Learning Outcome/Performance Criteria**	Lesson 7-5	Exercise	Page
FRQ كتابي ورقي	Graph and analyze tangent functions. (No need for graphing calculator)	Graphing Other Trigonometric Functions	Example 1 & Example 2 (1-6)	455,456 & 457 461


4)
$$y = \frac{1}{2} \tan 5x$$
.

Q25	Learning Outcome/Performance Criteria**	Lesson 7-5	Exercise	Page
FRQ كتابي ورقي	Graph and analyze tangent functions. (No need for graphing calculator)	Graphing Other Trigonometric Functions	Example 1 & Example 2 (1-6)	455,456 & 457 461


$$5) y = 2\tan\frac{1}{2}x.$$

Q25	Learning Outcome/Performance Criteria**	Lesson 7-5	Exercise	Page
FRQ كتابي ورقي	Graph and analyze tangent functions. (No need for graphing calculator)	Graphing Other Trigonometric Functions	Example 1 & Example 2 (1-6)	455,456 & 457 461

6)
$$y = -\frac{1}{2} \tan 2x$$
.

Don't give up, it's a long Journey to achieve your goals, and you will face many barriers and obstacles, some of which can be easily overcome, and others are very difficult to overcome, some of which will bring you down and cost you a lot, and some of which will set you back, but in the end you will reach your destination and achieve more than you expect.

تمنياتي بالتوفيق للجميع Best wishes

الأستاذ عماد عودة

https://t.me/lomaths11Advanced http://www.youtube.com/@imaths2022

