

ملخص وأوراق عمل وحدة equilibrium chemical الإتزان الكيميائي منهج انسابير

تم تحميل هذا الملف من موقع المناهج الإماراتية

موقع المناهج ← المناهج الإماراتية ← الصف الحادي عشر المتقدم ← كيمياء ← الفصل الثاني ← ملفات متنوعة ← الملف

تاريخ إضافة الملف على موقع المناهج: 12-01-2026 10:08:59

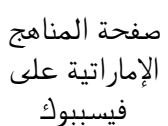
ملفات اكتب للمعلم اكتب للطالب | اختبارات الكترونية | اختبارات احلول | عروض بوربوينت | أوراق عمل
منهج انجليزي | ملخصات وتقارير | مذكرات وبنوك | الامتحان النهائي | للمدرس

المزيد من مادة
كيمياء:

التواصل الاجتماعي بحسب الصف الحادي عشر المتقدم

الرياضيات

اللغة الانجليزية


اللغة العربية

ال التربية الاسلامية

المواد على Telegram

صفحة المناهج
الإماراتية على
فيسبوك

المزيد من الملفات بحسب الصف الحادي عشر المتقدم والمادة كيمياء في الفصل الثاني

حل تجميعة صفحات الكتاب وفق الهيكل الوزاري منهج بريديج

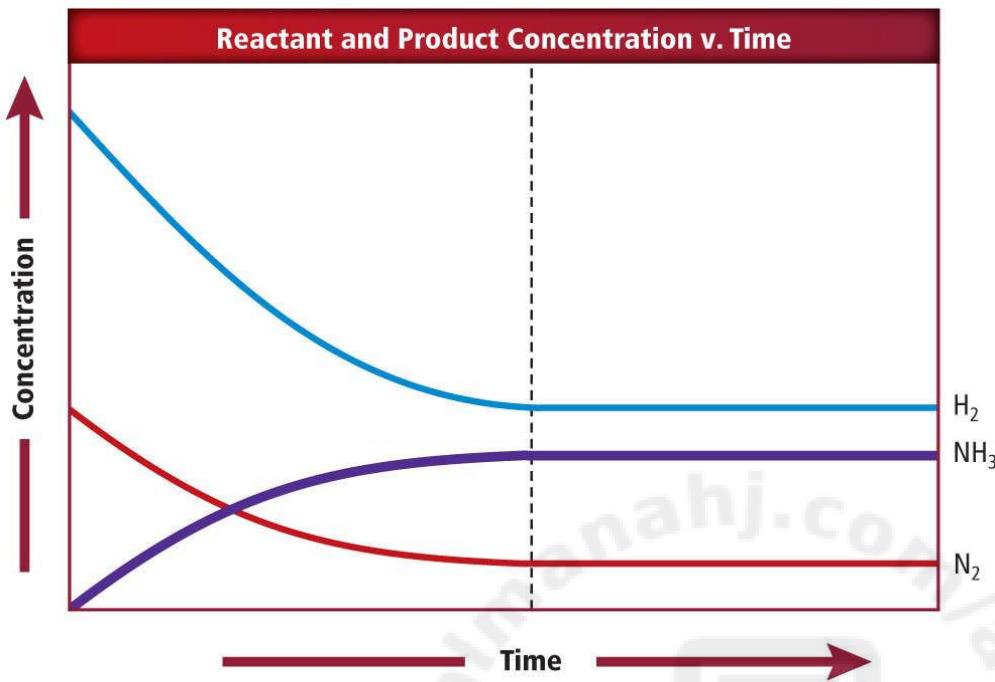
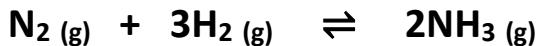
1

شرح درس الخلايا الغوليتية من قسم الكيمياء الكهربائية

2

خطوات وزن معادلة الأكسدة والاختزال

3



تجميعة أسئلة وزارية وفق الهيكل الوزاري الخطة C باللغتين العربية والإنجليزية

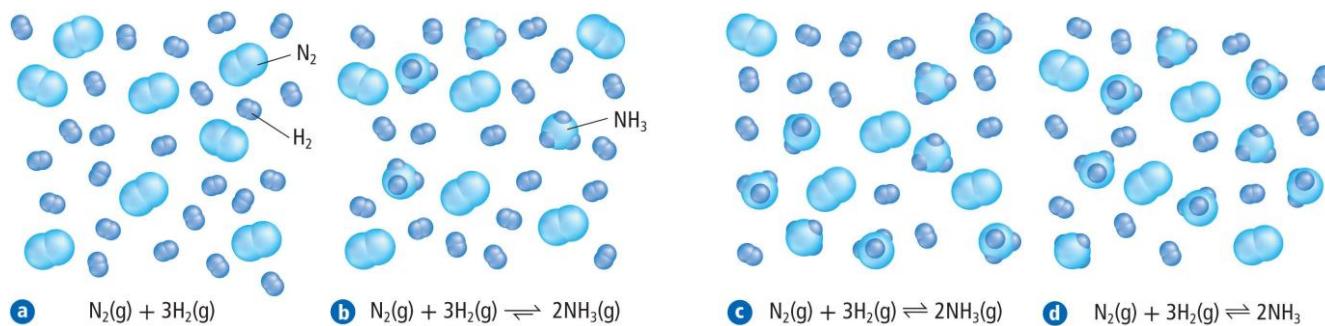
4

مراجعة عامة وفق الهيكل الوزاري منهج بريديج الخطة C

5

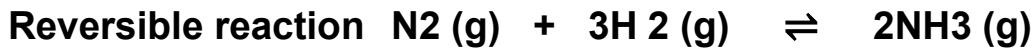
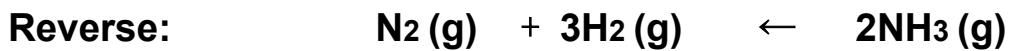
Section 1:

The concentration of the product, NH₃, is zero at the start and gradually increases with time.


The reactants, H₂ and N₂, are consumed in the reaction, so their concentrations gradually decrease.

After a period of time, however, the concentrations of H₂, N₂, and NH₃ no longer change. All concentrations become constant.

The concentrations of H₂ and N₂ are not zero, so not all of the reactants were converted to product



How does reversibility affect the production of ammonia?

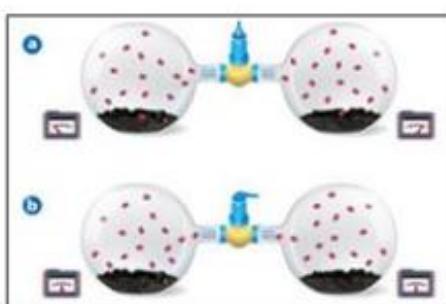
Decreases in the concentrations of N₂ and H₂ cause the reaction to slow.

The reaction reaches equilibrium in figure

A **reversible reaction** is a chemical reaction that can occur in both the forward and reverse directions, such as the formation of ammonia.

What is equilibrium?

- **Chemical equilibrium** is a state in which the forward and reverse reactions balance each other because they take place at equal rates.
- Equilibrium is a state of action, not inaction.


Example:

The dynamic nature of equilibrium: The reaction doesn't stop but continue in equilibrium state

At chemical equilibrium, system must be

- A) Opened
- B) Static
- C) dynamic
- D) Nothing true

عند الاتزان لابد للنظام أن يكون

A) مفتوح

B) غير حركي

C) حركي

D) لا يوجد اجابة صحيحة

Which describes a system that has reached chemical equilibrium?

- A. No new product is formed by the forward reaction.
- B. The reverse reaction no longer occurs in the system.
- C. The concentration of reactants in the system is equal to the concentration of products.
- D. The rate at which the forward reaction occurs equals the rate of the reverse reaction.

A reaction is in equilibrium when:

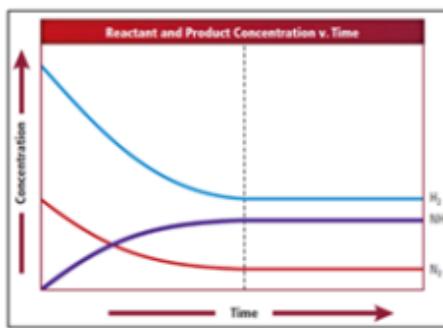
- A. there are more products than reactants
- B. the amount of products equals the reactants
- C. the rate of the forward reaction is greater than the reverse reaction
- D. the rates of the forward and reverse reactions are equal

Which of the following is **NOT** a characteristic of chemical reactions that reach equilibrium?

- a. The reaction must take place in a closed system
- b. The temperature must remain constant
- c. All reactants and products are present, and they are in constant dynamic motion
- d. The reactants and products must be in similar physical state

أي مما يلي **ليس** من خصائص التفاعلات الكيميائية التي تصل إلى حالة اتزان؟

يجب أن يحدث التفاعل في نظام مغلق


يجب أن تبقى درجة الحرارة ثابتة

يجب أن تبقى المواد المتفاعلة والمواد الناتجة معاً في حركة ديناميكية دائمة

يجب أن تكون المواد المتفاعلة والمواد الناتجة في حالة فيزيائية متشابهة

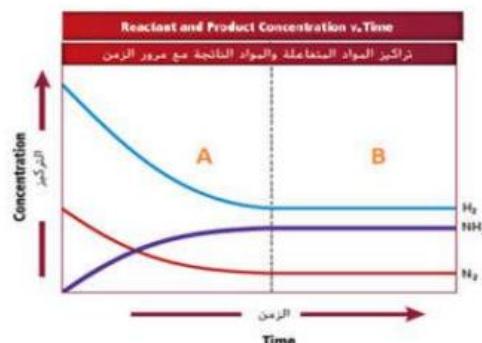
What happen to the concentration Of N₂ at the chemical equilibrium?

- A Decrease
- B) Increase
- C) Constant
- D) Nothing true

ماذا يحدث لتركيز الهيدروجين عند الوصول للاتزان الكيميائي؟

يقل (A)

يزيد (B)


ثابت (C)

لا يوجد اجابة صحيحة (D)

ماذا يحدث في المنطقة **B** في الرسم البياني

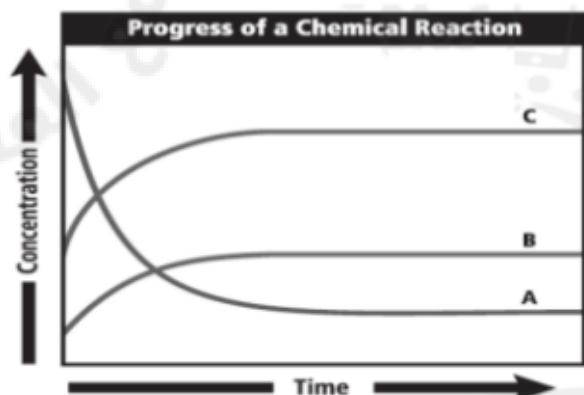
أدنى للتفاعل؟

What happens in the region **B** in the graph below for the reaction?

- a. The concentrations of the reactants equal the concentrations of the products
- b. The concentrations of the reactants and products become constant
- c. The concentrations of the reactants decrease, and the concentrations of the products increase
- d. The concentrations of the reactants increase, and the concentrations of the products decrease

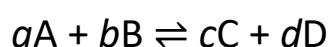
تراكيز المواد المتفاعلة تساوي تراكيز المواد الناتجة

تصبح تراكيز المواد المتفاعلة والمواد الناتجة ثابتة


تنقص تراكيز المواد المتفاعلة وتزداد تراكيز المواد الناتجة

تزداد تراكيز المواد المتفاعلة وتنقص تراكيز المواد الناتجة

Depending on the corresponding drawing, which of the following options represent the correct order of concentrations of substances


A, B, C when reaching the state of equilibrium?

- a. $[\text{C}] > [\text{B}] > [\text{A}]$
- b. $[\text{A}] > [\text{B}] > [\text{C}]$
- c. $[\text{C}] > [\text{A}] > [\text{B}]$
- d. $[\text{C}] = [\text{B}] = [\text{A}] = 0$

Equilibrium Expressions: Some chemical systems have little tendency to react, others go to completion.

The **law of chemical equilibrium**: at a given temperature, a chemical system might reach a state in which a particular ratio of reactant and product concentrations has a constant value.

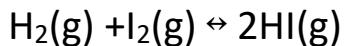
$$K_{\text{eq}} = \frac{[\text{C}]^c [\text{D}]^d}{[\text{A}]^a [\text{B}]^b}$$

The **equilibrium constant**, K_{eq} , is the numerical value of the ratio of product concentrations to reactant concentrations, with each concentration raised to the power equal to its coefficient in the balanced equation.

$K_{\text{eq}} > 1$: Products are favored at equilibrium

$K_{\text{eq}} < 1$: Reactants are favored at equilibrium

The state in which the forward and reverse chemical reactions take place at the same rate is called **equilibrium**.


- A. Le Châtelier's Principle
- B. Henry's Law
- C. Charles's Law
- D. chemical equilibrium

1. Any change in _____ results in a change in K_{eq} .

- A. temperature
- B. pressure
- C. volume
- D. concentration

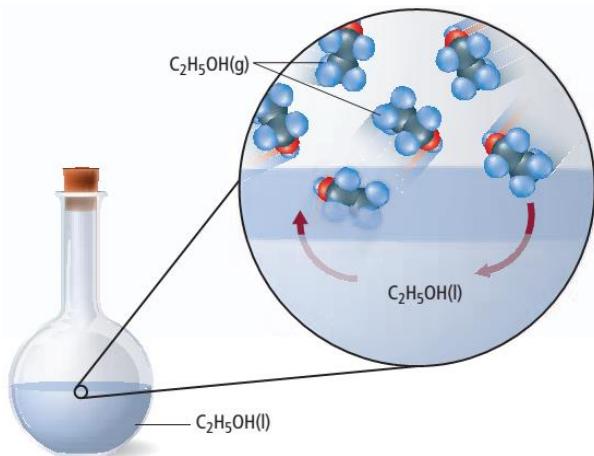
Homogeneous equilibrium

All the reactants and products are in the same physical state.

$$K_{\text{eq}} = \frac{[\text{HI}]^2}{[\text{H}_2][\text{I}_2]}$$

Write equilibrium constant expressions for these equilibria.

a. $\text{N}_2\text{O}_4(\text{g}) \rightleftharpoons 2\text{NO}_2(\text{g})$	b. $2\text{H}_2\text{S}(\text{g}) \rightleftharpoons 2\text{H}_2(\text{g}) + \text{S}_2(\text{g})$
c. $\text{CO}(\text{g}) + 3\text{H}_2(\text{g}) \rightleftharpoons \text{CH}_4(\text{g}) + \text{H}_2\text{O}(\text{g})$	d. $4\text{NH}_3(\text{g}) + 5\text{O}_2(\text{g}) \rightleftharpoons 4\text{NO}(\text{g}) + 6\text{H}_2\text{O}(\text{g})$
e. $\text{CH}_4(\text{g}) + 2\text{H}_2\text{S}(\text{g}) \rightleftharpoons \text{CS}_2(\text{g}) + 4\text{H}_2(\text{g})$	


2. Challenge Write the chemical equation that has the equilibrium constant expression

$$K_{\text{eq}} = \frac{[\text{CO}]^2[\text{O}_2]}{[\text{CO}_2]^2}$$

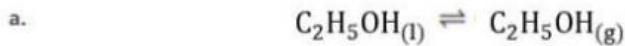
What happens to K_{eq} for an equilibrium system if the equation for the reaction is rewritten in the reverse?

Heterogeneous equilibrium

The reactants and products are present in more than one physical state.

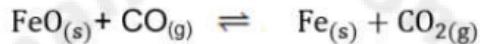
- Ethanol in a closed flask is represented by $C_2H_5OH(l) \rightleftharpoons C_2H_5OH(g)$.

Why solids and liquids are not mentioned in K_{eq} expression?


Solids and liquids are pure substances with unchanging concentrations

Write equilibrium constant expressions for these heterogeneous equilibria.

$C_{10}H_8(s) \rightleftharpoons C_{10}H_8(g)$	$C(s) + H_2O(g) \rightleftharpoons CO(g) + H_2(g)$
$H_2O(l) \rightleftharpoons H_2O(g)$	$FeO(s) + CO(g) \rightleftharpoons Fe(s) + CO_2(g)$
$CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$	$2NaHCO_3(s) \rightleftharpoons Na_2CO_3(s) + CO_2(g) + H_2O(g)$


Which of the following reactions represents a homogeneous equilibrium?

أي التفاعلات التالية تمثل اتزان متجانس؟

What is the equilibrium constant expression for the following reaction?

ما تعبير ثابت الاتزان للتفاعل التالي؟

$$K_{\text{eq}} = \frac{[\text{CO}_2]}{[\text{CO}]}$$

$$K_{\text{eq}} = \frac{[\text{Fe}][\text{CO}_2]}{[\text{FeO}][\text{CO}]}$$

$$K_{\text{eq}} = \frac{[\text{Fe}]}{[\text{FeO}]}$$

$$K_{\text{eq}} = \frac{[\text{CO}]}{[\text{CO}_2]}$$

Which is NOT an example of a homogeneous equilibria?

- A. $\text{H}_2(\text{g}) + \text{I}_2(\text{g}) \rightleftharpoons 2\text{HI}(\text{g})$
- B. $2\text{H}_2(\text{g}) + \text{O}_2(\text{g}) \rightleftharpoons 2\text{H}_2\text{O}(\text{g})$
- C. $\text{HCl}(\text{aq}) + \text{NaOH}(\text{aq}) \rightleftharpoons \text{NaCl}(\text{aq}) + \text{H}_2\text{O}$
- D. $\text{C}_2\text{H}_5\text{OH}(\text{l}) \rightleftharpoons \text{C}_2\text{H}_5\text{OH}(\text{g})$

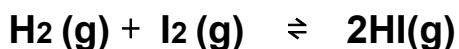
What is the expression for the equilibrium constant for the reaction?

a. $K_{\text{eq}} = \frac{[\text{CO}] [\text{H}_2]}{[\text{CH}_4] [\text{H}_2\text{O}]}$

b. $K_{\text{eq}} = \frac{[\text{CO}] [\text{H}_2]^3}{[\text{CH}_4] [\text{H}_2\text{O}]}$

c. $K_{\text{eq}} = \frac{[\text{CH}_4] [\text{H}_2\text{O}]}{[\text{CO}] [\text{H}_2]}$

d. $K_{\text{eq}} = \frac{[\text{CH}_4] [\text{H}_2\text{O}]}{[\text{CO}] [\text{H}_2]^3}$


In the following table, what is the correct equilibrium constant expression for the corresponding reaction?

في الجدول التالي، ما تعبير ثابت الاتزان الصحيح للتفاعل الذي ينطوي عليه؟

التفاعل	النوع
$\text{H}_2(\text{g}) + \text{I}_2(\text{g}) \rightleftharpoons 2\text{HI}(\text{g})$	A
$2\text{NaHCO}_3(\text{s}) \rightleftharpoons \text{Na}_2\text{CO}_3(\text{s}) + \text{CO}_2(\text{g}) + \text{H}_2\text{O}(\text{g})$	B
$\text{CO}(\text{g}) + 3\text{H}_2(\text{g}) \rightleftharpoons \text{CH}_4(\text{g}) + \text{H}_2\text{O}(\text{g})$	C
$\text{CaCO}_3(\text{s}) \rightleftharpoons \text{CaO}(\text{s}) + \text{CO}_2(\text{g})$	D

Equilibrium Constants

For a given reaction at a given temperature, K_{eq} will always be the same regardless of the initial concentrations of reactants and products.

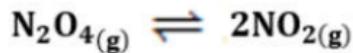
Table 17.1 Experimental Data for HI Reaction Equilibrium

Trial	Initial Concentrations			Equilibrium Concentrations			K_{eq}
	$[\text{H}_2]_0 \text{ (M)}$	$[\text{I}_2]_0 \text{ (M)}$	$[\text{HI}]_0 \text{ (M)}$	$[\text{H}_2]_{\text{eq}} \text{ (M)}$	$[\text{I}_2]_{\text{eq}} \text{ (M)}$	$[\text{HI}]_{\text{eq}} \text{ (M)}$	
1	1.0000	2.0000	0	0.06587	1.0659	1.8682	$\frac{[1.8682]^2}{[0.06587][1.0659]} = 49.70$
2	0	0	5.0000	0.5525	0.5525	3.8950	$\frac{[3.8950]^2}{[0.5525][0.5525]} = 49.70$
3	1.0000	1.0000	1.0000	0.2485	0.2485	1.7515	$\frac{[1.7515]^2}{[0.2485][0.2485]} = 49.70$

What is the value of K_{eq} for the equilibrium: $\text{CO}_{(\text{g})} + 3\text{H}_{2(\text{g})} \rightleftharpoons \text{CH}_{4(\text{g})} + \text{H}_2\text{O}_{(\text{g})}$

if you know that: $[\text{CO}] = 0.0613 \text{ mol/L}$, $[\text{H}_2] = 0.1839 \text{ mol/L}$, $[\text{CH}_4] = 0.0387 \text{ mol/L}$,

$[\text{H}_2\text{O}] = 0.0387 \text{ mol/L}$


- a. 7.526
- b. 3.928
- c. 1.384
- d. 0.133

Determine the value of K_{eq} at 400K for this equation: $\text{PCl}_5(\text{g}) \rightleftharpoons \text{PCl}_3(\text{g}) + \text{Cl}_2(\text{g})$

if $[\text{PCl}_5] = 0.135 \text{ mol/L}$, $[\text{PCl}_3] = 0.550 \text{ mol/L}$, and $[\text{Cl}_2] = 0.550 \text{ mol/L}$.

What is the value of K_{eq} of the following reaction?

ما قيمة K_{eq} للتفاعل التالي؟

علماً بأن التراكيز عند الاتزان هي:

The equilibrium concentrations are:

$$[\text{N}_2\text{O}_4] = 0.0185 \text{ mol/L}$$

$$[\text{NO}_2] = 0.0627 \text{ mol/L}$$

$$[\text{NO}_2] = 0.0627 \text{ mol/L}$$

0.213

0.00545

3.39

1.70

The table below shows the value of the equilibrium constant for a reaction at three different temperatures. At which temperature is the concentration of the products the greatest? Explain your answer.

K_{eq} and Temperature		
263 K	273 K	373 K
0.0250	0.500	4.500

Section: 2 Factors Affecting Chemical Equilibrium (Le Chatelier's Principle)

Le Chatelier's Principle: If stress is applied to a system at equilibrium, the system shifts in the direction that relieves the stress.

Stress is any kind of change in a system that upsets the equilibrium.

If a stress is applied to a system at equilibrium,
the system shifts in the direction that relieves the stress.
this is called

إذا تم بذل جهد على نظام في حالة اتزان يتم إزاحة النظام
في الاتجاه الذي يخفف عنه هذا الجهد.
هذا يُسمى

a. law of chemical equilibrium

قانون الاتزان الكيميائي

b. Le Chatelier's principle

مبدأ لوشاتيليه

c. Aufbau principle

مبدأ أوفياو

d. Pauli exclusion principle

مبدأ باولي للاستبعاد

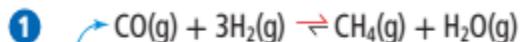
1. Concentration:

Adjusting the concentrations of either the reactants or the products puts stress on a system in equilibrium.

Table 17.2		At Equilibrium: $\text{CO(g)} + 3\text{H}_2\text{(g)} \rightleftharpoons \text{CH}_4\text{(g)} + \text{H}_2\text{O(g)}$				
Equilibrium position		$[\text{CO}]_{\text{eq}} \text{ (M)}$	$[\text{H}_2]_{\text{eq}} \text{ (M)}$	$[\text{CH}_4]_{\text{eq}} \text{ (M)}$	$[\text{H}_2\text{O}]_{\text{eq}} \text{ (M)}$	K_{eq}
1		0.30000	0.10000	0.05900	0.02000	3.933
2		0.99254	0.07762	0.06648	0.02746	3.933

- Adding reactants increases the number of effective collisions between molecules and upsets the equilibrium.

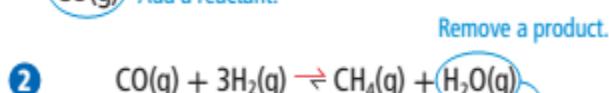
The equilibrium shifts to the right to produce more products.


- Removing reactants decreases the number of effective collisions between molecules and upsets the equilibrium

The equilibrium shifts to the left to produce more reactants.

Stress is relieved by shifting to the left, converting products to reactants.

Equilibrium shifts to the right.

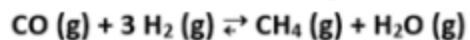


CO(g) Add a reactant.

Equilibrium shifts to the left.

Remove a reactant.

Remove a product.

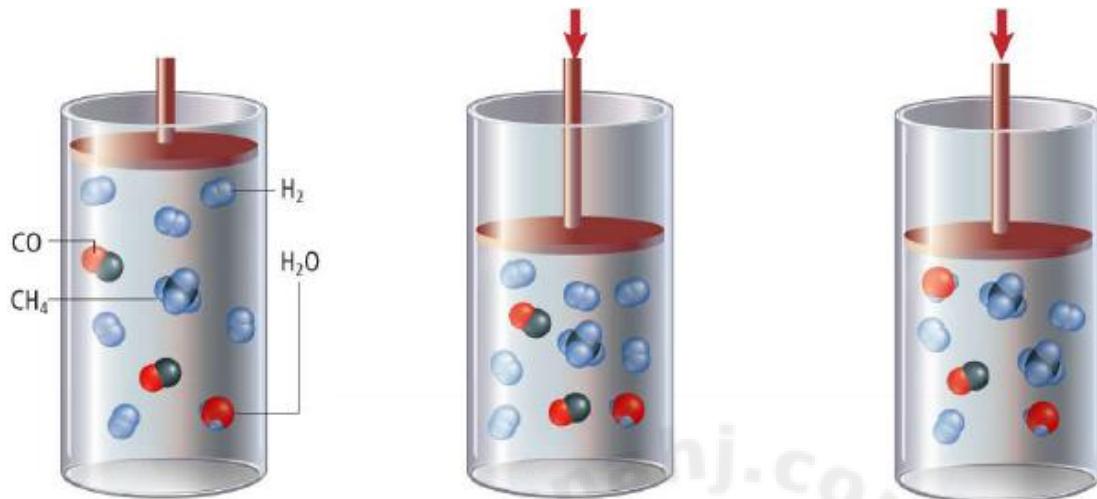

Add a product.

H₂O(g)

What is the effect of adding more CO on the chemical equilibrium?

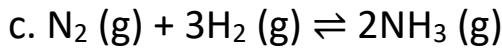
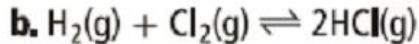
ما تأثير اضافة كمية من CO على الاتزان الكيميائي ؟

- A) Equilibrium shifts left
- B) Equilibrium shifts right
- C) No change
- D) Equilibrium shifts REVERSE

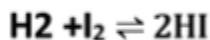

Adding product to a chemical equilibrium:

- A. does nothing
- B. creates a stress and shifts the equilibrium to the right
- C. creates a stress and shifts the equilibrium to the left
- D. causes more product to form

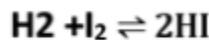
2. Pressure: (volume)



Affects gasses only

It works **only** if the number of moles of **gaseous** reactants is **different** from the moles of gaseous products.



- **Increasing pressure** shifts the system to the left, and more products are formed.
 - If the number of moles is the same on both sides of the balanced equation, changes in pressure and volume have no effect on the equilibrium.


Explain how decreasing the volume of the reaction vessel affects each equilibrium.

What is the effect of decreasing pressure on the chemical equilibrium?

ما تأثير تخفيف الضغط على الاتزان الكيميائي؟

A) Equilibrium shifts left
B) Equilibrium shifts right
C) No change
D) Equilibrium shifts reverse

A) Equilibrium shifts left
B) Equilibrium shifts right
C) No change
D) Equilibrium shifts reverse

What is the effect of decreasing the volume of the reaction vessel on the equilibrium systems below?

ما تأثير تقليل حجم وعاء التفاعل على أنظمة الاتزان أدناه؟

$\text{CO(g)} + 3\text{H}_2\text{(g)} \rightleftharpoons \text{CH}_4\text{(g)} + \text{H}_2\text{O(g)}$	1
$\text{H}_2\text{(g)} + \text{Cl}_2\text{(g)} \rightleftharpoons 2\text{HCl(g)}$	2

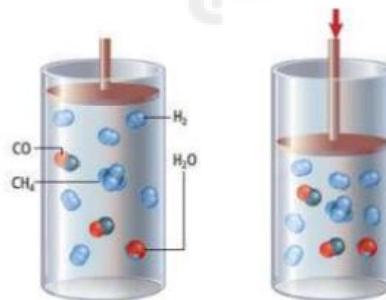
a The equilibrium **1** shifts to the right and the total number of gas moles decreases

ينزاح الاتزان **1** جهة اليمين ويقل عدد مولات الغاز

b The equilibrium **2** shifts to the left

ينزاح الاتزان **2** جهة اليسار

c The equilibrium **1** shifts to the left and the total number of gas moles increases


ينزاح الاتزان **1** جهة اليسار ويزداد عدد مولات الغاز

d. The equilibrium in both **1,2** shifts to the right

ينزاح الاتزان في كل من **1 و 2** جهة اليمين

What is the effect of decreasing the volume of the reaction vessel on the equilibrium system below?

ما تأثير تقليل حجم وعاء التفاعل على نظام الاتزان أدناه؟

The equilibrium shifts to the right

ينزاح الاتزان جهة اليمين

CO concentration increases

يزداد تركيز CO

CH₄ concentration decreases

يقل تركيز CH₄

The equilibrium shifts to the left

ينزاح الاتزان جهة اليسار

3. Temperature

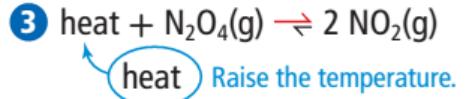
Affects K_{eq} value

If heat is added to an equilibrium system, the equilibrium shifts in the direction in which the heat is used up.

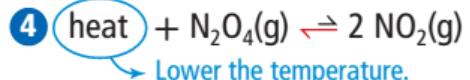
Exothermic Reaction

Equilibrium shifts to the left.

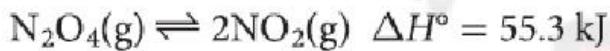
heat
Raise the temperature.


Equilibrium shifts to the right.

Lower the temperature.

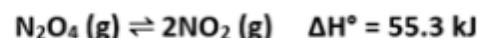

Endothermic Reaction

Equilibrium shifts to the right.


heat
Raise the temperature.

Equilibrium shifts to the left.

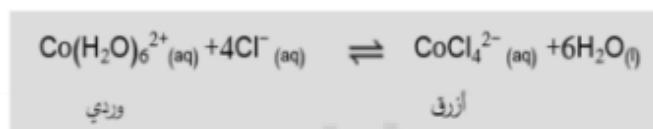
Lower the temperature.


Removing Heat (Cooling):

Decide whether higher or lower temperatures will produce more CH_3CHO in the following equilibrium. $\text{C}_2\text{H}_2\text{(g)} + \text{H}_2\text{O(g)} \rightleftharpoons \text{CH}_3\text{CHO(g)} \quad \Delta H^\circ = -151 \text{ kJ}$

What is the effect of decreasing temperature in the previous reaction?

ما تأثير خفض درجة الحرارة على الاتزان الكيميائي؟



- A) Equilibrium shifts forward
- B) Equilibrium shifts right
- C) No change
- D) Equilibrium shifts reverse

The figure below shows the following endothermic reaction at equilibrium at room temperature.

يوضح الشكل أدناه التفاعل الماصل للحرارة التالي عند الاتزان في درجة حرارة الغرفة. ماذا يحدث إذا تم وضع الدورق في حوض به ملء؟

What happens if the flask were placed in an ice bath?

- a. The equilibrium shifts to the right and the blue color increases
- b. The equilibrium shifts to the left and the pink color increases
- c. The equilibrium shifts to the right and the concentration of Cl^- ions increases
- d. The equilibrium shifts to the left and the concentration of CoCl_4^{2-} ions increases

يزداد اللون الأزرق

يُنْتَاج الاتزان نحو اليسار ويزداد اللون الوردي

يزداد تركيز أيونات الكلوريد Cl^- نحو اليمين

What is the effect of lowering the temperature on the following equilibrium?

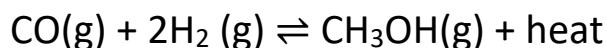
ما أثر خفض درجة الحرارة على الاتزان التالي؟

- a. Produces more CH_3CHO
- b. Produces more C_2H_2
- c. The equilibrium shifts to the left
- d. The value of K_{eq} does not change

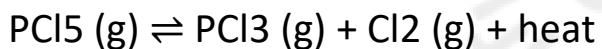
يُنتَجُ المُنْدَلِعُ مِنْ CH_3CHO

يُنتَجُ المُزِيدُ مِنْ C_2H_2

يُنْزَاحُ الْإِتْرَانُ نَحْوَ الْبِسْرَ


لأن تغير قيمة K_{eq}

Adding Catalyst:


catalyzed reaction reaches equilibrium more quickly, but with no change in the amount of product formed.

Assessment:

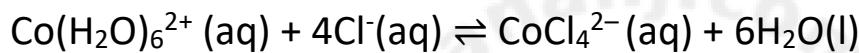
1. How would each of the following changes affect the equilibrium position of the system used to produce methanol from carbon monoxide and hydrogen?

- adding CO to the system
- cooling the system
- adding a catalyst to the system
- removing CH₃OH from the system
- decreasing the volume of the system.

(DISCUSS the effect on K_{eq} value)

- temperature increases.
- some of the chlorine gas dissolves.

(effect of removing Cl₂ on [PCl₃])


2. EFFECT of cooling on

- 2O₃ (g) \rightleftharpoons 3O₂ (g) + heat
- heat + H₂ (g) + F₂ (g) \rightleftharpoons 2HF(g)

3. Whether higher or lower temperatures will produce more CH_3CHO in the following equilibrium. $\text{C}_2\text{H}_2(g) + \text{H}_2\text{O}(g) \rightleftharpoons \text{CH}_3\text{CHO}(g) \quad \Delta H^\circ = -151 \text{ kJ}$

4. Use Le Châtelier's principle to explain how a shift in the equilibrium $\text{H}_2\text{CO}_3(aq) \rightleftharpoons \text{H}_2\text{O}(l) + \text{CO}_2(g)$ causes a soft drink to go flat when its container is left open.

5. The following endothermic reaction at equilibrium at room temperature.

Given that $\text{Co}(\text{H}_2\text{O})_6^{2+}(aq)$ is pink and $\text{CoCl}_4^{2-}(aq)$ is blue, what visual change would you expect to see if:

a. the flask were placed in an ice bath? Explain.

b. 10 g of solid potassium chloride were added and dissolved? Explain

6. The table below shows the concentrations of Substances A and B in two reaction mixtures. A and B react according to the equation $2\text{A} \rightleftharpoons \text{B}$; $K_{\text{eq}} = 200$.

Are the two mixtures at different equilibrium positions?

Concentration Data in mol/L		
Reaction	[A]	[B]
1	0.0100	0.0200
2	0.0500	0.500

Which of the following factors will **NOT** lead to an increase in the amount of substance produced?

أي العوامل التالية **لن** تؤدي إلى زيادة كمية المادة الناتجة؟

- a. Adding **CO** to the system إضافة **CO** للنظام
- b. Removing **CH₃OH** from the system إزالة **CH₃OH** من النظام
- c. Adding **H₂** to the system إضافة **H₂** للنظام
- d. Adding a catalyst to the system إضافة حفاز للنظام

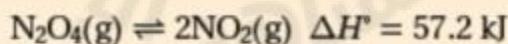
How is the equilibrium shift affected when chlorine gas Cl₂ is added to the equilibrium system: PCl_{5(g)} ⇌ PCl_{3(g)} + Cl_{2(g)} .How is the value of K_{eq} affected?

- a. the equilibrium shifts to the left, the value of K_{eq} does not change
- b. the equilibrium shifts to the right, the value of K_{eq} does not change
- c. the equilibrium shifts to the left, the value of K_{eq} decreases
- d. the equilibrium shifts to the right, the value of K_{eq} decreases

) **How is the equilibrium shift affected when PCl₃ gas is removed from the equilibrium system: PCl_{5(g)} ⇌ PCl_{3(g)} + Cl_{2(g)} .How is the value of K_{eq} affected?**

- a. the equilibrium shifts to the right, the value of K_{eq} decreases
- b. the equilibrium shifts to the left, the value of K_{eq} decreases
- c. the equilibrium shifts to the right, the value of K_{eq} does not change
- d. the equilibrium shifts to the left, the value of K_{eq} does not change

How is the equilibrium shift affected by an increase in temperature in an equilibrium system? $2\text{O}_{3(\text{g})} \rightleftharpoons 3\text{O}_{2(\text{g})} + \text{heat}$, how is the value of K_{eq} affected?


- a. the equilibrium shifts to the right, the value of K_{eq} decreases
- b. the equilibrium shifts to the left, the value of K_{eq} decreases
- c. the equilibrium shifts to the right, the value of K_{eq} does not change
- d. the equilibrium shifts to the left, the value of K_{eq} does not change

How does an increase in pressure affect the equilibrium shift in an equilibrium system:

$\text{N}_2\text{O}_{4(\text{g})} \rightleftharpoons 2\text{NO}_{2(\text{g})}$, what effect does this have on the NO_2 concentration and K_{eq} value?

choice	equilibrium shift	$[\text{NO}_{2(\text{g})}]$	K_{eq} value
a.	right	increase	decrease
b.	left	increase	no change
c.	left	decrease	no change
d.	right	decrease	increase

All the following changes cause the equilibrium to shift
جميع التغيرات التالية تسبب انتزاع الانزان إلى جهة اليسار في التفاعل
..... أدناه عدا
.....

- a. Lowering the system temperature خفض حرارة النظام
- b. Reducing the concentration of NO_2 تقليل تركيز NO_2
- c. Increasing the pressure زيادة الضغط
- d. Reducing the concentration of N_2O_4 تقليل تركيز N_2O_4