تجميعة أسئلة صفحات الكتاب وفق الهيكل الوزاري الجديد

تم تحميل هذا الملف من موقع المناهج الإماراتية

موقع المناهج ← المناهج الإماراتية ← الصف الحادي عشر المتقدم ← رياضيات ← الفصل الأول ← ملفات متنوعة ← الملف

تاريخ إضافة الملف على موقع المناهج: 20:07:45 2025-10-28

ملفات اكتب للمعلم اكتب للطالب ا اختبارات الكترونية ا اختبارات ا حلول ا عروض بوربوينت ا أوراق عمل منهج انجليزي ا ملخصات وتقارير ا مذكرات وبنوك ا الامتحان النهائي ا للمدرس

المزيد من مادة || رياضيات:

إعداد: هلال حسين

التواصل الاجتماعي بحسب الصف الحادي عشر المتقدم

صفحة المناهج الإماراتية على فيسببوك

الرياضيات

اللغة الانجليزية

اللغة العربية

التربية الاسلامية

المواد على تلغرام

المزيد من الملفات بحسب الصف الحادي عشر المتقدم والمادة رياضيات في الفصل الأول	
مراجعة وحدة الدوال المثلثية وفق الهيكل الوزاري الجديد منهج بريدج	1
مراجعة وحدة الدوال من منظور التفاضل والتكامل وفق الهيكل الوزاري الجديد منهج بريدج	2
مراجعة وحدة الإحصاء وفق الهيكل الوزاري الجديد منهج بريدج	3
تجميعة أسئلة وفق مخرجات الهيكل الوزاري الجديد منهج ريفيل	4
أسئلة وزارية وملخص الفصل وفق الهيكل الوزاري منهج بريدج	5

الفصل الدراسي الأول متقدم الصف / الحادي عشر

هيكل (2)

2026/2025

الأستاذ/ هـلال حسيـن 00971503393009

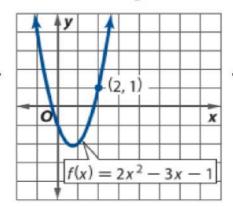
S S

S

P

هيكل (2) الرياضيات للصف الحادي عشر الفصل الدراسي الأول للعام 2026/2025 أ. هلال حسين

مدرسة توام النموذجية الخاصة


استخدام النهايات لتحديد اتصال وتطبيق نظرية القيمة الوسطية على الدوال المتصلة

مثال (1) :- تحديد نقطة انفصال (صفحة 723 من الكتاب)

x=2 عند $f(x)=2x^2-3x-1$ متصلة أم لا عند

برر إجابتك باستخدام اختبار الاتصال. تحقق من الشروط الثلاثة في اختبار الاتصال.

f(2) هل f(2) موجودة؟

ا موجودة $\lim_{x\to 2} f(x)$ موجودة (2)

- x تقترب من 2 → × تقترب من 2 - ×

X	1.9	1.99	1.999	2.0	2.001	2.01	2.1
f(X)	0.52	0.95	0.995		1.005	1.05	1.52

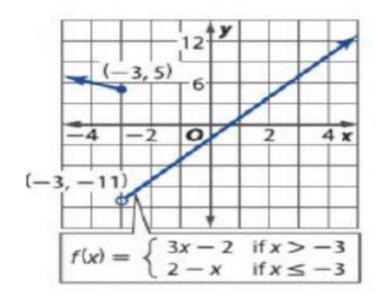
 $\int_{x\to 2}^{\infty} f(x) = f(2) \, dx$ (3)

S

S

(1)

هيكل (2) الرياضيات للصف الحادي عشر الفصل الدراسي الأول للعام 2026/2025 أ. هلال حسين



مدرسة توام النموذجية الخاصة

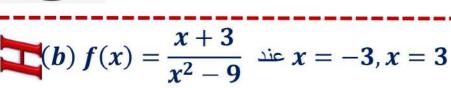
مثال (2): -تحديد نقاط الانفصال (صفحة 724 من الكتاب)

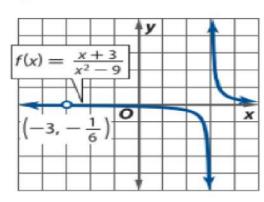
حدد ما إذا كانت كل دالة متصلة أم لا عند قيم x المذكورة . برر إجابتك باستخدام اختبار الاتصال .وإذا كانت منفصلة فحدد نوع الانفصال سواء لانهائي أو قفزي أو التبار الاتصال .وإذا كانت منفصلة فحدد نوع الانفصال سواء لانهائي أو قفزي أو

$$(a)\ f(x)=egin{cases} 3x-2 & ,x>-3 \ 2-x & ,x<-3 \end{cases}$$
قابل للإزالة $x=-3$. قابل للإزالة

 $(1) f(-3) \dots \dots$

— X تقترب من 3 −					— X تفترب من 3− — X تفترب من 3−			
×	-3.1	-3.01	-3.001	-3 .0	-2.999	-2.99	-2.9	
f(x)	5.1	5.01	5.001		-10.997	-10.97	10.7	


... ...


هيكل (2) الرياضيات للصف الحادي عشر الفصل الدراسي الأول للعام 2026/2025 أ. هلال حسين

مدرسة توام النموذجية الخاصة

ila

Hu

 $(1) f(-3) \dots \dots \dots \dots f(3) \dots \dots \dots \dots$

	→ تقنوب من 3 — →				x — — × تقترب من 3 — —			
X	-3.1	-3.01	-3.001	-3.0	-2.999	-2.99	-2.9	
f(x)	-0.164	-0.166	-0.167		-0.167	-0.167	-0.169	

SSel

<u> → X مسرب هن د</u>					ـــــــ 🛪 نفترب هن د ـــــــــــ			
X	2.9	2.99	2.999	3.0	3.001	3.01	3.1	
f(x)	-10	-100	-1000		1000	100	10	

(2) $\lim_{x\to 3} f(x) \dots \dots \dots \dots \dots \dots$

هيكل (2) الرياضيات للصف الحادي عشر الفصل الدراسي الأول للعام 2026/2025 أ. هلال حسين

مدرسة توام النموذجية الخاصة

مسؤال من التمارين صفحة 728 من الكتاب

حدد ما إذا كانت كل دالة متصلة أم لا عند قيم x المذكورة برر إجابتك باستخدام اختبار الاختبار وإذا كانت منفصلة فحدد الانفصال سواء لانهائي أو قفزي أو قابل للإزالة.

(1)
$$f(x) = \sqrt{x^2 - 4}$$
 $x = -5$

$$oldsymbol{Q}$$
 انفصال لانهائي عند $x=-5$ انفصال انفصال (b) انفصال ا

$$(c)$$
 $x=-5$ متصلة عند (d) $x=-5$ متصلة عند

$$(a)$$
 انفصال لانهائي عند (b) عند (b) انفصال الفصال ا

$$(c)$$
 $x=8$ متصلة عند (d) $x=8$ متصلة عند

(3)(i) $h(x) = \frac{x^2 - 36}{x + 6}$ \tag{ie} x = 6

انفصال لانهائي عند
$$a$$
 b b انفصال قفزي عند b

$$(c)$$
 $x=6$ عند قابل للإزالة عند (d) انفصال قابل للإزالة عند متصلة

(ii)
$$h(x) = \frac{x^2 - 36}{x + 6}$$
 $\Rightarrow x = -6$

$$(a)$$
 $x=-6$ انفصال لانهائي عند (b) $x=-6$ عند انفصال قفزي عند

$$(c)$$
 $x=-6$ عند عند (d) $x=-6$ متصلة عند متصلة عند

هيكل (2) الرياضيات للصف الحادي عشر الفصل الدراسي الأول للعام 2026/2025 أ. هلال حسين

مدرسة توام النموذجية الخاصة

(4)(i)
$$h(x) = \frac{x^2 - 25}{x + 5}$$
 sie $x = -5$

$$(a)$$
 $x=-5$ انفصال لانهائي عند (b) انفصال قفزي عند (b) انفصال لانهائي عند

$$(b)$$
 $x=-5$ عند لانهائی عند

$$(c)$$
 $x=-5$ متصلة عند (d) $x=-5$ متصلة عند

(d)
$$x = -5$$

(ii)
$$h(x) = \frac{x^2 - 25}{x + 5}$$
 sie $x = 5$

$$oxed{(a)} \ x=5$$
 انفصال لانهائي عند $(b) \ x=5$

$$(b)$$
 $x=5$ عند انفصال لانهائي عند

$$(c)$$
 $x=5$ عند عند (d) متصلة عند (c) متصلة عند

$$(d)$$
 $x=5$ متصلة عند

(5)
$$g(x) = \frac{x}{x-1}$$
 $2x = 1$

(a)
$$x=1$$
 انفصال لانهائي عند (b) انفصال انفصال

$$(b)$$
 $x=1$ عند انفصال لانهائی عند

$$(c)$$
 $x=1$ عند انفصال قابل للإزالة عند (d) عند متصلة عند

$$(d)$$
 $x = 1$

(6)(i) $g(x) = \frac{2-x}{2+x}$ since x = -2

$$(a)$$
 $x=-2$ انفصال لانهائي عند (b) عند (b) انفصال انف

$$(b)$$
 $x=-2$ انفصال لانهائی عند

$$(c)$$
 $x=-2$ عند عند (d) $x=-2$ متصلة عند عند (d) متصلة عند

$$(d) x = -2$$

هيكل (2) الرياضيات للصف الحادي عشر الفصل الدراسي الأول للعام 2026/2025 أ. هلال حسين

مدرسة توام النموذجية الخاصة

(ii)
$$g(x) = \frac{2-x}{2+x}$$
 is $x = 2$

$$(a)$$
 $x=2$ انفصال لانهائي عند (b) انفصال قفزي عند انفصال انف

$$(b)$$
 $x=2$ عند لانهائي عند

$$(c)$$
 $x=2$ عند عند (d) انفصال قابل للإزالة عند (d)

$$(7)(i) h(x) = \frac{x-4}{x^2-5x+4} \quad \text{if } x=1$$

$$oldsymbol{(a)} \quad x=1$$
 انفصال لانهائي عند $(b) \quad x=1$

$$(b) x = 1$$
 انفصال لانهائی عند

$$(c)$$
 $x=1$ عند انفصال قابل للإزالة عند (d) $x=1$

(ii)
$$h(x) = \frac{x-4}{x^2-5x+4}$$
 $x=4$

$$(a)$$
 $x=4$ انفصال لانهائي عند (b) $x=4$ انفصال قفزي عند

(b)
$$x = 4$$
 عند $x = 4$

$$(c)$$
 $x=4$ عند $a=4$ انفصال قابل للإزالة عند $a=4$

(8)(i)
$$h(x) = \frac{x(x-6)}{x^3}$$
 sie $x = 0$

$$(a)$$
 $x=0$ عند (b) عند انفصال لانهائي عند (b)

(b)
$$x = 0$$
 عند $x = 0$

$$(c)$$
 $x=0$ عند عند (d) $x=0$ متصلة عند متصلة عند (d)

$$(d) x = 0$$
متصلة عند

هيكل (2) الرياضيات للصف الحادي عشر الفصل الدراسي الأول للعام 2026/2025 أ. هلال حسين

مدرسة توام النموذجية الخاصة

$$(ii) h(x) = \frac{x(x-6)}{x^3} \qquad \text{iii} \quad x=6$$

$$(a)$$
 $x=6$ انفصال لانهائي عند (b) انفصال قفزي عند

$$(b) x = 6$$
 انفصال لانهائی عند

$$(c)$$
 $x=6$ متصلة عند (d) $x=6$ متصلة عند متصلة عند

$$(9) f(x) = \begin{cases} 4x - 1 & , x \le -6 \\ -x + 2 & , x > -6 \end{cases} \text{ is } x = -6$$

$$oldsymbol{(a)} (a) \; x = -6$$
 انفصال لانهائي عند $(b) \; x = -6$ انفصال لانهائي عند

$$(b) x = -6$$
 انفصال لانهائی عند

$$(c)$$
 $x=-6$ متصلة عند (d) $x=-6$ متصلة عند

(d)
$$x = -6$$
 are are a simulations of $x = -6$

(10)
$$f(x) = \begin{cases} x^2 - 1 & , x > -2 \\ x - 5 & , x \le -2 \end{cases}$$
 is $x = -2$

$$(a)$$
 $x=-2$ انفصال لانهائي عند (b) $x=-2$ انفصال لانهائي عند

$$(b)$$
 $x=-2$ انفصال لانهائی عند

$$(c)$$
 $x=-2$ متصلة عند (d) $x=-2$ متصلة عند

$$(d) x = -2$$

"اللهم إنّى أسألك أن تُعين الطلبة في دراستهم، وتُيستر عليهم ما صعب عليهم، وتجعله نورًا لقلوبهم وعقولهم"