تجميعة أسئلة وفق الهيكل الوزاري الجديد منهج ريفيل

تم تحميل هذا الملف من موقع المناهج الإماراتية

موقع المناهج ← المناهج الإماراتية ← الصف العاشر المتقدم ← رياضيات ← الفصل الأول ← ملفات متنوعة ← الملف

تاريخ إضافة الملف على موقع المناهج: 17-10-223:36:05

ملفات ا كتب للمعلم ا كتب للطالب ا اختبارات الكترونية ا اختبارات ا حلول ا عروض بوربوينت ا أوراق عمل منهج انجليزي ا ملخصات وتقارير ا مذكرات وبنوك ا الامتحان النهائي ا للمدرس

المزيد من مادة || رياضيات:

إعداد: Falahi Al Saeeda

التواصل الاجتماعي بحسب الصف العاشر المتقدم

صفحة المناهج الإماراتية على فيسببوك

الرياضيات

اللغة الانجليزية

اللغة العربية

التربية الاسلامية

المواد على تلغرام

المزيد من الملفات بحسب الصف العاشر المتقدم والمادة رياضيات في الفصل الأول	
نموذج تجميعة أسئلة وفق الهيكل الوزاري الجديد	1
الهيكل الوزاري الجديد منهج بريدج 2025	2
حل أوراق عمل الوحدة الثالثة كثيرات الحدود و الدوال كثيرة الحدود	3
أوراق عمل مراجعة الوحدة الثانية الدوال والعلاقات التربيعية	4
مقرر الدروس المطلوبة الفصل الأول منهج بريدج	5

Maryam Bint Sultan School- Cycle3 Cluster AD 2.9

Grade 10 Mathematics

Advanced Stream

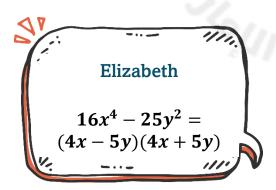
Academic Year 2025/2026

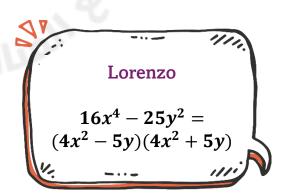
EoT1 Exam Coverage in Term 1

Cluster Manager: Mariam Al Darmaki School Principal: Azza Al Kabbi

Done by Saeeda Al Falahi

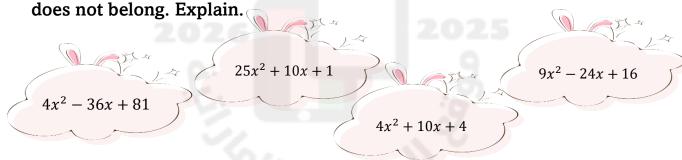
Model 11 Lesson 7: Factoring Special Products


الأسئلة المقالية - FRQ


21 | Factor perfect square trinomials. | Exercise (60-70) | Page 682

60) REASONING Debony claims the expression $9x^2 + 50x + 25$ is a perfect square trinomial. Is she correct? If she is incorrect, show how the expression can be changed so that it is a perfect square.

61) REASONING Find a value for m that makes the expression $4x^4 - 44x^2 + m$ a perfect square and then use that value to factor the expression completely.


62) FIND THE ERROR Elizabeth and Lorenzo are factoring an expression. Is either of them, correct? Explain your reasoning.

- 63) **PERSEVERE** Factor and simplify $9 (k+3)^2$, a difference of squares.
- 64) **ANALYZE** Write and factor a binomial that is the difference of two perfect squares and that has a greatest common factor of 5mk.
- 65) ANALYZE Determine whether the following statement is true or false. Give an example or counterexample to justify your answer. All binomials that have a perfect square in each of the two terms can be factored.
- 66) **CREATE** Write a binomial in which the difference of squares pattern must be repeated to factor it completely. Then factor the binomial.
- 67) WRITE: Describe why the difference of squares has no middle term.

68) WHICH ONE DOESN'T BELONG? Identify the trinomial that does not belong. Explain.

- 69) WRITE: Explain how to determine whether a trinomial is a perfect square trinomial.
- 70)PERSEVERE Use the difference of squares to factor and simplify the expression $121x^2y^6z^4 16y^2z^2$

	Model 11 Lesson 7: Factoring Special Products		
	الأسئلة الموضوعية- MCQ		
4	Factorize binomials that are the	Exercise	Page
4	difference of squares.	(15-17) & (42-44)	679-680

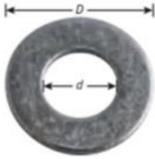
15. TICKETING A ticketing company for sporting events analyzes the ticket purchasing patterns. The expression $9a^2-4b^2$ is developed to help officials calculate the likely number of people who will buy tickets for a certain sporting event. Factor the expression.

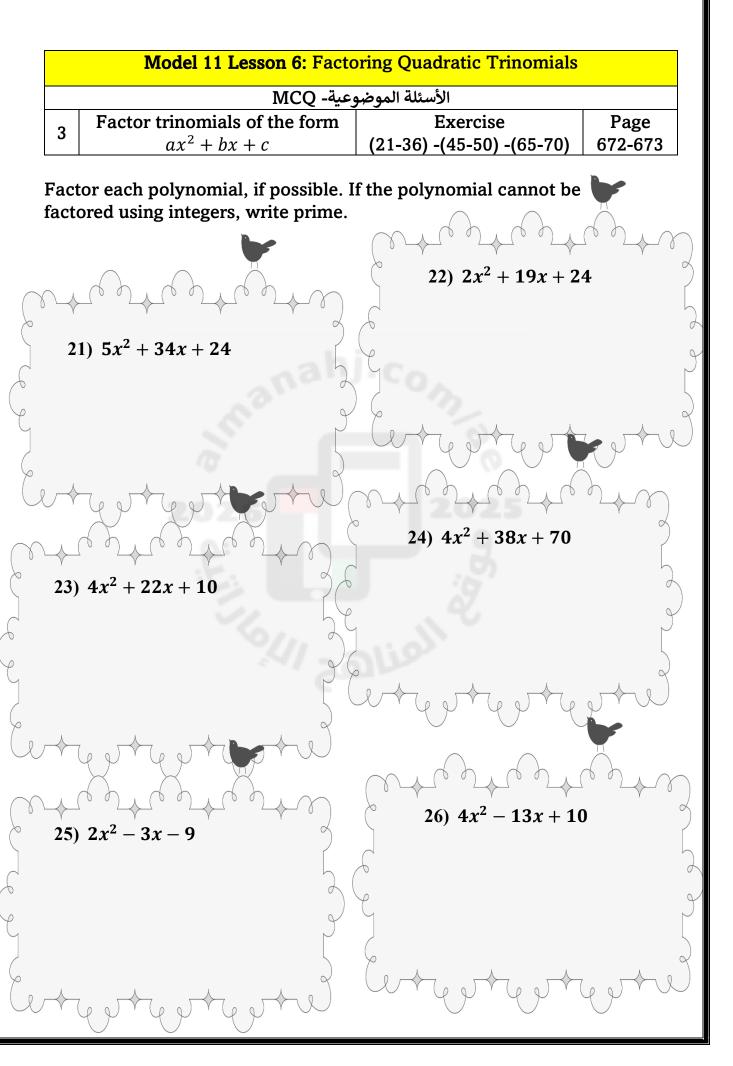
16. BASKETBALL COURT A half-court basketball court is a square of pavement with an area represented by $x^2 - 25$. Factor the expression.

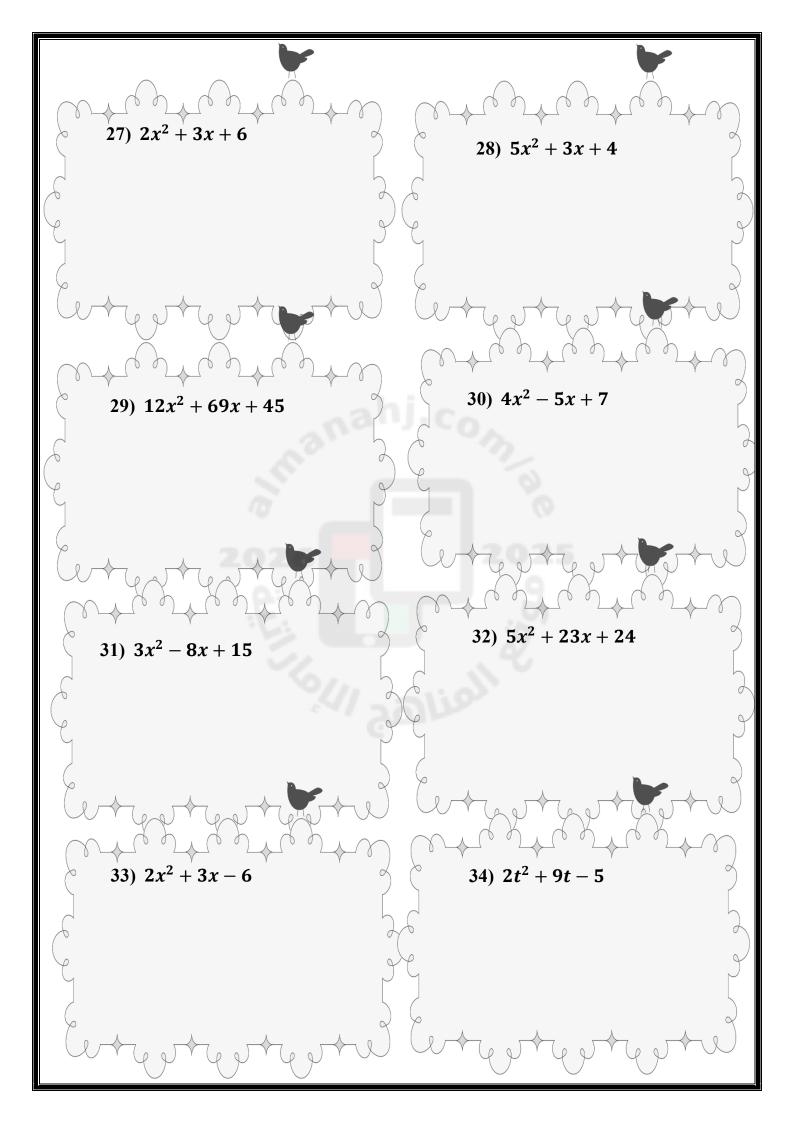
- 17. **DECORATING** Marvin saw a rug in a store that he would like to purchase. It has an area represented by the expression shown on the rug. He cannot remember the length and width, but he remembers that the length and the width were the same.
- a. Factor the expression that represents the area of the rug.

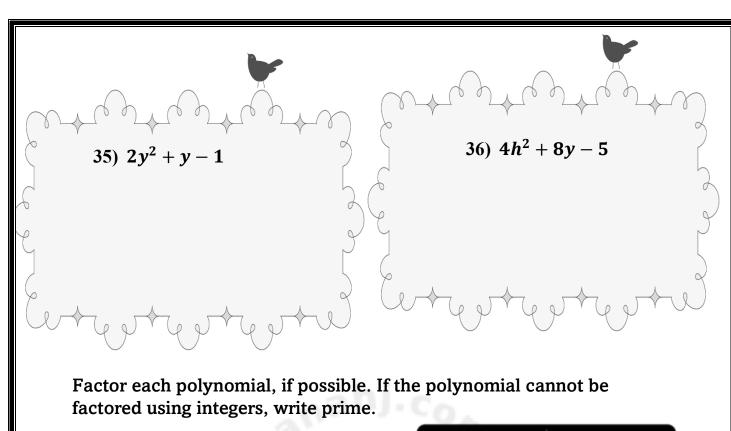
b. What do the factors in the factored expression represent?

42) GARDEN DESIGN


Marren is planning to build a raised garden bed. The area of the rectangular plot is given by the expression $x^2 - 49$. Factor this expression to find the possible length and width of the garden bed.




43) PARKING LOT


The area of a rectangular parking lot is given by the expression a^2-25 , where the length is greater than the width. Factor the expression to find the possible dimensions of the parking lot. If the length is 105 yards, what is the width?

44. USE A SOURCE Research the dimensions of the outside diameter and inside diameter of metal washers. Write an expression for the surface area of the top of a metal washer with outside diameter \$D\$ and inside diameter \$d\$. Factor your expression. Then use your expression and the dimensions you researched to find the surface area of the top of a metal washer.

45)
$$2x^2 + 5x + 2$$

46)
$$3n^2 + 5n + 2$$

47)
$$3g^2 - 7g + 2$$

48)
$$2t^2 - 11t + 15$$

49)
$$4x^2 - 3x - 3$$

50)
$$4b^2 + 15b - 4$$

Factor each polynomial, if possible. If the polynomial cannot be factored using integers, write prime

$$65)-6x^2-23x-20$$

$$66) -4x^2 - 15x - 14$$

$$67) -5x^2 + 18x + 18$$

$$68)-6x^2+31x-35$$

$$69)-4x^2+5x-12$$

$$70)-12x^2+x+20$$

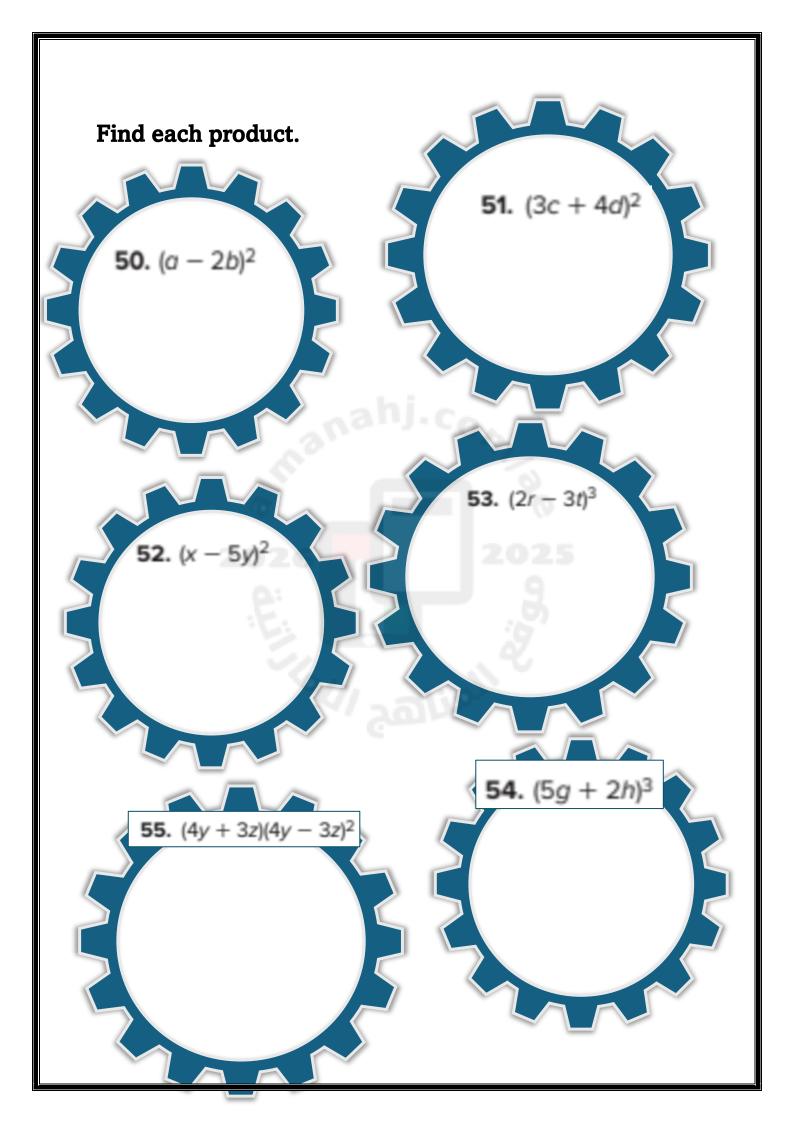
MCQ -الأسئلة الموضوعية MCQ -الأسئلة الموضوعية Multiply Polynomials by using Exercise Page the Distributive Property (18-23) & (42-55) 650-651

Find each product.

Find each product.

42.
$$(w + 4)(w^2 + 3w - 6)$$
43. $(t + 1)(t^2 + 2t + 4)$

45.
$$(m+3)(m^2+3m+5)$$


46.
$$(2x + 1)(x^2 - 3x - 4)$$

47.
$$(3b + 4)(2b^2 - b + 4)$$

Simplify...

48)
$$(m+2)(m^2+3m-6)+(m^2-2m+4)$$

49) $[(t^2+3t-8)-(t^2-2t+6)](t-4)$

MCQ -الأسئلة الموضوعية 1 Add & Subtract Polynomials Exercise (27-34) & (43-45)

Find each sum or difference.

$$27.(3c^3 - c + 11) - (c^2 + 2c + 8)$$

$$28.(z^2 + z) + (z^2 - 11)$$

29.
$$(2x-2y+1)-(3y+4x)$$

30.
$$(4a-5b^2+3)+(6-2a+3b^2)$$

$$31.(x^2y - 3x^2 + y) + (3y - 2x^2y)$$

$$32.\left(-8xy+3x^2-5y\right)+\ (4x^2-2y+6xy)$$

$$43. (4x + 2y - 6z) + (5y - 2z + 7x) + (-9z - 2x - 3y)$$

44.
$$(5a^2-4)+(a^2-2a+12)+(4a^2-6a+8)$$

45.
$$(3c^2-7)+(4c+7)-(c^2+5c-8)$$

	Model 4 Lesson 1: Geometric Mean		
	الأسئلة الموضوعية- MCQ		
15	Solve problems involving relationships between parts of a right triangle and the altitude to its hypotenuse.	Exercise (1-6)	Page 165

Example 1: Find a Geometric Mean

Find the geometric mean between 5 and 45.

$$x = \sqrt{ab} \rightarrow$$
 Definition of geometric mean $= \sqrt{5 \times 45} \rightarrow a = 5$ and $b = 45$ $= 15 \rightarrow$ Simplify.

The geometric mean between 5 and 45 is 15.

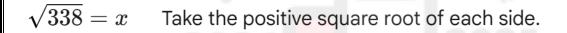
> Find the geometric mean between each pair of numbers.

1) 4 and 6	2) $\frac{1}{2}$ and 2	3) 4 and 25
4) 12 and 20	5) 17 and 3	6) 3 and 24
	ناهج الله	

Model 4 Lesson 2: Pythagorean Theorem and Its Converse الأسئلة الموضوعية- MCO Exercise **Page** 16 Use the Converse of the Pythagorean Theorem. (1-12)171

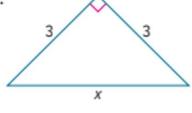
Example 1 Find Missing Measures by Using the Pythagorean Theorem

\Rightarrow Find the value of x.

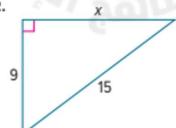

The side opposite the right angle is the **hypotenuse**, so c = x.

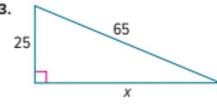
$$a^2+b^2=c^2$$
 Pythagorean Theorem

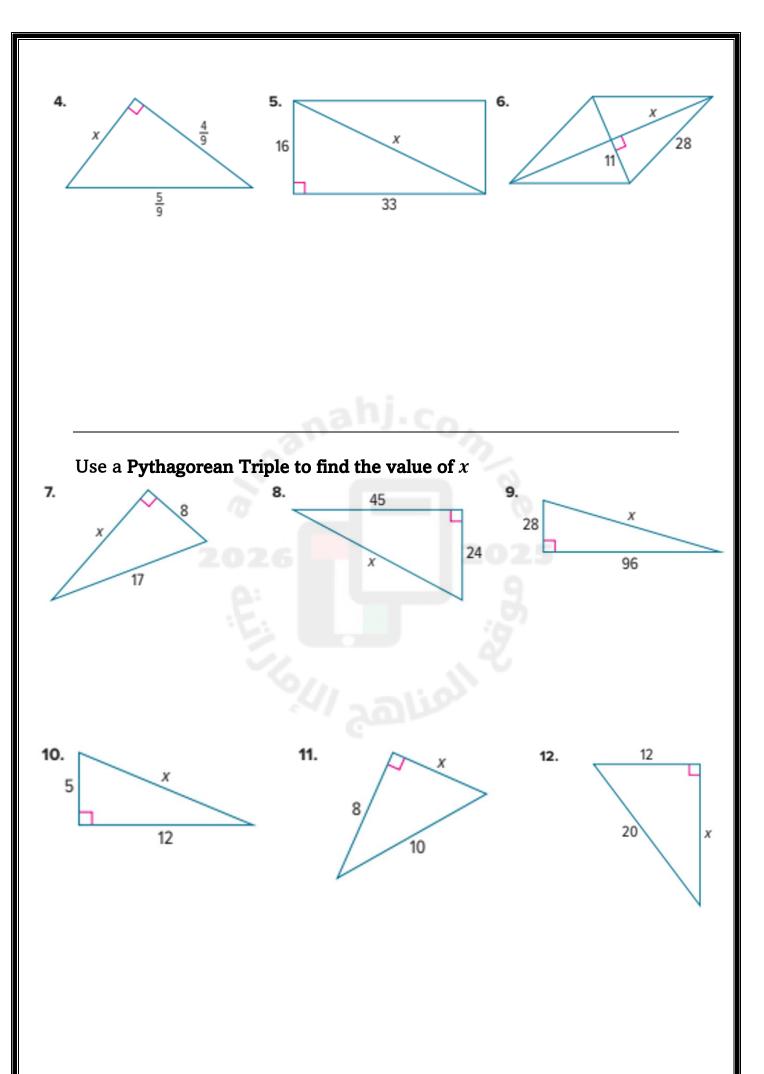
$$17^2+7^2=x^2$$
 $a=17$, $b=7$, and $c=x$


$$289+49=x^2$$
 Simplify.

$$338 = x^2$$
 Add.




$$13\sqrt{2}=x$$
 Simplify.


\Leftrightarrow Find the value of x.

2.

	Model 4 Lesson 3: Coordinates in Space.		
	الأسئلة الموضوعية- MCQ		
17	Find the distance between two points on the	Exercise	Page
	coordinate plane.	(7-10 & 19-24)	177-178

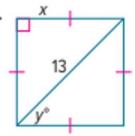
Distance Formula in Space

$$D = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

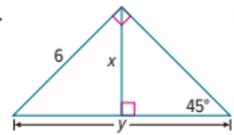
Determine the distance between each pair of points.

7. F(0, 0, 0) and G(2, 4, 3)	8. X(-2, 5, -1) and Y(9, 0, 4)
The state of the s	
2026	2025
9. A(4, -6, 0) and B(1, 0, 1)	10. C(8, 7, -2) and D(0, 0, 0)
	:07
2413	مانه،
C	

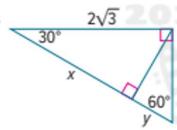
REGULARITY Determine the distance between each pair of points. Then determine the coordinates of the **midpoint M** of the segment joining the pair of points.

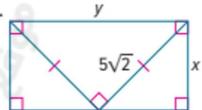

19) $P(-5, -2, -1)$ and $Q(-1, 0, 3)$		
Distance	Midpoint M	
	$M = \left(rac{x_1 + x_2}{2}, rac{y_1 + y_2}{2}, rac{z_1 + z_2}{2} ight)$	

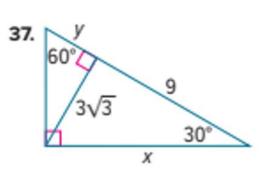
20) $J(1,1,1)$ and $K(-1,-1,-1)$		
Distance	Midpoint M	
	$M=\left(rac{x_1+x_2}{2},rac{y_1+y_2}{2},rac{z_1+z_2}{2} ight)$	
21) $J\left(\frac{3}{5}, 0, \frac{4}{5}\right)$	and $K(0,3,0)$	
Distance	Midpoint M	
	$M=\left(rac{x_1+x_2}{2},rac{y_1+y_2}{2},rac{z_1+z_2}{2} ight)$	
anah	J.Com	
	1 2	
22) $G(1,-1,6)$	and $H(\frac{1}{5}, -\frac{2}{5}, 2)$	
Distance	Midpoint M	
2026	$M=\left(rac{x_1+x_2}{2},rac{y_1+y_2}{2},rac{z_1+z_2}{2} ight)$	
0:	$M \equiv \left(\overline{}_{2}, \overline{}_{2}, \overline{}_{2} \right)$	
	. 5)	
23) $B(\sqrt{3}, 2, 2\sqrt{2}) a$	and $C(-2\sqrt{3},4,4\sqrt{2})$	
Distance	Midpoint M	
Distance	$M=\left(rac{x_1+x_2}{2},rac{y_1+y_2}{2},rac{z_1+z_2}{2} ight)$	
24) $S(6\sqrt{3}, 4, 4\sqrt{2})$	and $T(4\sqrt{3}, 5, \sqrt{2})$	
Distance	Midpoint M	
	$\left(egin{array}{cccccccccccccccccccccccccccccccccccc$	
	$M=\left(rac{x_1+x_2}{2},rac{y_1+y_2}{2},rac{z_1+z_2}{2} ight)$	


Model 4 Lesson 4: Special Right Triangles			
	الأسئلة الموضوعية- MCQ		
18	Use the properties of 30°, 60°, 90° triangles.	Exercise (33-38)	Page 185

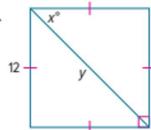
Find the value of x and y.


33.


34.

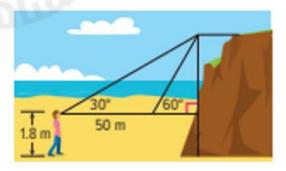


35.



36.

38.

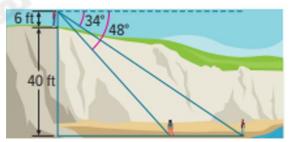

	Model 4 Lesson 6: Applying Trigonometry		
	الأسئلة الموضوعية- MCQ		
19	Use trigonometric ratios to find side lengths and angle measures of right triangles.	Exercise (9-12&23-26)	Page 200-202

9. GARAGE To estimate the height of a garage, Carlos sights the top of the garage at a 42° angle of elevation. He then steps back **20 feet** and sights the top of the garage at a 10° angle. If Carlos is **6 feet tall**, how tall is the garage to the nearest foot?

ورقد قمّة المرآب بزاوية قدرها 42° . ثم تراجع 20 قمّة المرآب بزاوية ارتفاع قدرها 42° . ثم تراجع 20 قدمًا ورصد قمّة المرآب بزاوية قدرها 10° إذا كان طول كارلوس 10° فما هو ارتفاع المرآب لأقرب قدم

10. CLIFF Sarah stands on the ground and sights the top of a steep cliff at a 60° angle of elevation. She then steps back 50 meters and sights the top of the cliff at a 30° angle. If Sarah is 1.8 meters tall, how tall is the cliff to the nearest meter?

جرف صخري تقف سارة على الأرض وترصد قمّة جرف صخري حاد بزاوية ارتفاع قدرها 60°. ثم تتراجع 50مترًا وترصد قمّة الجرف بزاوية قدرها 30° إذا كان طول سارة 1.8متر، فما هو ارتفاع الجرف لأقرب متر؟



11. BALLOON The angle of depression from a hot air balloon to a person on the ground is 36° . When the person steps back 10 feet, the new angle of depression is 25° . If the person is 6 feet tall, how far above the ground is the hot air balloon to the nearest foot?

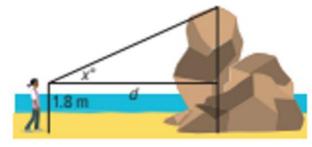
منطاد زاوية الانخفاض من منطاد هواء ساخن إلى شخص يقف على الأرض هي 36°. عندما يتراجع الشخص 10أقدام، تصبح زاوية الانخفاض الجديدة 25° إذا كان طول الشخص 6أقدام، فما هو ارتفاع منطاد الهواء الساخن عن الأرض لأقرب قدم؟

12. INDIRECT MEASUREMENT Mr. Dominguez is standing on a 40-foot ocean bluff near his home. He can see his two friends on the beach below. If his line of sight is 6 feet above the ground and the angles of depression to his friends are 34° and 25°,how far apart are his friends to the nearest foot?

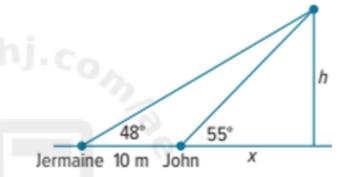
القياس غير المباشر يقف السيد دومينغيز على جرف محيطي ارتفاعه 40 قدمًا بالقرب من منزله. يمكنه رؤية صديقيه على الشاطئ أدناه. إذا كان خط بصره يرتفع 6أقدام فوق سطح الأرض وكانت زاويتا الانخفاض إلى صديقيه هما °34 و °25، فما هي المسافة الفاصلة بين صديقيه لأقرب قدم؟

23. USE ESTIMATION A hiker dropped his backpack over one side of a canyon onto a ledge below. Because of the shape of the cliff, he could not see exactly where it landed. A park ranger is located on the other side of the canyon, at the same height, 113 feet away from the hiker. The ranger sights the backpack at an angle of depression of 32°.

a. Explain how you can use angles of elevation and depression to estimate the distance that the backpack fell.


b. About how far down did the backpack fall to the nearest foot?

استخدم التقدير أسقط متنزّه حقيبته على أحد جانبي وادٍ عميق (كانيون) على حافة صخرية في الأسفل. وبسبب شكل الجرف، لم يستطع رؤية مكان هبوطها بالضبط. يتمركز حارس الغابة على الجانب الآخر من الوادي، وعلى نفس الارتفاع، ويبعد قطقه عن المتنزّه. رصد الحارس الحقيبة بزاوية انخفاض قدرها °32.


أً. اشرح كيف يمكنك استخدام زوايا الارتفاع والانخفاض لتقدير المسافة التي سقطتها الحقيبة. ب. ما هو تقريباً الارتفاع الذي سقطته الحقيبة لأقرب قدم؟

26. REGULARITY A geologist wants to determine the height of a rock formation. She stands **d meters** from the formation and sights the top of the formation at an **angle of** x° , as shown. The geologist's height is **1.8 m**. Write a general formula that the geologist can use to find the height h of the rock formation if she knows the values of d and x.

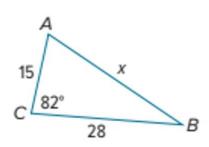
انتظام تريد عالمة جيولوجيا تحديد ارتفاع تكوين صخري. تقف على بُعد d متر من التكوين وترصد قمة التكوين بزاوية قدرها x، كما هو موضح. يبلغ ارتفاع عالمة الجيولوجيا d متر اكتب صيغة عامة يمكن لعالمة الجيولوجيا استخدامها لإيجاد الارتفاع d للتكوين الصخري إذا كانت تعرف قيم d و d

- 24. USE A MODEL Jermaine and John are standing 10 meters apart, watching a helicopter hover above the ground.
- a. Find two different expressions that can be used to find \$h\$, the height of the helicopter.
- **b.** Equate the two expressions you found for part **a** to solve for \$x\$. Round your answer to the nearest hundredth.
- **c.** How high above the ground is the helicopter? Round your answer to the nearest hundredth.

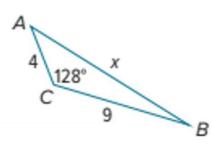
استخدم نموذجًا يقف جيرماين وجون على بُعد 10أمتار من بعضهما البعض يشاهدان مروحية تحوم فوق الأرض.

أ .أوجد تعبيرين مختلفين يمكن استخدامهما لإيجاد \$h\$، وهو ارتفاع المروحية. ب.ساو بين التعبيرين اللذين وجدتهما في الجزء ألحل قيمة . \$x\$قرّب إجابتك إلى أقرب جزء من مائة

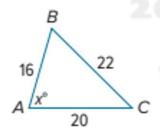
ج.ما هو ارتفاع المروحية فوق الأرض؟ قرّب إجابتك إلى أقرب جزء من مائة.

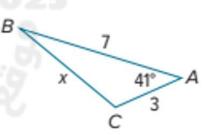

25. USE A SOURCE Go online to research the Sandia Peak Tramway in New Mexico. If you were to stand at the top terminal of Sandia Peak Tramway and look at the base of the second tower along the tramway route, what would be the angle of depression for your line of sight? Round your answer to the nearest tenth of a degree.

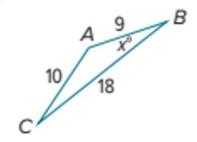
استخدم مصدرًا ابحث عبر الإنترنت عن تلفريك سانديا بيك (Sandia Peak Tramway) في نيو مكسيكو .إذا وقفت عند المحطة العلوية لتلفريك سانديا بيك ونظرت إلى قاعدة البرج الثاني على طول مسار التلفريك، فما هي زاوية الانخفاض لخط رؤيتك؟ قرّب إجابتك إلى أقرب عُشر من الدرجة.

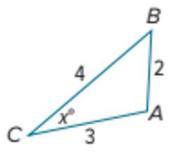

Model 4 Lesson 8: The Law of Cosines MCQ -الأسئلة الموضوعية Use the Law of Cosines to solve triangles. Exercise Page (1-6 & 9-14) 215

Find the value of x to the nearest tenth for side lengths and nearest degree for angle measures.

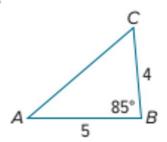

1.


2.

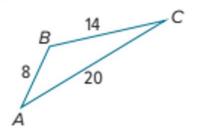

3.


4.

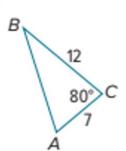
5.

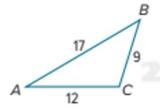


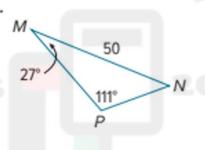
6.

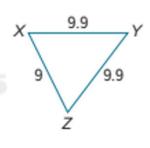


REASONING Solve each triangle. Round side lengths to the **nearest** tenth and angle measures to the nearest degree.


9.

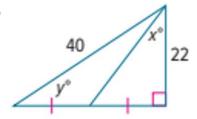

10.

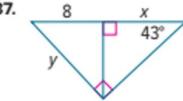

11.



12.

13.




Model 4 lesson 5: Trigonometry			
	الأسئلة المقالية - FRQ		
		Page 194	
	of right triangles.		

❖ Find the values of x and y. Round to the nearest tenth.

36.

37.

38. STRUCTURE Explain how you can use only the table at the right to

find the value of cos20°.

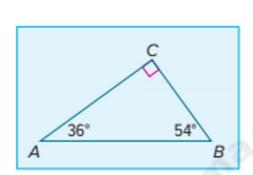
$m\angle A$	$\sin A$
65°	0.9063
70°	0.9397
75°	0.9659
80°	0.9848
85°	0.9962

39. FIND THE ERROR Lakasha and Treyvon were both solving the same trigonometry problem. However, after they finished their computations, Lakasha said the answer was 52 sin 27° and Treyvon said the answer was 52 cos 63°. Could they both be correct? Explain your reasoning.

اكتشف الخطأ كان كل من لاكاشا وتريفون يحلان نفس المسألة المثلثية. ومع ذلك، بعد الانتهاء من حساباتهما، قالت لاكاشا أن الإجابة هي 63 cos 63 هل يمكن أن يكون كلاهما صحيحًا؟ اشرح سبب استنتاجك.

40. PERSEVERE Solve \triangle ABC. Round each measure to the nearest whole number.

$$y + 5 \qquad (7x - 1)^{\circ} \qquad 2y + 2$$


$$A \qquad (4x + 1)^{\circ} \qquad (3x - 2)^{\circ} \qquad C$$

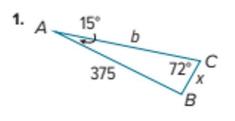
41. ANALYZE Are the values of sine and cosine for an acute angle of a right triangle always less than 1? Explain.

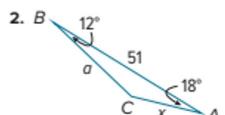
تحليل هل قيمتا (sine) و (cosine) لزاوية حادَّة في مثلث قائم الزاوية أقَّل دائمًا من 1؟ اشرح.

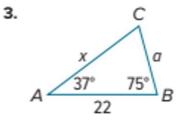
42. WHICH ONE DOESN'T BELONG? If the directions say to **Solve the right triangle**, then which of the triangles shown does not belong? Justify your conclusion.

42.أيها لا ينتمي؟ إذا كانت التعليمات تقول حل المثلث القائم الزاوية، فأي من المثلثات المعروضة لا ينتمي؟ برر استنتاجك

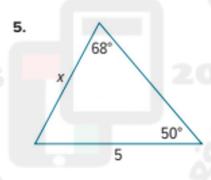
43. WRITE Explain how you can use ratios of the side lengths to find the angle measures of the acute angles in a right triangle.

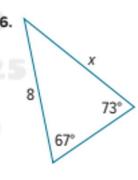

اكتب اشرح كيف يمكنك استخدام نِسَب أطوال الأضلاع لإيجاد قياسات الزوايا الحادة في مثلث قائم الزاوية

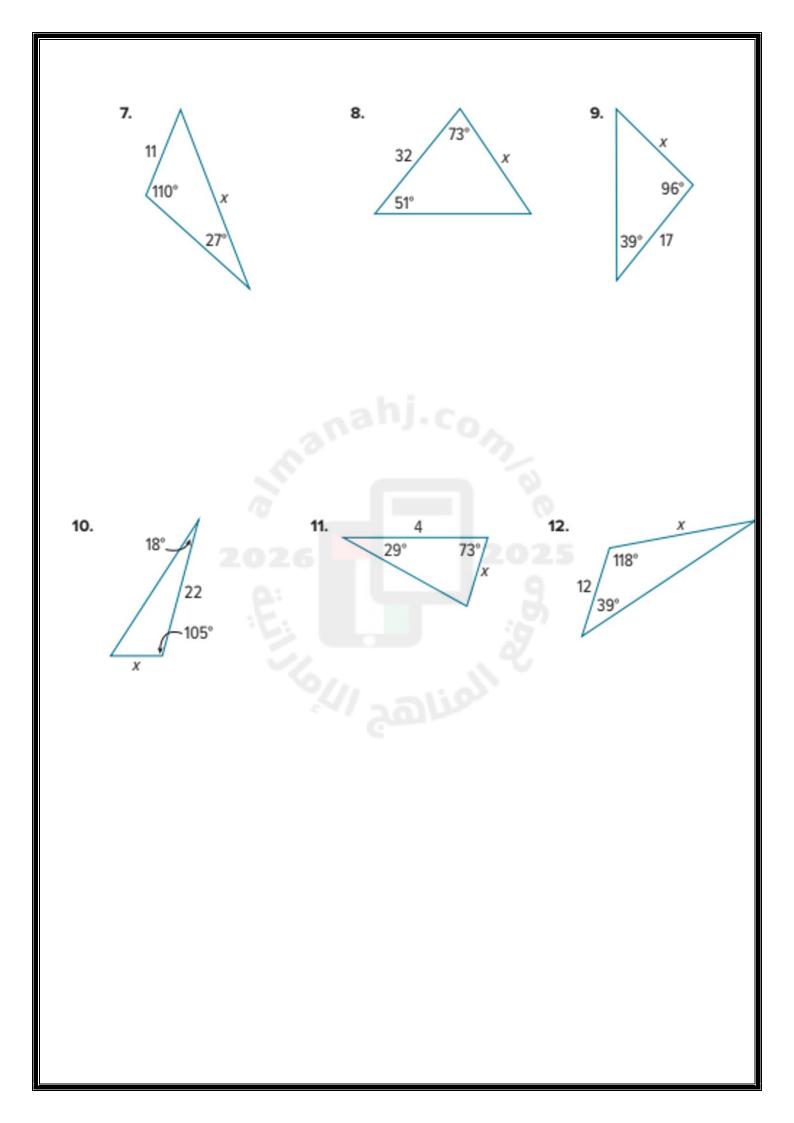

44. CREATE Draw a right triangle with a tangent ratio of \$\frac{3}{2}\$ for one of the acute angles. Then find the measure of the other acute angle to the nearest tenth of a degree.

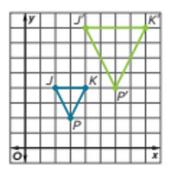

إنشاء ارسم مثلثًا قائم الزاوية تكون فيه نسبة الظل هي $\frac{3}{2}$ لإحدى الزوايا الحادة . ثم أوجد قياس الزاوية الحادة الأخرى وقرّبه إلى أقرب عُشر من الدرجة.

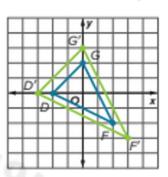

Model 4 lesson 7: The Law of Sines FRQ - الأسئلة المقالية Use the Law of Sines to solve triangles. Exercise (1-12) Page 207


Find the value of x to the nearest tenth.

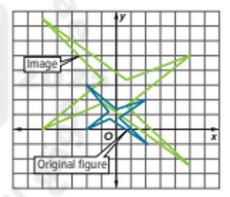




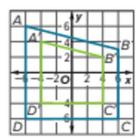



Model 3 Lesson 1: Dilations			
الأسئلة الموضوعية- MCQ			
9	Exercise Page		

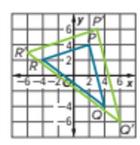
Find the scale factor of the dilation.


10. $\triangle J'K'P'$ is the image of $\triangle JKP$.

11. $\triangle D'F'G'$ is the image of $\triangle DFG$.

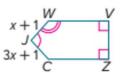


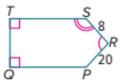
12. Tyrone drew a logo and a dilation of the same logo on the coordinate plane. What is the scale factor of the dilation?



Find the scale factor of the dilation.

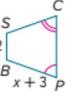
17. A'B'C'D' is the image of ABCD.

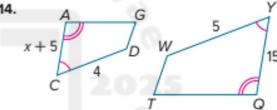



18. $\triangle P'Q'R'$ is the image of $\triangle PQR$.

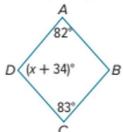
Model 3 Lesson 2: Similar Polygons الأسئلة الموضوعية- MCQ Exercise Solve problems using the properties of similar Page 10 polygons. (11-14 & 19-20) 128-129

Each pair of polygons is similar. Find the value of x.

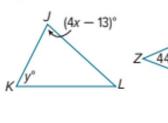




13.

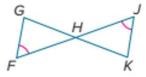


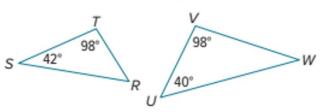
3 H



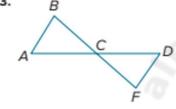
Find the value of x and y for each pair of polygons.

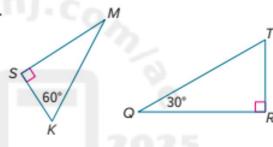
19. ABCD ~ QSRP


20. △JKL ~ △WYZ

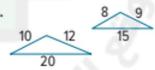

Model 3 Lesson 3: Similar Triangles: AA Similarity MCQ -الأسئلة الموضوعية Identify similar triangles using the AA Similarity Postulate and the SSS and SAS Similarity Theorems. Exercise (1-6 & 1-4) Page 133-139

Determine whether each pair of triangles is similar. Explain your reasoning.

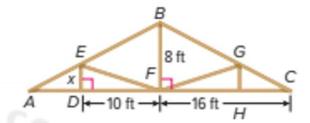

1.


2

3.


4

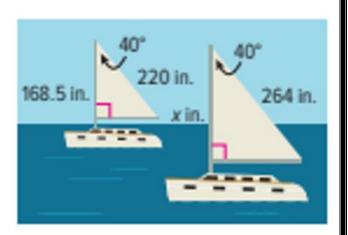
5



6

Model 3 Lesson 4: Use similar triangles to solve problems			
الأسئلة الموضوعية- MCQ			
12	Use similar triangles to solve problems.	Exercise (9-12)	Page 139-140

9. ROOFING The skeleton of a roof is shown. Find the value of x such that triangles DEF and FBC in the outline of the roof are similar.



10. RADIO A radio tower casts an 8-foot-long shadow at the same time that a vertical **yardstick** casts a shadow one-half inch long. If the triangles formed by the objects and their shadows are similar, how tall is the radio tower?

راديو يلقي برج راديو ظلاً بطول 8 أقدام في نفس الوقت الذي تلقي فيه عصا قياس عمودية (yardstick)ظلاً بطول نصف بوصة. إذا كانت المثلثات التي تكونت من الأجسام وظلالها متشابهة، فما هو ارتفاع برج الراديو؟

11.SAILING The two sailboats shown are participating in a regatta. If the sails are similar, what is the value of x?

إبحار يشارك القاربان الشراعيان الموضحان في سباق قوارب (ريغاتا). إذا كانت الأشرعة متشابهة، فما هي قيمة x ؟

12.MOUNTAIN PEAKS Marcus and Skye want to estimate how far a mountain peak is from their houses. After taking some measurements, they construct a diagram.

The actual distance between Marcus and Skye's houses is $1\frac{1}{2}$ miles.

a. What is the actual distance from Marcus's house to the peak of the mountain? Round your answer to the nearest tenth of a mile.

b. What is the actual distance from Skye's house to the peak of the mountain? Round your answer to the nearest tenth of a mile.

	Model 3 Lesson 5: Triangle Proportionality		
	الأسئلة الموضوعية- MCQ		
13	Use proportional parts with parallel lines.	Exercise (1-4)	Page 145

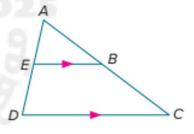
Example 1 Use Triangle Proportions to Find the Length of a Side

In $\triangle BCD$, $\overline{PQ} \parallel \overline{CD}$. If QD = 14.5, BP = 9, and PC = 15, find BQ.

Triangle Proportionality Theorem

 $\frac{9}{15} = \frac{BQ}{14.5}$

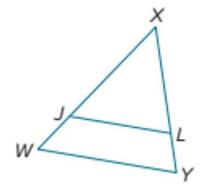
Substitution


15BQ = 130.5

Multiplication Property of Equality

$$BQ = 8.7$$

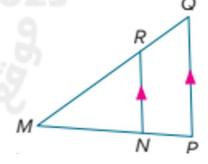
Solve.



Example 2 Use Triangle Proportions to Determine if Lines are Parallel

In $\triangle WXY$, YL = 5, LX = 20, and \overline{JX} is four times as long as WJ. Is JL | WY? Explain your reasoning.

To show that $\overline{JL} \parallel \overline{WY}$, we must show that $\frac{WJ}{JX} = \frac{YL}{LX}$ using the Converse of the Triangle Proportionality Theorem. Find and simplify each ratio. Because \overline{JX} is four times as long as WJ, you can represent their lengths with x and 4x, respectively.

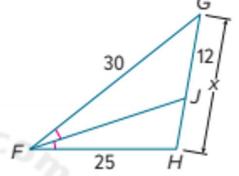

$$\frac{WJ}{JX} = \frac{x}{4x}$$
 or $\frac{1}{4}$

$$\frac{WJ}{JX} = \frac{x}{4x} \text{ or } \frac{1}{4}$$
 $\frac{YL}{LX} = \frac{5}{20} \text{ or } \frac{1}{4}$

Because $\frac{1}{4} = \frac{1}{4}$, the sides are proportional. Therefore, $\overline{JL} \parallel \overline{WY}$.

Determine whether NR | PQ. Justify your answer.

3.
$$PM = 18$$
, $PN = 6$, $QM = 24$, and $RM = 16$



Model 3 Lesson 6: Parts of Similar Triangles MCQ -الأسئلة الموضوعية Recognize and use proportional relationships of corresponding angle bisectors, altitudes, and medians of similar triangles. Example 3 & Page Exercise (8 - 9)

Example 3 Use the Triangle Angle Bisector Theorem

Find the value of x.

Because \overline{FJ} is an angle bisector of $\triangle FGH$, you can use the Triangle Angle Bisector Theorem to write a proportion.

$$\frac{GJ}{JH} = \frac{FG}{FH}$$

$$\frac{12}{x - 12} = \frac{30}{25}$$

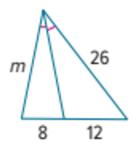
$$12 \cdot 25 = 30(x - 12)$$

$$300 = 30x - 360$$

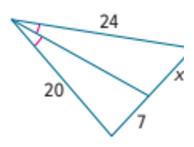
$$22 = x$$

Triangle Angle Bisector Theorem

Substitution

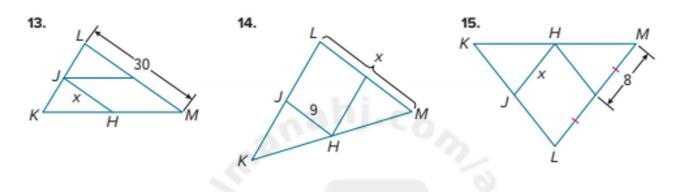

Multiplication Property of Equality

Simplify.

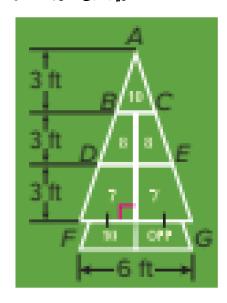

Solve.

Find the value of each variable to the nearest tenth.

8.



9.


	Model 3 Lesson 5: Parts of Similar Triangles				
	الأسئلة الموضوعية- MCQ				
23	Solve problems and prove theorems by using the Triangle Midsegment Theorem and its corollaries.	Exercise (13-15& 24-25)	Page 146-148		
	Solve problems and prove theorems by using the Triangle proportionality.	Exercise (11-12& 21-22)	Page 146-147		

 \overline{JH} is a midsegment of $\triangle KLM$. Find the value of x.

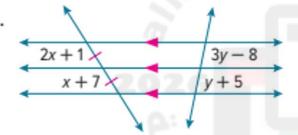
24. SHUFFLEBOARD A crew is laying out a shuffleboard court using the plan shown at the right. Explain how they can find the lengths of \overline{AB} , \overline{BD} , and \overline{DF} to the nearest tenth of a foot.

لعبة شَفلبورد (Shuffleboard) تقوم مجموعة من العمال بتخطيط ملعب لعبة الشفلبورد باستخدام المخطط الموضح على اليمين. اشرح كيف يمكنهم إيجاد أطوال القطع المستقيمة \overline{AB} , \overline{BD} وتقريبها إلى أقرب عُشر من القدم

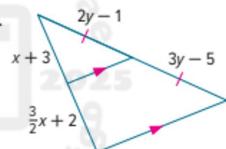
- 25. In △PQR, the length of PQ is 16 units. A series of midsegments are drawn such that ST is the midsegment of △PQR, UV is the midsegment of △STR, and WX is the midsegment of △UVR.
 - a. What is the length of each midsegment?

$$ST =$$

$$UV =$$

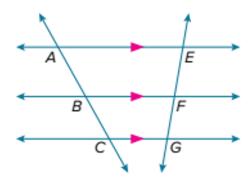

$$WX =$$

b. What would be the measure of midsegment \overline{YZ} of $\triangle WXR$?

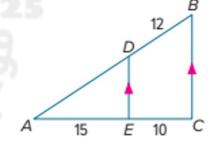


Find the values of x and y.

11.



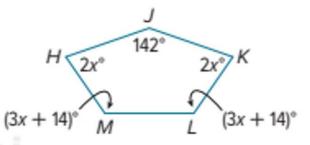
12


21. PROOF Write a paragraph proof of Corollary 8.1.

Prove:
$$\frac{AB}{BC} = \frac{EF}{FG}$$

2026

22. REGULARITY In the figure, $\overline{DE} \parallel \overline{BC}$, BD = 12, EC = 10, and AE = 15. Explain how to find the length of \overline{AD} .


Model 2 Lesson 1: Angles of Polygons			
الأسئلة الموضوعية- MCQ			
5	Find and use the sum of the measures of the interior angles of a polygon.	Example 1 & Exercise (1 - 4)	Page 59-63

Example 1 Find the Interior Angles Sum of a Polygon

Find the measure of each interior angle of pentagon HJKLM.

Step 1 Find the sum.

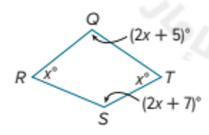
A pentagon has 5 sides. Use the Polygon Interior Angles Sum Theorem to find the sum of its interior angle measures.

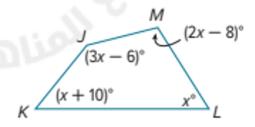
$$m\angle H + m\angle J + m\angle K + m\angle L + m\angle M$$

$$= (n-2) \cdot 180^{\circ}$$

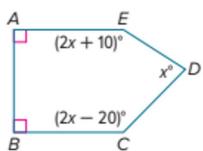
$$= (5 - 2) \cdot 180^{\circ}$$

$$= 540^{\circ}$$

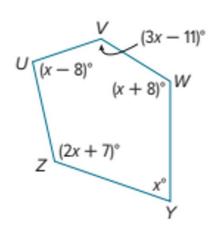

Polygon Interior Angles Sum Thm


Substitute.

Solve.

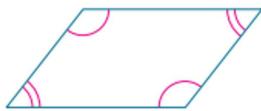

Find the measure of each interior angle.

1.

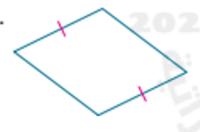


3.

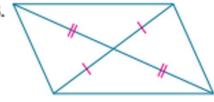
4.


Model 2 Lesson 3: Tests for Parallelograms			
الأسئلة الموضوعية- MCQ			
6	Recognize the conditions that ensure a quadrilateral is a parallelogram.	Exercise (1 - 6)	Page79

Determine whether each quadrilateral is a parallelogram. Justify your answer.


1.

2.


3.

4.

5

6.

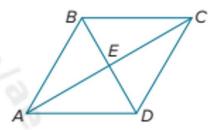
	Model 2 Lesson 5: Rhombi and Squares			
	الأسئلة الموضوعية- MCQ			
7	Recognize and apply properties of rhombi and squares.	Exercise (1 - 8)	Page (95, 97)	

Quadrilateral ABCD is a rhombus. Find each value or measure.

1. If $m\angle ABD = 60^{\circ}$, find $m\angle BDC$.

If AE = 8, find AC.

If AB = 26 and BD = 20, find AE.

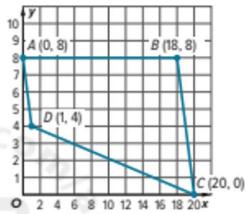

Find m∠CEB.

5. If $m\angle CBD = 58^{\circ}$, find $m\angle ACB$.

6. If AE = 3x - 1 and AC = 16, find x.

7. If $m\angle CDB = 6y^{\circ}$ and $m\angle ACB = (2y + 10)^{\circ}$, find the value of y.

8. If AD = 2x + 4 and CD = 4x - 4, find the value of x.

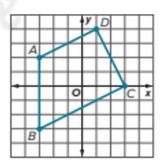


	Model 2 Lesson 6: Rhombi and Squares			
	الأسئلة الموضوعية- MCQ			
8	Recognize and apply the properties of trapezoids, including the medians of trapezoids.	Example 5 Exercise (11-12)	Page (102 - 106)	

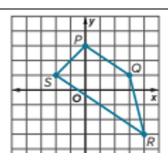
Example 5 Midsegments and Coordinate Geometry

In trapezoid ABCD, $\overline{AD} \parallel \overline{BC}$. Find the endpoints of the midsegment.

You can use the Midpoint Formula to find the midpoints of \overline{AB} and \overline{DC} . These midpoints are the endpoints of the midsegment of trapezoid ABCD.

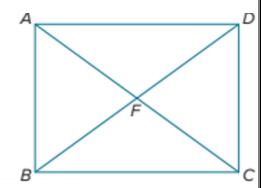


midpoint of
$$\overline{AB} = (\frac{0+18}{2}, \frac{8+8}{2}) = (9, 8)$$

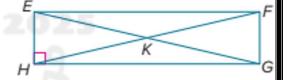

midpoint of
$$\overline{DC} = \left(\frac{1+20}{2}, \frac{4+0}{2}\right) = (10.5, 2)$$

So, the endpoints of the midsegments are (9, 8) and (10.5, 2).

 In trapezoid ABCD, AD | BC. Find the endpoints of the midsegment.



 In trapezoid PQRS, PQ | SR. Find the endpoints of the midsegment.


Model 2 Lesson 4: Rectangles				
	الأسئلة المقالية -FRQ			
22	Recognize and apply properties of rectangles	Exercise (9 -14)	Page 87	

 Quadrilateral ABCD is a rectangle. If m∠ADB = (4x + 8)° and m∠DBA = (6x + 12)°, find the value of x.

Quadrilateral EFGH is a rectangle. Use the given information to find each measure.

10. If
$$m \angle FEG = 57^\circ$$
, find $m \angle GEH$.

- 11. If $m \angle HGE = 13^\circ$, find $m \angle FGE$.
- 12. If FK = 32 feet, find EG.
- Find m∠HEF + m∠EFG.
- **14.** If EF = 4x 6 and HG = x + 3, find EF.