ملخص دروس الوحدة الثانية functions polynominal and Polynominals منهج ريفيل

تم تحميل هذا الملف من موقع المناهج الإماراتية

موقع المناهج ← المناهج الإماراتية ← الصف الثاني عشر العام ← رياضيات ← الفصل الأول ← ملفات متنوعة ← الملف

تاريخ إضافة الملف على موقع المناهج: 13-10-2025 09:11:07

ملفات اكتب للمعلم اكتب للطالب ا اختبارات الكترونية ا اختبارات ا حلول ا عروض بوربوينت ا أوراق عمل منهج انجليزي ا ملخصات وتقارير ا مذكرات وبنوك ا الامتحان النهائي ا للمدرس

المزيد من مادة الرياضيات:

إعداد: عماد عودة

التواصل الاجتماعي بحسب الصف الثاني عشر العام

صفحة المناهج الإماراتية على فيسببوك

الرياضيات

اللغة الانجليزية

اللغة العربية

التربية الاسلامية

المواد على تلغرام

المزيد من الملفات بحسب الصف الثاني عشر العام والمادة رياضيات في الفصل الأول المئلة اختبار تجريبي الكتروني وكتايي و أوراق عمل مراجعة الدرس الثامن المتباينات التربيعية من الوحدة الأولى و أوراق عمل مراجعة الدرس السابع تحويلات الدوال التربيعية من الوحدة الأولى و أوراق عمل مراجعة الوحدة الخامسة functions Exponential الدوال الأسية منهج ريفيل الخطة الفصلية للدروس المقررة في الفصل منهج ريفيل

الرياضيات

Mathematics

الصف الثاني عشر عام 12 General

Reveal

الفصل الأول T1

ملخص دروس الوحدة الثانية Module 02

Polynomials and Polynomial Functions

الأستاذ عماد عودة

Mr. Imad Odeh

2025-2026

Reveal

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

	A: 9
Lesson 01	Polynomial Functions
Lesson 02	Analyzing Graphs of Polynomial Functions
Lesson 03	Operations with Polynomials
Lesson 04	Dividing Polynomials
Lesson 05	Powers of Binomials

Imad Odeh

Imad Odeh

الأستاذ عماد عودة 0507614804

https://t.me/IOmaths12General

Lesson 2-1 Polynomial Functions

Imad Odeh Imad Odeh Imad Odeh

Learning Objectives

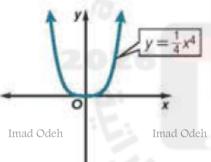
1. Graph and analysis power functions.

Imad Odeh

2. Graph and analyze polynomial functions

Power function is any function of the form $f(x) = ax^n$ where a and are nonzero real numbers. For a power function, a is the leading coefficient and a is the degree, which is the value of the exponent. A power function with positive integer a is called a monomial function.

Key Concept • End Behavior of a Monomial Function

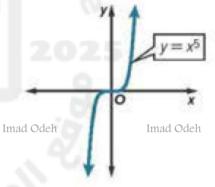

Degree: even

Leading Coefficient: positive

End Behavior:

As
$$x \to -\infty$$
, $f(x) \to \infty$.

As $x \to \infty$, $f(x) \to \infty$.


Domain: all real numbers Range: all real numbers ≥ 0 Degree: odd

Leading Coefficient: positive

End Behavior:

As
$$x \to -\infty$$
, $f(x) \to -\infty$.

As
$$x \to \infty$$
, $f(x) \to \infty$.

Domain: all real numbers Range: all real numbers

Key Concept • Zeros of Even and Odd Degree Monomial Functions

Odd-degree functions will always have at least one real zero. Even-degree functions may have any number of real zeros or no real zeros at all.

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

الأستاذ عماد عودة 0507614804

https://t.me/IOmaths12General

Example 1

Describe the end behavior of using the leading coefficient and degree, and state the domain and range

$$f(x) = -2x^3$$

Leading coefficient

Degree

Domain

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

Range

End behavior

Ex1 Describe the end behavior of using the leading coefficient and degree, and state the domain and range

$$1) \quad f(x) = -10x^6$$

Leading coefficient

Degree

Domain

Range

End behavior

Imad Odeh

 $f(x) = 3x^4$

Leading coefficient

Degree

Domain

Range

End behavior

Imad Odeh

Imad Odeh

Imad Odeh

3) $f(x) = -2x^3$

Leading coefficient

Degree

Domain

Range

End behavior

 $f(x) = -\frac{1}{2}x^5$

Leading coefficient

Degree

Domain

Range

End behavior

 $f(x) = \frac{3}{4}x^6$ 5)

Leading coefficient

Degree

Domain

Range

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

End behavior

الأستاذ عماد عودة 0507614804

https://t.me/IOmaths12General

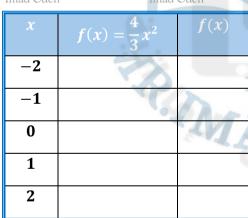
PRESSURE For water to flow through a garden hose at a certain rate in gallons per minute (gpm), it needs to have a specific pressure in pounds per square inch (psi). Through testing and measurement, a company that produces garden hoses determines that the pressure P given the flow rate F is defined by $P(F) = \frac{3}{2} F^2$. Graph the function P(F), and state the domain and range.

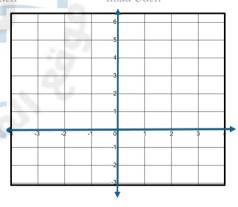
In	nad Odeh	Imad Odel
F	$\frac{3}{2}F^2$	P(F)
-2		
-1		
0		
1		
2		Era

Imad Odeh

Ex2 The shape of a parabolic reflector inside a flashlight can be modeled by the function

$$f(x) = \frac{4}{3}x^2$$


Graph the function f(x), and state the domain and range.


Imad Odeh

Imad Odeh

Imad O

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

mad Odel

الأستاذ عماد عودة 0507614804

https://t.me/IOmaths12General

$$f(x) = x^3 + 3x^2 - 218x - 40$$

To model the change in efficiency of a machine based on its position x. Graph the function and state the domain and range.

Imad Odeh

Imad Odeh

х	$f(x) = x^3 + 3x^2 - 218$	$3x-40 \qquad f(x)$
-10		
-5		
5		
10		
15		40
20		4140

Imad Odeh

-2000
-1500
-1000
-500
-1000
-1000
-1000

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

Degrees and Leading Coefficients

Example3 State the degree and leading coefficient of each polynomial in one variable. If it is not a polynomial in one variable, explain why.

$$f(x) = 2x^4 - 3x^3 - 4x^2 - 5x + 6a$$

$$2) f(x) = 7x^3 - 2$$

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

$$f(x) = 4x^2 - 2xy + 8y^2$$

$$f(x) = x^5 + 12x^4 + 3x^3 + 8x^2 + 4$$

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

الأستاذ عماد عودة 0507614804

https://t.me/IOmaths12General

- Ex 4 State the degree and leading coefficient of each polynomial in one variable. If it is not a polynomial in one variable, explain why.
- $5) \qquad f(n) = n + 8$

6) $f(x) = (2x - 1)(4x^2 + 3)$

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

7)
$$f(y) = 18 - 3y + 5y + 7y^6$$

8)
$$f(x) = (5-2x)(4+3x)$$

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

9)
$$f(x) = -5x^4 + 6x^2$$

10)
$$h(x) = 9x^6 - 5x^7 + 3x^2$$

11)
$$f(x) = -6x^6 - 4x^5 + 13x^{-2}$$

12) $f(x) = 3x^7 - 4x^4 + \frac{3}{x}$

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

13)
$$f(x) = -5x^5 + 3x^3 - 8$$

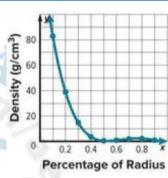
Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

https://t.me/IOmaths12General


- a) degree: 3, leading coefficient: 11
- b) degree: 11, leading coefficient: 3
- c) This is not a polynomial in one variable. There are two variables, x and y.
- d) This is not a polynomial in one variable. The term $\frac{6}{x}$ has the variable with an exponent less than 0.

Imad OdehImad OdehImad OdehImad Odeh

The density of the Sun, in grams per centimeter cubed, expressed as a percent of the distance from the core of the Sun to its surface can be modeled by the function $f(x) = 519x^4 - 1630x^3 + 1844x^2 - 889x + 155 \text{ where x represents the percent as}$

 $f(x) = 519x^4 - 1630x^3 + 1844x^2 - 889x + 155$ where x represents the percent as a decimal At the core x = 0, and at the surface x = 1. Graph the function.

x	f(x)		
0.1	82.9619		
0.2	38.7504		
0.3	14.4539		
0.4	3.4064		
0.5	0.1875		
0.7	1.7819		
0.8	1.9824		
0.9	0.7859		

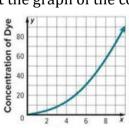
Imad Odeh

Imad Odeh

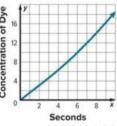
Imad Odeh

Imad Odeh

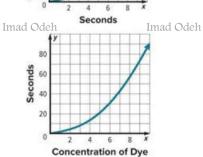
Ex 6 CARDIOLOGY To help predict heart attacks, doctors can inject a concentration of dye in a vein near the heart to measure the cardiac output in patients. In a normal heart, the change in the concentration of dye can be modeled by

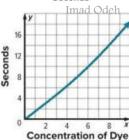

 $f(x) = -0.006x^4 + 0.140x^3 - 0.053x^2 + 1.79x$, where x is the time in seconds.

Part A Find the concentration of dye after 5 seconds.

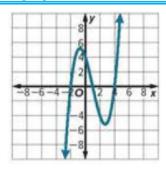

f(5) =

Part B Select the graph of the concentration of dye over 10 seconds.


a)

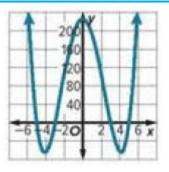

υj

c)


d) Imad Odeh

الأستاذ عماد عودة 0507614804

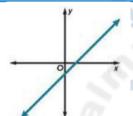
https://t.me/IOmaths12General


Example

Imad Odeh

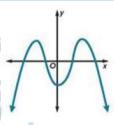
Imad Odeh

Ex 7

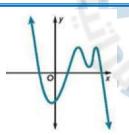


Imad Odeh

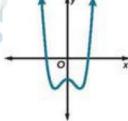
Imad Odeh


Use the graph to state the number of real zeros of the function. Ex8

1)


Imad Odeh

2)



3)

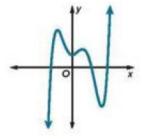
Imad Odeh


Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh


5)

Imad Odeh

Imad Odeh

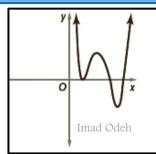
6)

Imad Odeh

Imad Odeh

الأستاذ عماد عودة 0507614804

https://t.me/IOmaths12General


Ex 9 Use the graph to state the number of real zeros of the function.

- a) (
- b) 3
- c) 2
- d) 5

Imad Odeh

Imad Odeh

Imad Odeh

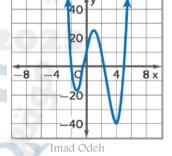

Ex 10 Use the graph to state the number of real zeros of the function.

- a) 2
- b) 3
- c) 4
- d) 5

Imad Odeh

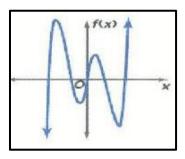
Imad Odeh

Imad Ode



Ex 11 State the number of real zeros of the function with graph shown

- a) 1
- b) 4
- c) 3
- d) 2


Imad Odeh

Imad Odeh

Ex 12 State the number of real zeros of the function with graph shown

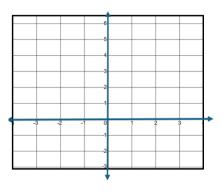
- a) 5
- b) 4
- c) 3
- d) 2

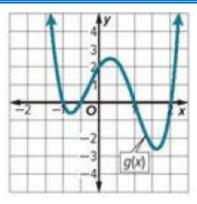
Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh


الأستاذ عماد عودة 0507614804


https://t.me/IOmaths12General

Compare Polynomial Functions

Example Examine $f(x) = x^3 + 2x^2 - 3x$ and g(x) shown in the graph.

x	f(x)
-3	
-2	
-1	
0	
1	
2	
3	

Imad Odeh

Imad Odeh

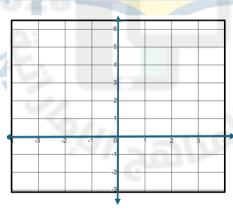
10

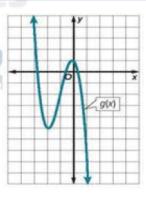
Imad Odeh

Imad Odeh

P(1)		
	f(x)	g(x)
Greater relative maximum		
Zeros	1110	
x-intercepts		
y-intercepts		1.5
End behavior		

Imad Odeh


Imad Odeh


Imad Odeh

Imad Odeh

Ex13 Examine $f(x) = x^3 - 2x^2 - 4x + 1$ and g(x) shown in the graph.

x	f(x)
-3	
-2	
-1	
0	
1	
3	
3	

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

	f(x)	g(x)
Greater relative maximum		
Zeros		
x-intercepts		
y-intercepts		
End behavior		

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

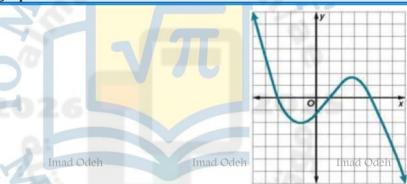
الأستاذ عماد عودة 0507614804

https://t.me/IOmaths12General

X	-5	-3	0	1.5	3
g(x)	7.5	0	-9	-15	0

a) Which function has the greater relative maximum?

Imad Odeh


Imad Odeh

Imad Odeh

Imad Odeh

b) Compare the zeros, x- and y-intercepts, and end behavior of f(x) and g(x).

Ex15 REASONING Describe the end behavior, and the possible degree and sign of the leading coefficient of the graph shown.

Imad Odeh

Ex 16 The weight of an ideal cut round diamond can be modeled by

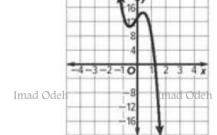
 $f(d) = 0.0071d^3 - 0.090d^2 + 0.48d$, where d is the diameter of the diamond. Find the domain of the function in the context of the situation.

- a) The domain is all real numbers.
- b) The domain is $\{d | d \ge 0\}$.
- c) The domain is $\{d | d \leq 0\}$.

Imad Odeh

Imad Odeh

Imad Odeh


Imad Odeh

d) The domain is $\{d | d \ge 0.48\}$.

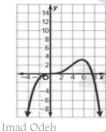
الأستاذ عماد عودة 0507614804

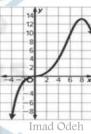
https://t.me/IOmaths12General

b) What is the leading coefficient?

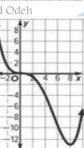
Imad Odeh

Imad Odeh

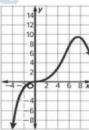

c) Describe the end behavior using the leading coefficient and degree.


Ex 18 The revenue of a certain business can be modeled using

$$f(x) = -0.01(x^4 - 11x^3 + 4x^2 - 5x + 7),$$


where x is the number of years since the business was started and f(x) is the revenue in hundred-thousands of dollars. Which graph represents the function?

a)



c)

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

Lesson 2-2

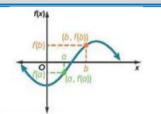
Analyzing Graphs of Polynomial Functions

Today's Goals

- Approximate zeros by graphing polynomial functions.
- Find extrema of polynomial functions.

The Location Principle

Imad Odeh


Imad Odeh

Imad Odeh

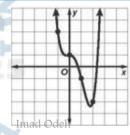
Imad Odeh

Key Concept • Location Principle

Suppose y = f(x) represents a polynomial function, and a and b are two real numbers such that f(a) < 0 and f(b) > 0. Then the function has at least one real zero between a and b.

Imad Odeh

Imad Odeh


Imad Odeh

Imad Odeh

Locate Zeros of a Function

Determine the consecutive integer values of x between which each real zero of Example $f(x) = x^4 - 2x^3 - x^2 + 1$ is located. Then draw the graph.

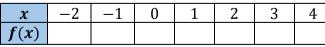
х	-2	-1	0	1	2	3	4
f(x)							

Imad Odeh

Imad Odeh

Using the Location Principle, there are zeros

Between $x = \dots$ and $x = \dots$

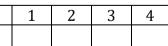

and

between x = and x =

Ex1 Determine the consecutive integer values of x between which each real zero of each function is located. Then draw the graph.

1)
$$f(x) = 2x^4 + x^3 - 2x^2 - 2$$

2)
$$f(x) = x^2 + 3x - 1$$



Using the Location Principle, there are zeros

and

between x = and x =

f(x)

Between $x = \dots$ and $x = \dots$

Between $x = \dots$ and $x = \dots$

and between x = and x =

Using the Location Principle, there are zeros

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

الأستاذ عماد عودة 0507614804

https://t.me/IOmaths12General

- Determine the consecutive integer values of x between which each real zero of each function Ex1 is located. Then draw the graph.
- $f(x) = 2x^4 + x^3 2x^2 2$

x	-2	-1	0	1	2	3	4
f(x)							

Imad Odeh

Imad Odeh

Using the Location Principle, there are zeros Between $x = \dots$ and $x = \dots$ and

between x = and x =

4)	f(x)	=	x^2	+	3 <i>x</i>	_	1
----	------	---	-------	---	------------	---	---

x	-2	-1	0	1	2	3	4
f(x)							

Imad Odeh

Imad Odeh

Using the Location Principle, there are zeros Between $x = \dots$ and $x = \dots$

and

between x = and x =

5)
$$f(x) = -x^3 + 2x^2 - 4$$

Imad Odeh

Imad Odeh

Using the Location Principle, there are zeros Between $x = \dots$ and $x = \dots$

and

between x = and x =

6)	f(x) =	$x^{3} +$	$4x^{2}$ –	5x + 5
----	--------	-----------	------------	--------

x	-2	≥ −1	0	1	2	3	4
f(x)	1	1					

Imad Odeh

Using the Location Principle, there are zeros

Between x = and x =

b<mark>etween x</mark> = and x =

7)
$$f(x) = -x^4 - x^3 + 4$$

x	-2	-1	0	1	2	3	4
f(x)				1	1		

Using the Location Principle, there are zeros

Between $x = \dots$ and $x = \dots$

and

between x = and x =

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

حدد القيم المتعاقبة للعدد الصحيح x التي يقع بينها صفر

Determine consecutive integer values if x between which real zero is located of

 $f(x) = x^3 - 2x^2 + 5$

a) Between
$$x = -1$$
 , $x = 0$ بين

- b) Between x = 1 , x = 2 بين
- Betweenx = -2 , x = -1 بين

Imad Odeh

d) Between
$$x = -3$$
 , $x = -2$

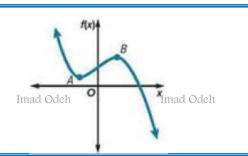
الأستاذ عماد عودة 0507614804

https://t.me/IOmaths12General

http://www.youtube.com/@imaths2022

حقيقي ل

Extrema of Polynomials


Extrema occur at relative maxima or minima of the function.

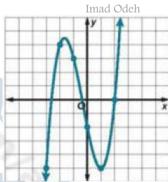
Point **A** is a relative minimum, and point **B** is a relative maximum. Both points **A** and **B** are extrema.

Imad Odeh

Imad Odeh

The graph of a polynomial of degree n has at most n-1 extrema.

Example


Use a table to graph $f(x) = x^3 + x^2 - 5x - 2$. Estimate the x-coordinates at which the relative maxima and relative minima occur.

Imad	01010
IIIIau	Ouen

x	f(x)
-3	
-2	
-1	
0	
1	1
2	
3	

Imad Odeh

The value of f(x) at

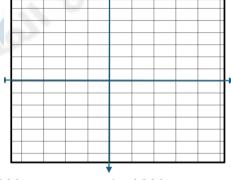
$$x = \dots$$
is greater than the surrounding points

indicating a maximum near $x = \dots$

Imad Odeh

Imad Odeh

Imad Odeh


The value of f(x) at $x = \dots$ is less than the surrounding points indicating a minimum near $x = \dots$

Use a table to graph $f(x) = -x^4 - x^3 + x^5 + x - 3$. Estimate the x-coordinates at which the relative maxima and relative minima occur.

x	f(x)
-3	
-2	
-1	
0	
1	
2	
3	

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

The relative maxima occur near $x = \dots$ and $x = \dots$

The relative minimum occurs near $x = \dots$ and $x = \dots$

Imad Odeh

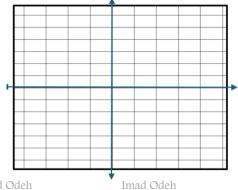
Imad Odeh

Imad Odeh

Imad Odeh

الأستاذ عماد عودة 0507614804

https://t.me/IOmaths12General


Determine the consecutive integer values of x between which each real zero of the function f(x) is located by using a table. Then sketch the graph.

$$f(x) = -2x^3 + 12x^2 - 8x$$

	6()
\boldsymbol{x}	f(x)
-3	
-2	
-1	
0	
1	
2	
3	

Imad Odeh

Imad Odeh

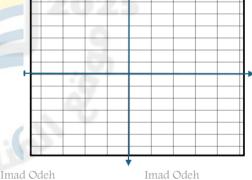
Imad Odeh

The relative maxima occur near $x = \dots$ and $x = \dots$

The relative minimum occurs near x

Imad Odeh

Imad Odeh


Imad Odeh

Determine the consecutive integer values of x between which each real zero of the Ex5 function f(x) is located by using a table. Then sketch the graph.

$$f(x) = 2x^3 - 4x^2 - 3x + 4$$

\boldsymbol{x}	f(x)
-3	
-2	
-1	
0	Part of
1	A
2	
3	

Imad Odeh

The relative maxima occur near x = and x =

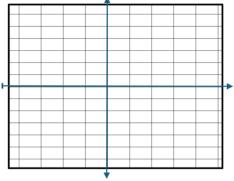
The relative minimum occurs near $x = \dots$ and $x = \dots$

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh


الأستاذ عماد عودة 0507614804

https://t.me/IOmaths12General

$$f(x) = x^4 + 2x - 1$$

f(x)
•

Imad Odeh

Imad Odeh

The relative maxima occur near $x = \dots$ and $x = \dots$

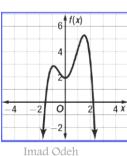

The relative minimum occurs near x

Ex7 Determine the consecutive integer values of x between which each real zero of the function f(x) is located by using a table. Then sketch the graph.

$$f(x) = x^4 + 8x^2 - 12$$

x	f(x)
-3	
-2	
-1	
0	
1	Y
2	
3	. 4

Imad Odeh



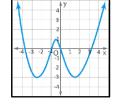
The relative maxima occur near

The relative minimum occurs near $x = \dots$ and $x = \dots$

Ex8 Estimate the x-coordinate at which a relative maximum occurs

- a) -1.5
- b) 2.2
- c) 1.5
- d) 0

Imad Odeh


Imad Odeh

Imad Odeh

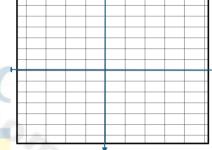
https://t.me/IOmaths12General

Ex9 Estimate the x-coordinate at which a relative maximum occurs

- a) :
- b) 1.5
- c) $-\frac{1}{2}$
- d) -2.5

Imad Odeh Imad Odeh

Imad Odeh Imad


Graph each function by using a table of values. Then, estimate the x –coordinates at which each zero and relative extrema occur and state the domain and range.

$$f(x) = x^3 - 3x + 1$$

\boldsymbol{x}	f(x)
-3	
-2	
-1	
0	
1	
2	3
3	4 \

Imad Odeh

Imad Odeh

Imad Odeh

The relative maxima occur near

x = and x =

 $x = \dots$ and $x = \dots$ The relative minimum occurs near

mad Odeh

there are zeros

Between $x = \dots$ and $x = \dots$

and

between x = and x =

Domain Range

Imad Odeh

Imad Odeh

Imad Odeh


Imad Odeh

Exercise Graph each function by using a table of values. Then, estimate the x –coordinates at which each zero and relative extrema occur and state the domain and range.

$$f(x) = 2x^3 + 9x^2 + 12x + 2$$

	x	f(x)
	-3	
	-2	
	-1	
	0	
	1	
	2	
- 1	3	T

mad Odeh - Imad Odeh

Imad Odeh

there are zeros

Between $x = \dots$ and $x = \dots$

and

between x = and x =

Domain

Range Imad Odeh

Imad Odeh

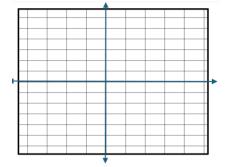
The relative maxima occur near

x = and x =

The relative minimum occurs near

 $x = \dots$ and $x = \dots$

Imad Odeh


Imad Odeh

الأستاذ عماد عودة 0507614804

https://t.me/IOmaths12General

\boldsymbol{x}	f(x)
-3	
-2	
-1	
0	
1	
2	
3	

Imad Odeh

Imad Odeh

Imad Odeh

there are zeros

Between $x = \dots$ and $x = \dots$

between x = and x =

The relative maxima occur near

$$x = \dots$$
 and $x = \dots$

The relative minimum occurs near

$$x = \dots$$
 and $x = \dots$

Domain

Range

Imad Odeh

lmad Odeh

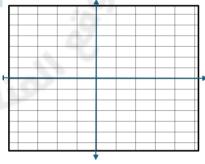
Imad Odeh

Graph each function by using a table of values. Then, estimate the x -coordinates at Ex 12 which each zero and relative extrema occur and state the domain and range.


$$f(x) = x^4 - 2x^2 - 2$$

Imad Odeh

Imad Odeh


Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

there are zeros

Between $x = \dots$ and $x = \dots$

and

between x = and x =

DomainImad Odeh

Imad Odeh

The relative maxima occur near

x = and x =

The relative minimum occurs near

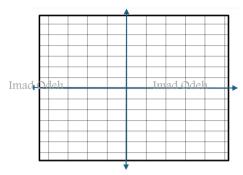
 $x = \dots$ and $x = \dots$

Imad Odeh

Imad Odeh

الأستاذ عماد عودة 0507614804

https://t.me/IOmaths12General


Ex13

Determine the key features for

$$y = \begin{cases} x^2 & if \ x \le -4 \\ 5 & if -4 < x \le 0 \\ x^3 & if \ x > 0 \end{cases}$$

Imad Odeh

Imad Odeh

there are zeros

Between $x = \dots$ and $x = \dots$

and

between x = and x =

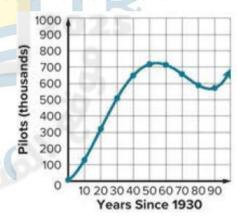
The relative maxima occur near

x = and x =

The relative minimum occurs near

 $x = \dots$ and $x = \dots$

Domain


Range

Imad Odeh

Example

PILOTS The total number of certified pilots in the United States is approximated by $f(x) = 0.000903x^4 - 0.0166x^3 + 0.762x^2 + 6.317x + 7.708$, where x is the number of years after 1930 and f(x) is the number of pilots in thousands. Graph the function and describe its key features over the relevant domain.

x	f(x)		
0	7.708		
10	131.381		
20	320.496		
30	507.961		
40	648.356		
50	717.933		
60	714.616		
70	658.001		
80	589.356		
90	571.621		

The relevant domain is......

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

The relevant range is.......

There is a relative minimum between and

The y-intercept is.....

The graph of the function have symmetry

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

It is to assume that the trend will continue indefinitely

الأستاذ عماد عودة 0507614804

https://t.me/IOmaths12General

COINS The number of quarters produced by the United States Mint can be approximated Ex 14 by the function $f(x) = 16.4x^3 - 149.5x^2 - 148.9x + 3215.4$, where x is the number of years since **2005** and f(x) is the total number of quarters produced in millions. Use the graph of the function to complete the table and describe its key features.

x, Years	f(x), Quarters (millions)
0	
2	
4	
6	
8	
10	
Issaad Odala	Imad Odala

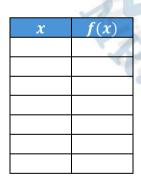
Imad Odeh

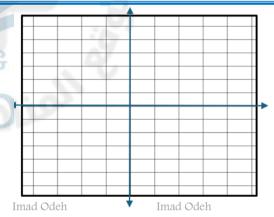
The relevant domain is

The relevant range is

There is a relative minimum between

The y-intercept is


Imad Odeh


Imad Odeh

The graph of the function have symmetry

It is to assume that the trend will continue indefinitely

BUSINESS A banker models the expected value v of a company in millions of dollars by Ex15 using the formula $v = n^3 - 3n$, where n is the number of years in business. Graph the function and describe its key features over the relevant domain.

Imad Odeh

Imad Odeh

The relevant domain is

The relevant range is

There is a relative minimum between and

The y-intercept is

Imad Odeh

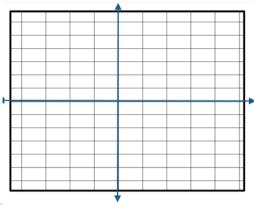
Imad Odeh

Imad Odeh

The graph of the function have symmetry

It is to assume that the trend will continue indefinitely

الأستاذ عماد عودة 0507614804


https://t.me/IOmaths12General

Ex 16 BUSINESS HEIGHT A plant's height is modeled by the function

$$f(x) = 1.5x^3 - 20x^2 + 85x - 84$$

where x is the number of weeks since the seed was planted and f(x) is the height of the plant. Graph the function and describe its key features over its relevant domain.

\boldsymbol{x}	f(x)

Imad Odeh

Imad Odel

Imad Odeh

Imad Odeh

The relevant domain is.......

The relevant range is.....

There is a relative minimum between and

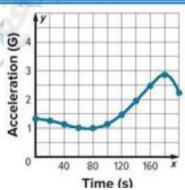
The y-intercept is.....

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh


The graph of the function have symmetry

It is to assume that the trend will continue indefinitely

Example

ROCKETS The Ares-V rocket was designed to carry as much as 75 tons of supplies and 4 astronauts to the Moon and possibly even to Mars. The table shows the expected g-force on the rocket over the course of its 200-second launch.

Time (s)	Acceleration (Gs)	Time (s)	Acceleration (Gs)
0	1.34	120	1.46
20	1.26	140	1.93
40	1.12	160	2.47
60	1.01	180	2.84
80	1	200	2.2
100	1.15		

Part A Find the average rate of change

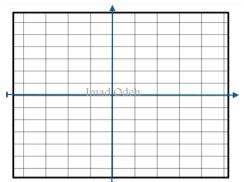
Estimate:

Check algebraically:

Imad Odeh

Imad Odeh

Imad Odeh


Imad Odeh

Part B Interpret the results.

الأستاذ عماد عودة 0507614804

https://t.me/IOmaths12General

PRECISION Sketch the graph of a third-degree polynomial function that has a **relative minimum** at x = -3, passes through the **origin**, and has **a relative maximum** at x = 2. Describe the end behavior of the graph. Based on the sketch, determine whether the leading coefficient is negative or positive.

Imad Odeh

Imad Odeh

Imad Odeh

Ex18 Describe the end behavior for

$$g(x) = -2x^4 - 6x^3 + 11x - 18 \text{ as } x \to \infty.$$

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

Ex 19 Marshall claims that there is only one real zero in the function $f(x) = 4x^3 + 7x^2 - 5x + 3$. Based on the table provided, determine whether you agree with Marshall. Then name the interval(s) in which the zero(s) is/are located.

х	f(x)
-3	-27
-2	9
1	11
0	3
1	9
2	53

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

Ex 20 Helen started a business several years ago. The table shows her profits, in millions of dollars, for the first **7** years. Select the polynomial function of best fit that could be used to model Helen's profits

a)
$$f(x) = 0.001(-3.27x^2 + 53.51x + 1371)$$

b)
$$f(x) = 0.0001(-6.944x^3 + 50.6x^2 + 250.4x + 13,957)$$

c)
$$f(x) = 0.00001(9.47x^4 + 82.07x^3 - 312.5x^2 + 4203x + 138,500)$$

d)
$$f(x) = 0.0001(-x^4 + 12x^3 - 77x^2 + 600x + 13,650)$$

 x
 f(x)

 1
 1.425

 2
 1.46

 3
 1.5

 4
 1.53

 5
 1.56

 6
 1.58

 7
 1.58

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

الأستاذ عماد عودة 0507614804

https://t.me/IOmaths12General

Lesson 2-3

Operations with Polynomials

Today's Goals

Add and subtract polynomials.

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

Multiply polynomials.

Adding and Subtracting Polynomials

A polynomial is a monomial or the sum of two or more monomials.

A binomial is the sum of two monomials, and a trinomial is the sum of three monomials.

The degree of a polynomial is the greatest degree of any term in the polynomial.

Polynomials can be added or subtracted by performing the operations indicated and combining like terms. You can **subtract** a polynomial by adding its additive inverse.

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odel

The sum or difference of polynomials will have the same variables and exponents as the original polynomials, but possibly different coefficients.

Thus, the sum or difference of two polynomials is also a polynomial.

A set is **closed** if and only if an operation on any two elements of the set produces another element of the same set. Because adding or subtracting polynomials results in a polynomial, the set of polynomials is **closed under the operations of addition and subtraction**.

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

Identify Polynomials

Example Determine whether each expression is a polynomial. If it is a polynomial, state the degree of the polynomial.

1)
$$x^6 + \sqrt[3]{x} - 4$$

2)
$$5ab^4 + 3a^2b^7 - 9$$

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

3)
$$\frac{2}{3}x^{-5} - 6x^{-3} - x$$

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

الأستاذ عماد عودة 0507614804

https://t.me/IOmaths12General

3) P^{10}

4) 25

5) $2x^2 - 3x + 5$

6) $a^3 - 11$

7) $\frac{5np}{n^2} - \frac{2g}{h}$

8) $\sqrt{m-7}$

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

Ex 2 Polynomial with degree 3

- a) $4 2x^2 3x$
- b) $x^2 + x + 12^3$
- c) $x^3 + x^4 x^2$
- d) $1 + x + x^3$

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

Ex 3 Polynomial with degree 3

- a) $x^3 + x^2 2x^4$
- b) $x^2 + x + 5^3$
- c) $-2x^3 3x + 4$
- d) 3x 3

Imad Odeh

d Odeh II

Imad Odeh

Ex 4 Polynomial with degree 3

X	-24	-18	-12	-6	0	6	12	18	24
f(x)	-8	-1	3	-2	4	7	-1	-8	5

- a) 2
- b) 3
- c) 4
- d) 5

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

https://t.me/IOmaths12General

Example Find

$$(6x^3 + 7x^2 - 2x + 5) + (x^3 - 4x^2 - 82x + 1).$$

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

Ex 5 Find

1)
$$(2x^3 + 9x^2 + 6x - 3) + (4x^3 - 7x^2 + 5x)$$
. 2) $(6a^2 + 5a + 10) - (4a^2 + 6a + 12)$

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

3)
$$(g + 5) + (2g + 7)$$

4)
$$(x^2 - 3x - 3) + (2x^2 + 7x - 2)$$

Imad Odeh

Imad Odeh

5)
$$(-2f^2 - 3f - 5) + (-2f^2 - 3f + 8)$$

Imad Odeh

Imad Odeh

Imad Odeh

Example Find

$$(2x^5 + 11x^4 + 7x - 8) - (5x^4 + 9x^3 - 3x + 4).$$

Ex 6 Find

$$(8x^2 - 3x + 1) - (5x^3 + 2x^2 - 6x - 9)$$

Ex 7 Find

1)
$$(6a^2 + 5a + 10) - (4a^2 + 6a + 12)$$

2)
$$(5d + 5) - (d + 1)$$

3)
$$(2x - 3) - (5x - 6)$$

4)
$$(x^2 + 2x - 5) - (3x^2 - 4x + 7)$$

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

Ex 8 Use the polynomials

$$f(x) = -6x^3 + 2x^2 + 4$$
 and $g(x) = x^4 - 6x^3 - 2x$

to evaluate and simplify the given expression. Determine the degree of the resulting polynomial. Show your work.

$$1) \ f(x) + g(x)$$

$$2) \quad g(x) - f(x)$$

الأستاذ عماد عودة 0507614804

https://t.me/IOmaths12General

	_	-	_	-		
-1	m	ad	α	А	$\boldsymbol{\Delta}$	h
J	ши	au	\mathbf{v}	и	L)	ш

Ex 9 Find

 $(-4x^2 + 2x + 3) - 3(2x^2 - 5x + 1)$

- $2x^2$ a)
- $-10x^2 + 17x$ b)
 - Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

- $-10x^{2}$ c)
- $2x^2 + 17x$ d)
- Ex 10 Find
- 4(4x 9y) + 8(3x + 2y)
- 16x 20ya)
- 40x 20yb)

Imad Odeh Imad Odeh Imad Odeh

Imad Odeh

- 20x 40yc)
- 24x + 16yd)
- Ex 11 Find

$$(-2)(2x+y)-3(x-2y)$$

- 7x 4ya)
- -7x 4yb)
- Imad Odeh
- c) 4y - 7x
- 4y + 7xd)

-2(-5x+6y)-9(-2x+4y)

lmad Odeh

- Ex 12 Find
- 28x 48ya)
- -18x + 48yb)

Imad Odeh

Imad Odeh

- 28x + 48yc)
- d) -8x + 24y
- Ex 13 Find

$$3(2y + 5x) - 7(-2 + y)$$

- y + 15x + 14a)
- y + 15x 14b)
- -y + 15x + 14

Imad Odeh -y + 15x - 14 Imad Odeh

Imad Odeh

Imad Odeh

https://t.me/IOmaths12General

http://www.youtube.com/@imaths2022

الأستاذ عماد عودة 0507614804

Ex 14 Find

3(4x-2y)-2(3x+y)

- 18x 18ya)
- 6x + 4yb)
- 8x 4yc)
- d) 6x - 8y

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

Ex 15 Find

$$4(4x - 9y) + 8(3x + 2y)$$

- 16x 20ya)
- 40x 20yb)
- 20x 40yc)
- 24x + 16yd)

Imad Odeh

Imad Odeh

Imad Odeh

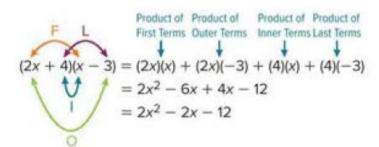
Ex 16 Find

$$(-4x^2 + 2x + 3) - 3(2x^2 - 5x + 1)$$

- $2x^2$ a)
- $-10x^2 + 17x$ b)
- c) $-10x^{2}$
- $2x^2 + 17x$ d)

Imad Odeh

Imad Odeh


Imad Odeh

Multiplying Polynomials

Key Concept • FOIL Method

Words: Find the sum of the products of F the First terms, O the Outer terms, I the Inner terms, and L the Last terms.

Symbols:

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

https://t.me/IOmaths12General

Example Find

 $2x(4x^3 + 5x^2 - x - 7).$

Ex 17 Find

1) 3p(np - z)

2) $4x(2x^2 + y)$

3) $x^2(2x + 9)$

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

Example Find

(3a + 5)(a - 7)(4a + 1).

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

Ex 18 Find

- 4) (-2r-3)(5r-1)(r+4).
- **5)** $-5(2c\ 2-d\)^2$

6) $(x-y)(x^2+2xy+y)^2$

7) $(a + b)(a^3 - 3ab - b)^2$

8) (x - y)(x + y)(2x + y)

9) (a + b)(2a + 3b)(2x - y)

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

10)
$$(r - 2t)(r + 2t)$$

11) (3y + 4)(2y - 3)

- **12)** $(x^3 3x^2 + 1)(2x^2 x + 2)$
- **13)** $(4x^5 + x^3 7x^2 + 2)(3x 1)$

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

الأستاذ عماد عودة 0507614804

https://t.me/IOmaths12General

1) f(x)g(x)

 $2) \qquad h(x)f(x)$

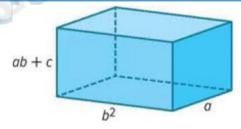
3) $[f(x)]^2$

4)

Imad Odeh

Imad Odeh

Imad Odeh


Imad Odeh

Imad Odeh

Ex 20 CONSTRUCTION A rectangular deck is built around a square pool. The pool has side length s. The length of the deck is 5 units longer than twice the side length of the pool. The width of the deck is 3 units longer than the side length of the pool. What is the area of the deck in terms of s?

VOLUME The volume of a rectangular prism is given by the product of its length, width, and height. A rectangular prism has a length of b^2 units, a width of a units, and a height of ab + c units. What is the volume of the rectangular prism? Express your answer in simplified form.

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

الأستاذ عماد عودة 0507614804

https://t.me/IOmaths12General

a. Refer to the diagram to find the area of the sail.

Imad Odeh

Imad Odeh

Imad Odeh

b. If Tamara wants fabric on each side of her sail, write a polynomial to represent the total amount of fabric she will need to make the sail.

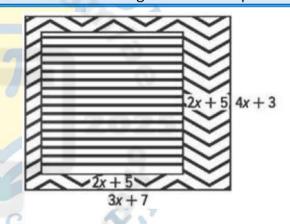
Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

Ex 23 Enrique is designing a flag for a new school club. A smaller striped square is placed as part of the design and the rest of the flag will have chevrons


Which expression can be used to represent the area of the flag that is not striped?

a)
$$16x^2 + 57x + 46$$

b)
$$8x^2 + 35x + 16$$

c)
$$8x^2 + 17x + 4$$

d)
$$8x^2 + 17x - 4$$

Imad Odeh

Imad Odek

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

Lesson 2-4

Dividing Polynomials

Today's Goals

- Divide polynomials by using long division.
- Divide polynomials by using synthetic division.

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

Dividing Polynomials by Using Long Division

Example Find $(24a^4b^3 + 18a^2b^2 - 30ab)(6ab^3)^{-1}$.

Ex 1 Find $(9x^9y^5 + 21x^4y^4 - 12x^3y^2) \div (3x^2y^2)$.

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

Ex 2 Simplify each expression.

1)
$$\frac{15y^3 + 6y^2 + 3y}{3y}$$

Imad Odeh

Imad Odeh

3)
$$(6j^2k - 9jk^2) \div (3jk)$$
.

Imad Odeh

4)
$$(4a^2h^2 - 8ah^3 + 3a^4) \div (2a^2)$$

2) $(4f^5 - 6f^4 + 12f^3 - 8f^2)(4f^2)^{-1}$.

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

Example Find $(x^2 - 5x - 36) \div (x + 4)$.

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

الأستاذ عماد عودة 0507614804

https://t.me/IOmaths12General

Ex 3 Find

$$\frac{x^2 + 6x - 112}{x - 8}$$

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

Example Find

$$\frac{3z^3 - 14z^2 - 7z + 3}{z - 5}$$

Ex 4 Find

$$(-4x^3 + 5x^2 - 2x - 9)(x - 2)^{-1}$$

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

Ex 5 Simplify by using long division.

1)
$$(n^2 + 7n + 10) \div (n + 5)$$
.

2)
$$(d^2 + 4d + 3)(d + 1)^{-1}$$
.

3)
$$(4t^2 + 13t + 15) \div (t+6)$$
.

4)
$$(6y^2 + y - 2)(2y - 1)^{-1}$$

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

5)
$$(4g^2 - 9) \div (2g + 3)$$

6) (

$$(2x^2 - 5x - 4) \div (x - 3)$$

الأستاذ عماد عودة 0507614804

https://t.me/IOmaths12General

Example

Find

$$(3x^3 - 2x^2 - 53x - 60) \div (x + 3).$$

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

Ex6 Find

$$4x^4 - 37x^2 + 4x + 9$$

$$2x - 1$$

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

Ex7 Find

$$(4x^4 + 3x^3 - 12x^2 - x + 6)(4x + 3)^{-1}$$

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odel

الأستاذ عماد عودة 0507614804

https://t.me/IOmaths12General

Ex 8 Simplify using synthetic division.

1)
$$(3v^2 - 7v - 10)(v - 4)^{-1}$$

2)
$$(3t^2 + 4t^3 - 32t^2 - 5t - 20)(t + 4)^{-1}$$

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

3)
$$\frac{(y^3+6)}{(y+2)}$$

4) $\frac{(2x^3 - x^2 - 18x + 32)}{(2x - 6)}$

Imad Odeh Imad Odeh

5)
$$(4p^3 - p^2 + 2p) \div (3p - 1)$$

6) $(3c^4 + 6c^3 - 2c + 4)(c + 2)^{-1}$

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

https://t.me/IOmaths12General

Imad Odeh

Find Ex 10

a)
$$-2x^2y^2$$

b)
$$2y^2$$

c)
$$-\frac{2x^2}{x^2}$$

d)
$$-2x^{-8}y^{-15}$$

d)
$$-2x^{-8}y^{-1}$$

Ex 11 Find

$$\frac{3x^3y^4z}{9xy^5z}$$

a)
$$\frac{3x^2z^2}{y}$$

b)
$$3x^4y^6z^2$$

C)
$$\frac{x^2}{1}$$
 Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

d)
$$\frac{x^4z^2}{3y}$$

Ex 12 Find

$$(-2x^{-4}y^3)(-7x^6y^{-2})$$

a)
$$-\frac{14y}{x^2}$$

b)
$$14x^2y$$

c)
$$\frac{2x^2}{7y}$$
 Imad Odeh

Imad Odeh

Imad Odeh

d)
$$14xy^2$$

الأستاذ عماد عودة 0507614804

https://t.me/IOmaths12General

$$-2x^2y^2$$

b)

$$-\frac{2y^2}{x^2}$$

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

c)

$$-\frac{2x^2}{v^2}$$

d)

$$-2x^{-8}y^{-15}$$

Ex 14 simplify

 $(3x^0)(2x^4)$

a) $2x^4$

 $18x^{4}$ b)

Imad Odeh

Imad Odeh

 $12x^{4}$ c)

 $18x^{6}$ d)

Ex 15 Find

$$\frac{a^4n^7}{an^{-1}}$$

a)

$$\frac{a^2}{n^3}$$

b)

$$a^2n^8$$

c)

$$a^3n^6$$

d)

$$a^3n^8$$

Determine the quotient. Ex 16

$$(5x^4 + 12x^3 - 64x^2 - 95x + 132) \div (x - 3)$$

$$3x^3 + 21x^2 + x - 31$$

$$3x - 321x - 2x + 31$$

$$5x^3 + 27x^2 + 17x - 44$$

$$5x^3 - 27x^2 - 17x + 44$$

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

$$2x^2 - 25x + 63 + \frac{8}{3}$$

$$2x - 25x + 63 + \frac{8}{3x + 2}$$

Imad Odeh

$$2x - 25x + 63 + \frac{4}{3}$$

$$2x 2 - 25x + 63 + \frac{4}{3x + 2}$$

Ex 18 Determine the quotient

$$a + 10 - \frac{19}{3 - a}$$

$$-a - 10 + \frac{19}{3 - a}$$

$$-a+10$$
 Imad Odeh

$$-a - 10 - \frac{19}{3 - a}$$

 $(a^2 + 7a - 11)(3 - a)^{-1}$

 $(r^2 + 5r + 7)(1-r)^{-1}$

Imad Odeh Imad Odeh

Imad Odeh

Ex 19 Determine the quotient

$$-r-6-\frac{13}{1-r}$$

$$r-6+\frac{13}{1-r}$$

$$r + 6 - \frac{13}{1 - r}$$

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

Ex 20 Determine the quotient

$$(x^2 + 3x - 9)(4 - x)^{-1}$$

$$-x - 7 + \frac{19}{4 - x}$$

$$-x - 7$$

$$x + d$$

$$-x - 7$$

$$x + 7 - \frac{19}{4 - x}$$

$$-x - 7 - \frac{19}{4 - x}$$

الأستاذ عماد عودة 0507614804

https://t.me/IOmaths12General

$$6x + 5 + \frac{45}{5x - 6}$$

b)

$$6x - 5 + \frac{45}{5x + 6}$$
Imad Odeh
$$6x - 5 + \frac{45}{5x + 6}$$

Imad Odeh

Imad Odeh

Imad Odeh

c)

$$-6x - 5 + \frac{45}{5x - 6}$$

d)

$$6x + 5$$

Which expression below is equal to Ex 22

$$(b^3+2b^2-b-2)\div(b+2)$$

a)

$$b^2 + 1$$

 $b^2 - 1$ b)

Imad Odeh

Imad Odeh

c)

$$b^2 + 2b + 1$$

d)

$$b^2 + 3b + 2$$

تمرين حجم المنشور المستطيل يساوي 2x-3+2x+3 فأي تعبير كثيرة الحدود يمثل مساحة القاعدة؟ Ex 23

a)

$$6x^4 + 37x^3 + 59x^2 + 3x - 9$$

b)

$$6x^2 + x + 1$$

Imad Odeh

Imad Odeh

Imad Odeh

 $6x^2 + x - 1$ c)

d) 6x + 1

The volume of the rectangular prism shown is Ex 24

$$45x^3 + 83x^2 + x - 12$$
.

What is the area of the base?

9x + 4

Imad Odeh

Imad Odeh

Imad Odeh

الأستاذ عماد عودة 0507614804

https://t.me/IOmaths12General

Lesson 2-5

Powers of Binomials

Today's Goal

• Expand powers of binomials by using Pascal's Triangle and the Binomial Theorem.

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

Powers of Binomials

Key Concept • Binomial Expansion

In the binomial expansion of $(a + b)^n$,

- there are n + 1 terms.
- *n* is the exponent of *a* in the first term and *b* in the last term.
- in successive terms, the exponent of a decreases by 1, and the exponent of b increases by 1.
- the sum of the exponents in each term is n.
- the coefficients are symmetric.

Imad Odeh

mad Odeh

Imad Odeh

mad Odeh

Pascal's triangle is a triangle of numbers in which a row represents the coefficients of an expanded binomial $(a + b)^n$. Each row begins and ends with 1. Each coefficient can be found by adding the two coefficients above it in the previous row. Instead of writing out the rows of **Pascal's triangle**, you can use the Binomial Theorem to expand a binomial. The Binomial Theorem uses combinations to calculate the coefficients of the binomial expansion.

Imad Odeh	Imad O	deh	Imad Odeh	Imad Odeh
Anido Ottori		CICII	Attenti O tioli	
		1		$(x + y)^0$
	9 2 0 1	1		$(x + y)^1$
	0 : 1	2	1	$(x + y)^0$ $(x + y)^1$ $(x + y)^2$
	1 3	3	1	$(x+y)^3$ $(x+y)^4$ $(x+y)^5$
1	4	6	4 1	$(x + y)^4$
1	5 10	0 10	5 1	$(x + y)^5$
			-17	

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

Key Concept • Binomial Theorem

If n is a natural number, then

$$(a + b)^n = nC_0a^nb^0 + nC_1a^{n-1}b^1 + nC_2a^{n-2}b^2 + \dots + nC_na^0b^n$$

Example Use Pascal's triangle to expand.

$$(x+y)^7$$

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

الأستاذ عماد عودة 0507614804

https://t.me/IOmaths12General

1) $(c+d)^4$

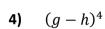
Imad Odeh

Imad Odeh

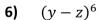
Imad Odeh

Imad Odeh

2) $(x-y)^3$


Imad Odeh

Imad Odeh


Imad Odeh

Imad Odeh

3) $(a+b)^4$

5)
$$(m+1)^4$$

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

7) $(d+2)^8$

الأستاذ عماد عودة 0507614804

https://t.me/IOmaths12General

Example

BASEBALL In 2016, the Chicago Cubs won the World Series for the first time in 108 years. During the regular season, the Cubs played the Atlanta Braves 6 times, winning 3 games and losing 3 games. If the Cubs were as likely to win as to lose, find the probability of this outcome by expanding.

$$(w + \ell)^6$$

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

Ex 2 GAME SHOW A group of **8** contestants are selected from the audience of a television game show. If there are an equal number of men and women in the audience, find the probability of the contestants being **5** women and **3** men by expanding $(w + m)^8$. Round to the nearest percent if necessary.

Ex 3 BAND A school band went to 4 competitions during the year and received a superior rating 2 times. If the band is as likely to receive a superior rating as to not receive a superior rating, find the probability of this outcome by expanding $(s + n)^4$. Round to the nearest percent if necessary.

BASKETBALL Oliver shot 8 free throws at practice, making 6 free throws and missing 2 free throws. If Oliver is equally likely to make a free throw as he is to miss a free throw, find the probability of this outcome by expanding $(m + n)^8$. Round to the nearest percent if necessary.

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

الأستاذ عماد عودة 0507614804

https://t.me/IOmaths12General

 $(2c - 6d)^4$

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

Ex 5 Expand

1) $(2c - 6d)^4$

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

2) $(3x + 4y)^5$

3) $(2c - 2d)^7$

4) $(8h - 3j)^4$

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

5) $(4a + 3b)^6$

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

الأستاذ عماد عودة 0507614804

https://t.me/IOmaths12General

Ex 6 Expand

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

 $\left(x-\frac{1}{3}\right)^4$ 2)

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

3) $\left(2b+\frac{1}{4}\right)^5$

Imad Odeh

 $\left(3c + \frac{1}{3}d\right)^3$

Imad Odeh

Imad Odeh

Imad Odeh

Ex 7 USE A MODEL Diego flips a fair coin 12 times. What is the probability that the coin lands on tails 3 times? 5 times? 9 times?

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

Use Pascal's Triangle to find the fourth term in the expansion of $(2x + 7)^6$. Why is it the **Ex 8** same as the fourth term in the expansion of $(7 + 2x)^6$?

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

الأستاذ عماد عودة 0507614804

https://t.me/IOmaths12General

Find the term in $(a + b)^{12}$ where the exponent of a is 5. **Ex 9**

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

Which of the following is the expansion of $(2h + f)^4$?

a)
$$2h^4 + 4h^3 f + 6h^2 f^2 + 4hf^3 + f^4$$

b)
$$16h^4 + 32h^3 f + 24h^2 f^2 + 32hf^3 + 16f^4$$

Imad Odeh

Imad Odeh

d)
$$16h^4 + 32h^3 f + 24h^2 f^2 + 8hf^3 + f^4$$

- Ex 11 The first shelf on Hannah's bookshelf holds an equal number of fiction and nonfiction books. If Hannah selects 5 books randomly, what is the probability that 4 of the books will be fiction and 1 will be nonfiction? Round your answer to the nearest tenth of a percent.
- 31.3% a)
- 5.6% b) Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

- 12.5% c)
- d) 3.1%
- Select all of the following that would be a coefficient of a term in the binomial expansion of Ex 12 $(x + y)^7$
 - 1 a)
 - b) 3
 - 7 c)
- 14 d)

Imad Odeh

Imad Odeh

Imad Odeh

Imad Odeh

- 21 e)
- 28 f)
- 30 g)
- 35 h)

اطبب التمنبات

الأستاذ عماد عودة 0507614804

https://t.me/IOmaths12General