مراجعة نهائية وفق الهيكل الوزاري الجديد منهج انسباير

تم تحميل هذا الملف من موقع المناهج الإماراتية

موقع المناهج ← المناهج الإماراتية ← الصف العاشر العام ← فيزياء ← الفصل الأول ← ملفات متنوعة ← الملف

تاريخ إضافة الملف على موقع المناهج: 07:59:18 2025-11-07

ملفات اكتب للمعلم اكتب للطالب ا اختبارات الكترونية ا اختبارات ا حلول ا عروض بوربوينت ا أوراق عمل منهج انجليزي ا ملخصات وتقارير ا مذكرات وبنوك ا الامتحان النهائي ا للمدرس

المزيد من مادة ا فيزياء:

إعداد: Zewin Adham

التواصل الاجتماعي بحسب الصف العاشر العام

صفحة المناهج الإماراتية على فيسببوك

الرياضيات

اللغة الانجليزية

اللغة العربية

التربية الاسلامية

المواد على تلغرام

المزيد من الملفات بحسب الصف العاشر العام والمادة فيزياء في الفصل الأول	
تجميعة أسئلة وفق الهيكل الوزاري الجديد منهج انسباير	1
تجميعة أسئلة القسم الكتابي وفق الهيكل الوزاري الجديد منهج انسباير	2
مذكرة شاملة الوحدة الأولى مع تدريبات	3
ملخص وتدريبات الدرس الأول motion and Force منهج انسباير	4
أسئلة الامتحان النهائي القسم الورقي منهج بريدج العام 2024-2025	5

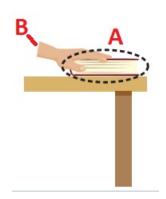
Grade 10 Gen EOT-1 Revision

مراجعه هيكل العلوم العاشر عام الفصل الاول 2026

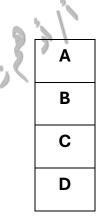
Which of the following is **NOT** true about force?

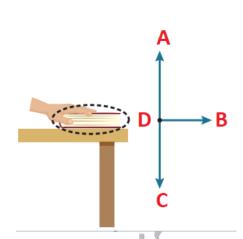
- A) Force is a push or pull
- B) Force is a scalar quantity.
- C) Force can cause an object to accelerate F= ma
- D) Force is measured in Newtons (N).

Which of the following best defines a force?


- A. A push or pull that acts only when two objects are in contact.
- B. A push or pull that can change an object's motion or shape.
- C. The amount of matter in an object.
- D. The rate at which velocity changes over time.

Which of the following is **NOT** a cause of acceleration?


- A) A net external force
- B) Gravity
- C) Balanced forces
- D) Friction


Which of the following is True?

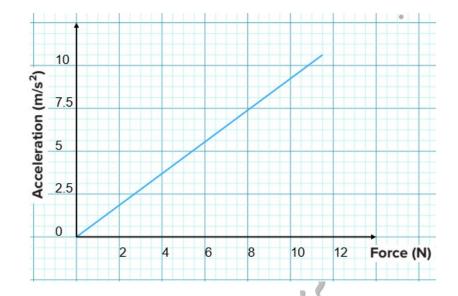
Α	A is agent	B is system
В	A is system	B is agent
C	A is system	B is system
D	A is agent	B is agent

Which of the following is Field force?

the following is an example of a **field force**?

- A) Friction
- B) Normal force
- C) Gravitational force
- D) Tension

G10 Gen


Science - Inspire

العلوم - انسبير

T1 - 2025 - 2026

From the following curve, what is the mass of the object?


Which of the following is the correct formula for Newton's Second Law of Motion?

A)
$$F_{net} = mv$$

C)
$$F_{net} = m/a$$

D)
$$F_{net} = v/m$$

If the total mass of sled and the two boxes is 20 Kg, Find the acceleration

A) 80 m/s²

B) 20 m/s²

C) 4 m/s²

D) 40 m/s^2

G10 Gen Science - Inspire	العلوم - انسبير	T1 – 2025 - 2026
---------------------------	-----------------	------------------

What is another name for Newton's First Law of Motion?

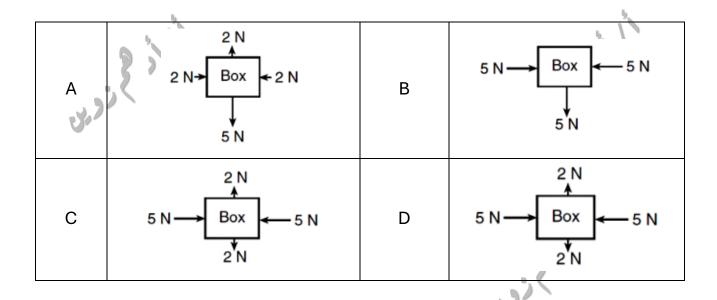
- A) Law of Acceleration
- B) Law of Momentum
- C) Law of Inertia
- D) Law of Force

What happens to an object in motion if the net force acting on it is zero?

- A) It will stop immediately.
- B) It will continue moving in a straight line with constant speed.
- C) It will gradually slow down.
- D) It will change direction

Which of the following best defines equilibrium?

- A. A state in which an object is moving at a constant speed in a straight line.
- B. A state in which all forces acting on an object are balanced, no change in motion.
- C. A state in which an object accelerates due to unbalanced forces.
- D. A state in which gravity is the only force acting on an object.


Which of the following objects is not in equilibrium?

أي من الأجسام التالية ليس في حالة اتزان؟

- a. A book at rest on a table كتاب في حالة السكون على طاولة
- b. c. A parachute falling with terminal velocity مظلة تسقط بالسرعة الحدية
- c. d. A train moving with a constant velocity قطار يتحرك بسرعة ثابتة
- d. A car moving in a constant acceleration سيارة تتحرك بتسارع ثابت

G10 Gen	Science - Inspire	العلوم - انسبير	T1 – 2025 - 2026
---------	-------------------	-----------------	------------------

Which of the following diagrams is in equilibrium?

According to Newton's First Law, when is an object in equilibrium?

- A) When it is accelerating
- B) When the net force acting on it is zero
- C) When it is moving in a circular path
- D) When multiple forces act on it in different directions

Which of the following is true about an object in equilibrium?

- A) It must always be at rest.
- B) When multiple forces act on it in different directions
- C) It must always experience multiple forces.
- D) It can be moving, but only if its velocity is constant.

Which of the following is **NOT** true about an object's weight?

- A) Weight is the force exerted on an object due to gravity.
- B) An object's weight can change depending on its location in the universe.
- C) Weight is a measure of an object's mass.
- D) it is given by W = mg where g is the gravitational acceleration

You place a 4.0-kg watermelon on a spring scale that measures in newtons. What is the scale's reading? (The scale reads the weight of the watermelon)

- A) 4.0 N
- B) 39 N
- C) 9.8 N
- D) 38 N

You place a 22.50-kg television on a spring scale. If the scale reads 235.2 N, what is the gravitational field?

- A) 9.8 N/kg
- B) 10.5 N/kg
- C) 11.5 N/kg
- D) 9.5 N/kg

Which of the following statements correctly describes forces in nature?

- A. Forces act on a single object independently of other objects.
- B. Forces are interactions between two bodies, and one body cannot exert a force without affecting the other.
- C. Forces exist only when objects are touching each other.
- D. Forces are only caused by gravity.

Newton's third law of motion states that:

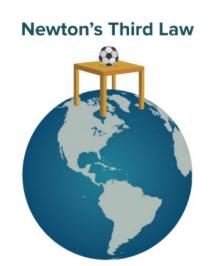
- A. An object at rest stays at rest unless acted upon by a force.
- B. The acceleration of an object is directly proportional to the net force and inversely proportional to its mass.
- C. For every action, there is an equal and opposite reaction; forces always come in pairs.
- D. Objects in motion will eventually stop unless a force keeps them moving.

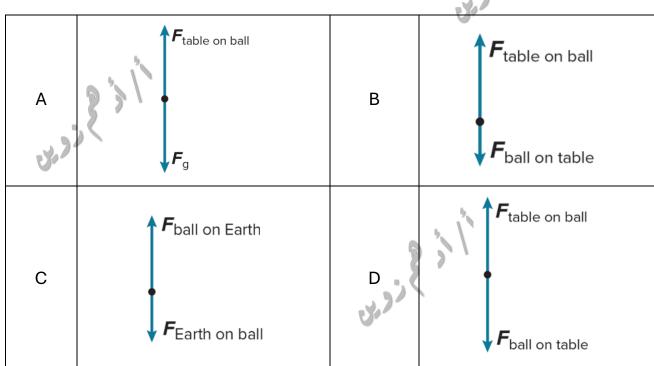
Which of the following is the correct mathematical representation of Newton's

Third Law?

a)
$$F = m \times a$$

b)
$$F_1 = -F_2$$


c)
$$\Sigma F = 0$$


d)
$$P = F \times v$$

Which of the following statements correctly describes action-reaction force pairs?

- A. They act on the same object and cancel each other out.
- B. They act on different objects, are equal in magnitude, and opposite in direction.
- C. They act in the same direction on different objects.
- D. They only exist when one object is at rest.

Which of the following is a force pair?

you push against a wall, the wall pushes back against you with ____ force.

A) equal

B) less

C) no

D) more

3.5.8 3.11

A box is pulled by a rope with a tension of 50 N. According to Newton's Third Law, what force does the box exert on the rope?

- A. 0 N, because the rope only pulls the box.
- B. 25 N, half of the tension.
- C. 50 N in the same direction as the tension.
- D. 50 N in the opposite direction to the tension

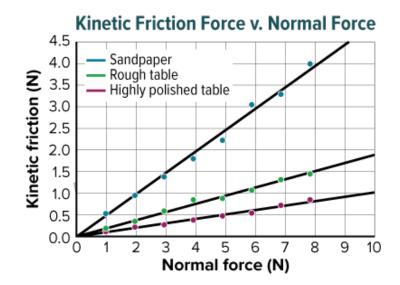
Which of the following correctly distinguishes between static and kinetic friction?

- A) Static friction acts when an object is moving, while kinetic friction acts when it is at rest.
- B) Static friction prevents motion, while kinetic friction opposes motion once it has started.
- C) Static friction is always less than kinetic friction.
- D) Kinetic friction increases until the object starts moving.

The force of friction between two surfaces mainly depends on which of the following factors?

- A) The speed of motion and surface temperature
- B) The volume and shape of the object
- C) The color and mass of the object
- D) The roughness of surfaces and the normal force between them

Which of the following is true about the coefficients of kinetic and static friction?


- A) The coefficient of kinetic friction is always greater than that of static friction.
- B) The coefficient of static friction is usually greater than the coefficient of kinetic friction.
- C) Both coefficients are always equal for any two surfaces.
- D) The coefficients depend on the weight of the object, not the nature of the surfaces.

Which of the following best defines the coefficients of kinetic and static friction?

- A) They are the forces that cause motion between two objects.
- B) They are the weights of the objects involved in motion
- C) They are ratios that compare the frictional force to the normal force between two surfaces.
- D) They are the speeds at which objects start to move.

The coefficient of kinetic friction of Of rough table is

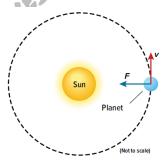
- A) 0.500
- B) 0.187
- C) 0.100
- D) 1.550

 $F_{\rm f, kinetic} = \mu_{\rm k} F_{\rm N}$

Which of the following is true about work?

- A) Work is a vector quantity measured in joules (J).
- B) Work is a scalar quantity measured in newton-meters (Nm) or joules (J).
- C) Work is only done when an object is at rest.
- D) Work is measured in kilograms (kg).

Together two students push a car with a force of 825 N over a distance of 35 m. How much work do they do on the car?


- A) 2887.5 J
- B) 28875 J
- C) 8600 J
- D) 35000 J

An electric motor develops 65 kW of power as it lifts a loaded elevator 17.5 m in 35 s. What force does the motor exert?

- A) 1300 N
- B) 13000 N
- C) 130000 N
- D) 65000 N

When a force acts perpendicular to the direction of an object's motion, the work done by the force is:

- A) Maximum positive
- B) Maximum negative
- C) Zero
- D) Equal to the kinetic energy

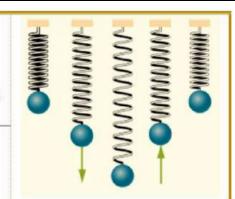
Which of the following is an example of negative work?

- A) Pushing a sled forward on ice
- B) Gravity pulling a falling ball downward
- C) Friction slowing down a sliding book
- D) Pulling a cart forward

Which of the following correctly defines power and its unit?

- A) Power is the total energy of an object, measured in joules (J).
- B) Power is the rate at which work is done, measured in watts (W).
- C) Power is the force applied on an object, measured in newtons (N).
- D) Power is the speed of an object, measured in meters per second (m/s).

Any motion that repeats in a regular cycle is known as ____ motion.


- A) wave
- B) periodic
- C) transverse
- D) accelerated motion

The figure shows a mass attached to a spring. If the mass is pulled down and released, it will bounce up and down through the equilibrium position.

Which of the following types of motion <u>represents this</u> situation?

يُبِيِّن الشُكل كُتلة مُتصلة بزنبرك، سُحبت الكتلة إلى أسفل وتُركت، فإنها سترتد صعو داً وهبوطاً حول موضع الاتزان.

أى أنواع الحركة الآنية تُمثّل هذه الوضعية؟

- a) Periodic motion
- b) Simple harmonic motion
- c) Linear Motion
- d) Translational motion

- أ) الحركة الدورية
- ب) الحركة التو افقية اليسبطة
 -) الحركة الخطية
 - د) الحركة الإنتقالية

G10 Gen Science - Inspire العلوم - انسبير T1 – 2025 - 2026

2. What does the period (T) of a periodic motion represent?

- A. The total distance traveled in one cycle
- B. The time taken for half a cycle
- C. The maximum speed reached
- D. The time needed to complete one full cycle

ماذا يُمثل الزمن الدوري (T) للحركة الدورية؟

أ. المسافة الكلية المقطوعة في دورة واحدة

ب. الزمن المستغرق لنصف دورة

اج. أقصى سرعة وصلت إليها

د الزمن اللازم لاكمال دورة كاملة

What is the amplitude of a periodic motion?

- A. The average speed of the object
- B. The number of cycles per second
- C. The maximum distance from the equilibrium position
- D. The net force at equilibrium

ما سعة الحركة الدورية؟

أ. متوسط سرعة الجسم

ب. عدد الدورات في الثانية

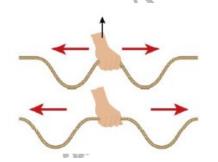
ج. أقصى مسافة من موضع التوازن

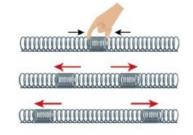
د. القوة المحصلة عند التوازن

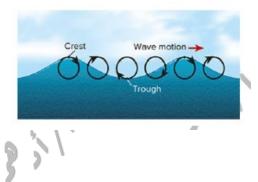
Which of the following statements correctly describe simple harmonic motion (SHM)?

- I. SHM is a type of periodic motion where the restoring force is proportional to displacement.
- II. SHM occurs only if the motion repeats at regular intervals, regardless of the type of restoring force.
- III. A stretched spring with a mass undergoing vertical oscillations can exhibit SHM.
- A) I and II only
- B) I and III only
- C) II and III only
- D) I, II, and III

بشكل صحيح؟ (SHM) أيِّ من العبارات التالية تصف الحركة التوافقية البسيطة


الحركة التوافقية البسيطة هي نوع من الحركة الدورية، حيث تتناسب قوة الاستعادة طردياً مع الإزاحة تحدث الحركة الحركة على فترات منتظمة، بغض النظر عن نوع قوة الاستعادة المكن لزنبرك مشدود ذي كتلة تخضع لتذبذبات رأسية أن يظهر حركة توافقية بسيطة المناسسة المكن لزنبرك مشدود ذي كتلة تخضع لتذبذبات رأسية أن يظهر حركة توافقية بسيطة المناسسة المكن لزنبرك مشدود ذي كتلة تخضع لتذبذبات رأسية أن يظهر حركة توافقية بسيطة المناسسة المكن لمناسبة المكن لمناسبة المكن لمناسبة المكن لمناسبة المكن لمناسبة المكن لمناسبة المكن ال


- A) I and II only
- B) I and III only
- C) II and III only
- D) I, II, and III


الر ع درس

Types of Mechanical Waves

Feature	Transverse Wave	Longitudinal Wave	Surface Wave
Particle	Perpendicular to wave	Parallel to wave	Circular (both
Motion	direction (up/down)	direction (back/forth)	perpendicular and parallel)
Wave	Horizontal (while rope	Same as particle	Along surface (e.g.,
Direction	moves vertically)	direction	water surface)
Example	Rope waves, light (non-	Sound waves, spring	Ocean waves near the
0	mechanical)	toy	shore
Key Terms	Crest, Trough	Compression,	Circular motion
		Rarefaction	(combines both types)
Wave	Solids, strings	Gases (air), liquids,	Liquids (like water
Medium		solids	surface)
Medium	No need	Need	Need

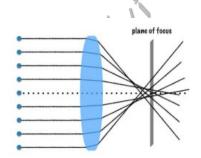
Which of the following correctly relates the **period (T)** of a wave to its **frequency (f)**?

A)
$$T=f$$

B)
$$T=1/f$$

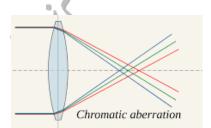
C)
$$T=f^2$$

D)
$$T=f/2$$


В

3.5%

1What is spherical aberration in a lens?

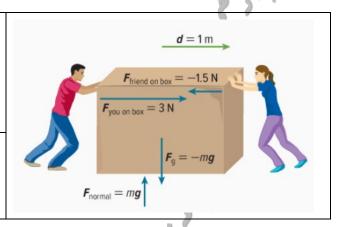

G10 Gen

- A) When light of different colors focuses at different points
- B) When light rays parallel to the principal axis do not converge at a single point
- C) When the lens absorbs some colors of light
- D) When the lens breaks under stress

What is chromatic aberration in a lens?

- A) A defect causing light rays of different colors to focus at different points
- B) A defect caused by dirt on the lens
- C) Unequal bending of all light rays at the same wavelength
- D) Reflection of light from the lens surface

How can the chromatic and spherical aberrations be minimized in optical instruments?


- A) By using mirrors instead of lenses
- B) By using colored filters only
- C) By increasing lens thickness
- D) By ignoring parallel light rays

3.28 3

Written part

The force you exert (3N) is in the direction of the displacement and Your friend exerts a force (1.5 N) in the direction opposite the displacement the box moved 1 m to the right

القوة التي تؤتِّر بها (3 نيوتن) في اتجاه الإزاحة، ويؤتِّر صديقك بقوة (1.5 نيوتن) في الاتجاه المعاكس للإزاحة تحرَّك الصندوق مسافة 1 م إلى اليمين

mid the work done by you من طريقك	اوجد ال
Find the work done by your friend طریق صدیقك	
Find the net work done أوجد محصله الشغل المبذول	
Find the net work done	

3.55

3.5.8

A 12-kg box is on a horizontal frictionless surface. Two students push the box simultaneously: one applies a force of 50 N to the right, and the other applies a force of 30 N to the left.

- 1. Draw a diagram showing all the forces acting on the box.
- 2. Calculate the **net force** acting on the box.

G10 Gen

3. Determine the **acceleration** of the box.

EN. 2

27.9:8 31/

4. State the direction of the acceleration.

9 ₆ 1		2/

If a frictional force of 10 N opposes the motion, recalculate the **net force** and acceleration.

1. Diagram

- Draw a horizontal box.
- Arrow right: 50 N
- Arrow left: 30 N
- · (Optional later) Friction: 10 N left

2. Net Force (without friction)

For forces in opposite directions:

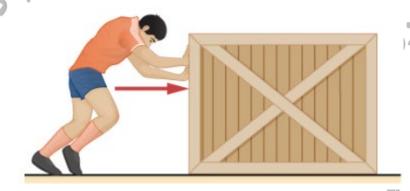
$$F_{\text{net}} = F_{\text{right}} - F_{\text{left}} = 50 - 30 = 20 \,\text{N} \,(\text{right})$$

3. Acceleration (without friction)

$$a = \frac{F_{\rm net}}{m} = \frac{20}{12} \approx 1.67\,\mathrm{m/s^2\,(right)}$$

4. Direction of Acceleration

· Acceleration is toward the right (same as net force direction).


5. Net Force and Acceleration with Friction

Friction opposes motion, so total opposing force = 30 N + 10 N = 40 N

$$\begin{split} F_{\rm net} = F_{\rm right} - ({\rm F~left+friction}) &= 50-40 = 10~{\rm N~(right)} \\ a = \frac{F_{\rm net}}{m} &= \frac{10}{12} \approx 0.83~{\rm m/s^2~(right)} \end{split}$$

3.2.8

A 20-kg crate rests on a horizontal floor. The coefficient of static friction between the crate and the floor is 0.4, and the coefficient of kinetic friction is 0.3.

	Calculate the maximum static friction force that prevents the crate from moving.
• • • •	
• • • •	
2	A worker applies a horizontal force of 60 N. Will the crate move? Justify your
۷.	answer.
••••	
3.	If the crate starts moving, calculate the kinetic friction force acting on it.
• ••	
••••	

3.2.8

4. Determine the **acceleration** of the crate when the 60 N force is applied and it starts

moving.

. "		
-4,7		
	• • • • • • • • • • • • • • • • • • • •	

.....

1. Maximum Static Friction

$$f_s^{\max} = \mu_s \cdot N$$

Normal force on horizontal surface:

$$N=m\cdot g=20\cdot 9.8=196\,\mathrm{N}$$

$$f_s^{\rm max} = 0.4 \cdot 196 = 78.4 \, {\rm N}$$

- Answer: 78.4 N
- 2. Will the crate move?
- Applied force = 60 N
- Maximum static friction = 78.4 N

Since $F_{
m applied} < f_s^{
m max}$, the crate will not move.

Answer: No, because 60 N < 78.4 N.

3. Kinetic Friction Force

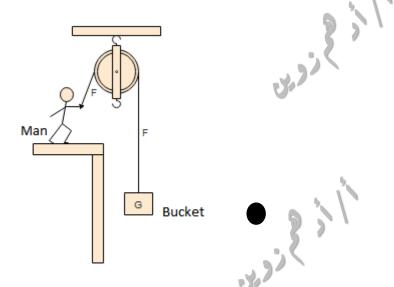
If the crate starts moving, the kinetic friction force is:

$$f_k = \mu_k \cdot N = 0.3 \cdot 196 = 58.8 \,\mathrm{N}$$

Answer: 58.8 N

4. Acceleration Once Moving

Net force after the crate moves:


$$F_{\rm net} = F_{\rm applied} - f_k = 60 - 58.8 = 1.2\,{\rm N}$$

Acceleration:

$$a = rac{F_{
m net}}{m} = rac{1.2}{20} = 0.06 \, {
m m/s^2}$$

3:6:20

A person lifts a 15-kg bucket of water vertically from the ground to a height of 3 m in 6 seconds.

- 1. Draw a **free-body diagram** of the bucket (represented as a dot), showing all forces acting on it while lifting.
- 2. Calculate the work done by the person on the bucket.

- 3. Determine the **power** developed by the person while lifting the bucket.
-
 - 4. If the person lifts the bucket at a **constant speed**, explain the relationship between the applied force and the weight of the bucket.

3:23

1. Free-Body Diagram

- · Represent the bucket as a dot.
- · Forces acting on the bucket:
 - Weight (W = mg) downward
 - · Applied force (F) upward

SCSS

- ↑ F (applied force)
- Bucket
- ↓ W (weight)

2. Work Done by the Person

For vertical lifting at constant speed, applied force equals weight:

$$F = W = m \cdot g = 15 \cdot 9.8 = 147 \,\text{N}$$

Work done:

$$W=F\cdot d=147\cdot 3=441\,\mathrm{J}$$

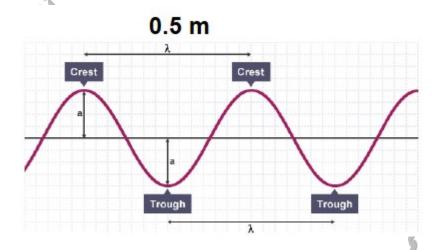
Answer: 441 J

3. Power Developed

$$P = \frac{W}{t} = \frac{441}{6} = 73.5 \text{ W}$$

Answer: 73.5 W

4. Relationship Between Applied Force and Weight

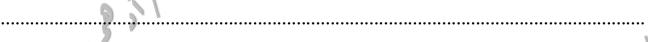

- When lifting at constant speed, acceleration a=0.
- According to Newton's Second Law: $F_{
 m applied} W = m \cdot a = 0$

$$F_{\text{applied}} = W$$

Answer: The applied force equals the weight of the bucket.

A wave travels along a string with a speed of 12 m/s. The distance between two consecutive crests is 0.5 m.

Questions:

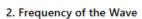

Define periodic motion and explain the quantities associated with it:,
 wavelength, and amplitude.

period	
wavelength	
amplitude	

2. Calculate the freque	ncy of the wave.	

.....

3. Calculate the **period** of the wave.


If the amplitude of the wave is 0.2 m, put this value on the graph.

J. 3: (2. 11)

38311

. 7

- · Period (T): Time taken for one complete cycle of the motion.
- Wavelength (λ): Distance between two consecutive points in phase (e.g., crest to crest).
- Amplitude (A): Maximum displacement of the particle from its mean (equilibrium) position.

Wave equation:

$$v = f \cdot \lambda \implies f = \frac{v}{\lambda}$$

$$f=rac{12}{0.5}=24\,\mathrm{Hz}$$

 $lap{N}$ Answer: $f=24\,\mathrm{Hz}$

3. Period of the Wave

$$T = \frac{1}{f} = \frac{1}{24} \approx 0.0417 \,\mathrm{s}$$

31,5